Recent advances and challenges of cathode materials in aqueous rechargeable zinc-ion batteries

Yihui Zou , Jin Sun , Yulong Chi , Xueyan Cheng , Dongjiang Yang

EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 599 -629.

PDF (10135KB)
EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 599 -629. DOI: 10.1002/ece2.61
REVIEW

Recent advances and challenges of cathode materials in aqueous rechargeable zinc-ion batteries

Author information +
History +
PDF (10135KB)

Abstract

Aqueous Zn-ion battery (AZIB) is a new type of secondary battery developed in recent years. It has the advantages of high energy density, high power density, efficient and safe discharge process, non-toxic and cheap battery materials, simple preparation process, etc., and has high application prospects in emerging large-scale energy storage fields such as electric vehicles and energy storage grids. Currently, one of the main factors hindering the further development of AZIBs batteries is the lack of suitable cathode materials. This article briefly introduces the advantages and energy storage mechanisms of aqueous zinc-ion batteries. Based on the crucial role of cathode materials in AZIBs, several common cathode materials (such as manganese-based compounds, vanadium-based compounds, nickel/cobalt-based compounds, and lithium/sodium intercalated compounds) are reviewed, and strategies to improve their conductivity and cycling stability are summarized, focusing on modification strategies such as structural regulation, nanoengineering, doping modification, and compounding with high-conductivity materials. The article also points out the key development directions for cathode materials of AZIBs in the future.

Keywords

aqueous Zn-ion battery / cathode materials / electrochemical performance / energy storage mechanism / modification strategy

Cite this article

Download citation ▾
Yihui Zou, Jin Sun, Yulong Chi, Xueyan Cheng, Dongjiang Yang. Recent advances and challenges of cathode materials in aqueous rechargeable zinc-ion batteries. EcoEnergy, 2024, 2(4): 599-629 DOI:10.1002/ece2.61

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294-303.

[2]

Li M, Lu J, Chen ZW, Amine K. 30 years of lithium-ion batteries. Adv Mater. 2018;30(33):1800561.

[3]

Sarma DD, Shukla AK. Building better batteries: a travel back in time. ACS Energy Lett. 2018;3(11):2841-2845.

[4]

Liu ZY, Huang Y, Huang Y, et al. Voltage issue of aqueous rechargeable metal-ion batteries. Chem Soc Rev. 2020;49(1):180-232.

[5]

Li CJ, Sun L, Zhang SL, et al. Developing cathode materials for aqueous zinc ion batteries: challenges and practical prospects. Adv Funct Mater. 2024;34(5):2301291.

[6]

Selvakumaran D, Pan A, Liang SQ, Cao GZ. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J Mater Chem A. 2019;7(31):18209-18236.

[7]

Tiang Y, An YL, Wei CL, et al. Roching chair batteries: recent advances and perspectives of Zn-metal free “rocking-chair”-type Zn-ion batteries. Adv Energy Mater. 2021;11(5):2002529.

[8]

Bensalah N, Luna YD. Recent progress in layered manganese and vanadium oxide cathode for Zn-ion batteries. Energy Technol. 2021;9(5):2100011.

[9]

Ma W, Wang S, Wu X, et al. Tailoring desolvation strategies for aqueous zinc-ion batteries. Energy Environ Sci. 2024;17(14):4819-4846.

[10]

Zhang Q, Zhi P, Zhang J, et al. Engineering covalent organic frameworks toward advanced zinc-based batteries. Adv Mater. 2024;36(24):2313152.

[11]

Yang S, Du H, Li Y, et al. Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green Energy Environ. 2023;8(6):1531-1552.

[12]

Geng Y, Pan L, Peng Z, et al. Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Mater. 2022;51:733-755.

[13]

Zuo SY, Xu XJ, Ji SM, Wang ZS, Liu ZB, Liu J. Cathode for aqueous Zn-ion batteries: materials, mechanisms, and kinetics. Chem Eur J. 2021;27(3):830-860.

[14]

Zhang N, Wang J, Guo Y, Wang P, Zhu Y, Yi TF. Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries. Coord Chem Rev. 2023;479:215009.

[15]

Liu Y, Wu X. Hydrogen and sodium ions co-intercalated vanadium dioxide electrode materials with enhanced zinc ion storage capacity. Nano Energy. 2021;86:106124.

[16]

Xiao D, Lv X, Fan J, Li Q, Chen Z. Zn-based batteries for energy storage. Energy Mater. 2023;3:300007.

[17]

Chen X, Xie X, Ruan P, Liang S, Wong WY, Fang G. Thermodynamics and kinetics of conversion reaction in zinc batteries. ACS Energy Lett. 2024;9(5):2037-2056.

[18]

Yuan C, Zhang Y, Pan Y, Liu X, Wang G, Cao D. Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery. Electrochim Acta. 2014;116:404-412.

[19]

Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun. 2017;8(1):1-9.

[20]

Kundu D, Adams D, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide in-tercalation cathode. Nat Energy. 2016;1(10):1-8.

[21]

Lee B, Yoon CS, Lee HR, Chung KY, Cho BW, Oh SH. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci Rep. 2014;4(1):6066.

[22]

Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy. 2016;1(5):16039.

[23]

Chen D, Lu M, Cai D, Yang H, Han W. Recent advances in energy storage mechanism of aqueous zinc-ion batteries. J Energy Chem. 2021;54:712-726.

[24]

Sun W, Wang F, Hou S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J Am Chem Soc. 2017;139(29):9775-9778.

[25]

Wan F, Zhang L, Dai X, et al. Aqueous rechargeable zinc/sodium vandate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat Commun. 2018;9(1):1-11.

[26]

Wang S, Yuan Z, Zhang X, et al. Non-metal ion Co-insertion chemistry in aqueous Zn/MnO2 batteries. Angew Chem Int Ed. 2021;133(13):7132-7136.

[27]

Serrano I, Almodóvar P, Giraldo DA, Llopis F, Solsona B, López ML. Stable manganese-oxide composites as cathodes for Zn-ion batteries: interface activation from in situ layer electrochemical deposition under 2 V. Adv Mater Interfaces. 2022;9(5):2101924.

[28]

Xu L, Xu N, Yan C, et al. Storage mechanisms and improved strategies for manganese-based aqueous zinc-ion batteries. J Electroanal Chem. 2021;888:115196.

[29]

Zhang Q, Fan H, Liu Q, Wub Y, Wang E. Fe-doped a-MnO2/rGO cathode material for zinc ion batteries with long lifespan and high areal capacity. J Mater Chem A. 2024;12(14):8167-8174.

[30]

Xu JW, Gao QL, Xia YM, et al. High-performance reversible aqueous zinc-ion battery based on iron-doped alpha-manganese dioxide coated by polypyrrole. J Colloid Interface Sci. 2021;598:419-429.

[31]

Wu B, Zhang G, Yan M, et al. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small. 2018;14(13):1703850.

[32]

Islam S, Alfaruqi M, Mathew V, et al. Facile synthesis and the exploration of the zinc storage mechanism of b-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J Mater Chem A. 2017;5(44):23299-23309.

[33]

Muhammad H, Mathew A, Gim J, et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem Mater. 2015;27(10):3609-3620.

[34]

Zhao WY, Kong QQ, Wu XQ, et al. ϵ-MnO2@C cathode with high stability for aqueous zinc-ion batteries. Appl Surf Sci. 2022;605:154685.

[35]

Wang D, Wang L, Liang G, et al. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery. ACS Nano. 2019;13(9):10643-10652.

[36]

Jia X, Liu C, Neale ZG, Neale G, Yang J, Cao G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev. 2020;120(15):7795-7866.

[37]

Sun Z, Chen H, Shu D, He C, Tang S, Zhang J. Supercapacitive behavior and high cycle stability of todorokite-type manganese oxide with large tunnels. J Power Sources. 2012;203:233-242.

[38]

Zeng L, ZhangHuang GX, Wang H, Zhou T, Xie H. Tuning crystal structure of MnO2 during different hydrothermal synthesis temperature and its electrochemical performance as cathode material for zinc ion battery. Vacuum. 2021;192:110398.

[39]

Jiang B, Xu C, Wu C, Dong L, Li J, Kang F. Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim Acta. 2017;229:422-428.

[40]

Hao J, Mou J, Zhang J, et al. Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim Acta. 2018;259:170-178.

[41]

Li W, Gao X, Chen Z, et al. Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery. Chem Eng J. 2020;402:125509.

[42]

Yao Z, Cai D, Cui Z, Wang Q, Zhan H. Strongly coupled zinc manganate nanodots and graphene composite as an advanced cathode material for aqueous zinc ion batteries. Ceram Int. 2020;46(8):11237-11245.

[43]

Luo X, Zhang X, Chen L, et al. Mesoporous ZnMn2O4 microtubules derived from a biomorphic strategy for high-performance lithium/sodium ion batteries. ACS Appl Mater Interfaces. 2018;10(39):33170-33178.

[44]

Gao F, Mei B, Xu XY, et al. Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries. Chem Eng J. 2022;448:137742.

[45]

Yang Z, Pan X, Shen Y, et al. New insights into phase-mechanism relationship of MgxMnO2 nanowires in aqueous zinc-ion batteries. Small. 2022;18(13):2107743.

[46]

Soundharrajan V, Sambandam B, Kim S, et al. Aqueous magnesium zinc hybrid battery: an advanced high-voltage and high-energy MgMn2O4 cathode. ACS Energy Lett. 2018;3(8):1998-2004.

[47]

Shi MJ, Wang B, Shen Y, et al. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem Eng J. 2020;399:125627.

[48]

Deng S, Tie Z, Yue F, Cao H, Yao M, Niu Z. Rational design of ZnMn2O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries. Angew Chem Int Ed. 2022;147(12):e202115877.

[49]

Islam S, Alfaruqi MH, Putro DY, et al. In situ oriented Mn deficient ZnMn2O4@C nanoarchitecture for durable rechargeable aqueous zinc-ion batteries. Adv Sci. 2021;8(4):2002636.

[50]

Zeng Y, Wang Y, Jin Q, et al. Rationally designed Mn2O3-ZnMn2O4 hollow heterostructures from metal-organic frameworks for stable Zn-ion storage. Angew Chem Int Ed. 2021;133(49):25997-26002.

[51]

Zhai X, Qu J, Hao S, et al. Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries. Nano-Micro Lett. 2020;12(1):56.

[52]

Li XM, Qu JQ, Xu JM, et al. K-preintercalated MnO2 nanosheets as cathode for high-performance Zn-ion batteries. J Electroanal Chem. 2021;895:115529.

[53]

Wu X, Zhou S, Li Y, et al. Na-containing manganese-based cathode materials synthesized by sol-gel method for zinc-based rechargeable aqueous battery. J Alloys Compd. 2021;858:157744.

[54]

Wang S, Ma W, Sang Z, et al. Dual-modification of manganese oxide by heterostructure and cation pre-intercalation for high-rate and stable zinc-ion storage. J Energy Chem. 2022;67:82-91.

[55]

Chen X, Li W, Xu Y, et al. Charging activation and desulfurization of MnS unlock the active sites and electrochemical reactivity for Zn-ion batteries. Nano Energy. 2020;75:104869.

[56]

Yadav N, Khamsanga S, Kheawhom S, Qin J, Pattananuwat P. MnCo2O4 spinel microsphere assembled with flake structure as a cathode for high-performance zinc ion battery. J Energy Storage. 2023;64:107148.

[57]

Liu X, Shen X, Chen T, Xu Q. The spinel MnFe2O4 grown in biomass-derived porous carbons materials for high-performance cathode materials of aqueous zinc-ion batteries. J Alloys Compd. 2022;904:164002.

[58]

Fang G, Zhu C, Chen M, et al. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high energy density and durable aqueous zinc ion battery. Adv Funct Mater. 2019;29(15):1808375.

[59]

Wang M, Cao C, Su F, et al. The electrochemical properties and reaction mechanism of orthorhombic Mn2SiO4 cathode for aqueous rechargeable zinc ion batteries. J Power Sources. 2020;477:229013.

[60]

Pan Y, Liu Z, Liu S, et al. Quasi decoupled solid-liquid hybrid electrolyte for highly reversible interfacial reaction in aqueous zinc-manganese battery. Adv Energy Mater. 2023;13(11):2203766.

[61]

Chuai M, Yang J, Wang M, et al. High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience. 2021;1(2):1178-1185.

[62]

Lee J, Ju JB, Cho WI, Cho BW, Oh SH. Todorokite-type MnO2 as a zinc-ion intercalating material. Electrochim Acta. 2013;112:138-143.

[63]

Wang C, Wang M, He Z, Liu L, Huang Y. Rechargeable aqueous zinc-manganese dioxide/graphene batteries with high rate capability and large capacity. ACS Appl Energy Mater. 2020;3(2):1742-1748.

[64]

Wang C, Zeng Y, Xiao X, et al. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery. J Energy Chem. 2020;43:182-187.

[65]

Zhao L, Dong L, Liu W, Xu C. Binary and ternary manganese dioxide composites cathode for aqueous zinc ion battery. ChemistrySelect. 2018;3(44):12661-12665.

[66]

Wu Y, Wang M, Tao Y, et al. Electrochemically derived graphene like carbon film as a superb substrate for high performance aqueous Zn ion batteries. Adv Funct Mater. 2020;30(5):1907120.

[67]

Wang K, Zhang X, Han J, et al. High-performance cable-type flexible rechargeable Zn battery based on MnO2@CNT fiber microelectrode. ACS Appl Mater Interfaces. 2018;10(29):24573-24582.

[68]

Li H, Han C, Huang Y, et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ Sci. 2018;11(4):941-951.

[69]

Bi S, Wu Y, Cao A, Tian J, Zhang S, Niu Z. Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance. Mater Today Energy. 2020;18:100548.

[70]

Deyab MA, Mele G. Polyaniline/Zn-phthalocyanines nanocomposite for protecting zinc electrode in Zn-air battery. J Power Sources. 2019;443:227264.

[71]

Lin M, Shao F, Tang Y, et al. Layered Co doped MnO2 with abundant oxygen defects to boost aqueous zinc-ion storage. J Colloid Interface Sci. 2022;611:662-669.

[72]

Ma K, Li Q, Hong C, Yang G, Wang C. Bi doping-enhanced reversible-phase transition of α-MnO2 raising the cycle capability of aqueous Zn-Mn batteries. ACS Appl Mater Interfaces. 2021;13(46):55208-55217.

[73]

Zhang N, Cheng F, Liu J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat Commun. 2017;8(1):405.

[74]

Jiang W, Xu X, Liu Y, et al. Facile plasma treated β-MnO2@C hybrids for durable cycling cathodes in aqueous Zn-ion batteries. J Alloys Compd. 2020;827:154273.

[75]

Wang J, Sun X, Zhao H, et al. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping. J Phys Chem C. 2019;123(37):22735-22741.

[76]

Alfaruqi MH, Mathew V, Gim J, et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem Mater. 2015;27(10):3609-3620.

[77]

Zhang Z, Shang H, Zhang X, et al. Enhancing the electrochemical performances by wet ball milling to introduce structural water into an electrolytic MnO2/graphite nanocomposite cathode for zinc-ion batteries. ACS Appl Energy Mater. 2021;4(5):5113-5122.

[78]

Shang H, Zhang Z, Liu C, et al. MnO2@V2O5 microspheres as cathode materials for high performance aqueous rechargeable Zn-ion battery. J Electroanal Chem. 2021;890:115253.

[79]

Zhu X, Cao Z, Wang W, et al. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTX MXene. ACS Nano. 2021;15(2):2971-2983.

[80]

Zhao Y, Zhang P, Liang J, et al. Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Storage Mater. 2022;47:424-433.

[81]

Alfaruqi MH, Gim J, Kim S, et al. A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem Commun. 2015;60:121-125.

[82]

Khamsanga S, Pornprasertsuk R, Yonezawa T, Mohamad AA, Kheawhom S. δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries. Sci Rep. 2019;9(1):8441.

[83]

Zhang Y, Deng S, Luo M, et al. Defect promoted capacity and durability of N-MnO2-x branch arrays via low-temperature NH3 treatment for advanced aqueous zinc ion batteries. Small. 2019;15(47):1905452.

[84]

Zhang R, Liang P, Yang H, et al. Manipulating intercalation-extraction mechanisms in structurally modulated δ-MnO2 nanowires for high-performance aqueous zinc-ion batteries. Chem Eng J. 2022;433:133687.

[85]

Chen X, Li W, Zeng Z, Reed D, Li X, Liu X. Engineering stable Zn-MnO2 batteries by synergistic stabilization between the carbon nanofiber core and birnessite-MnO2 nanosheets shell. Chem Eng J. 2021;405:126969.

[86]

Jiang B, Xu C, Wu C, Dong L, Li J, Kang F. Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim Acta. 2017;229:422-428.

[87]

Feng D, Gao TN, Zhang L, et al. Boosting high-rate zinc-storage performance by the rational design of Mn2O3 nanoporous architecture cathode. Nano-Micro Lett. 2019;12(1):14.

[88]

Long J, Yang F, Cuan J, et al. Boosted charge transfer in twinborn α-Mn2O3-MnO2;heterostructures: toward high-rate and ultralong-life zinc-ion batteries. ACS Appl Mater Interfaces. 2020;12(29):32526-32535.

[89]

Zeng Y, Wang Y, Jin Q, et al. Rationally designed Mn2O3-ZnMn2O4 hollow heterostructures from metal-organic frameworks for stable Zn ion storage. Angew Chem Int Ed. 2021;60(49):25793-25798.

[90]

Zhang D, Cao J, Zhang X, et al. Inhibition of manganese dissolution in Mn2O3 cathode with controllable Ni2+ incorporation for high performance zinc ion battery. Adv Funct Mater. 2021;31(14):2009412.

[91]

Long J, Yang ZH, Yang FH, Cuan J, Wu JX. Electrospun core-shell Mn3O4/carbon fibers as high-performance cathode materials for aqueous zinc-ion batteries. Electrochim Acta. 2020;344:136155.

[92]

Ji J, Wan H, Zhang B, et al. Co2+/3+/4+ regulated electron state of MnO for superb aqueous zinc manganese oxide batteries. Adv Energy Mater. 2021;11(6):2003203.

[93]

Huang C, Wang Q, Tian G, Zhang D. Oxygen vacancies-enriched Mn3O4 enabling high-performance rechargeable aqueous zinc-ion battery. Mater Today Phys. 2021;21:100518.

[94]

Guo X, Sun H, Li C, et al. Defect-engineered Mn3O4/CNTs composites enhancing reaction kinetics for zinc-ions storage performance. J Energy Chem. 2022;68:538-547.

[95]

Huang Z, Duan Y, Jing Q, Sun M, Tang B, Shi S. Assembly of Mn3O4 nanoparticles at low temperature on graphene with enhanced electrochemical property for zinc-ion battery. J Alloys Compd. 2021;864:158316.

[96]

Zhu CY, Fang GZ, Liang SQ, et al. Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Storage Mater. 2020;24:394-401.

[97]

Tang F, He T, Zhang HH, et al. The MnO@N-doped carbon composite derived from electrospinning as cathode material for aqueous zinc ion battery. Electroanal Chem. 2020;873:114368.

[98]

Fenta FW, Olbasa BW, Tsai MC, et al. Electrochemical transformation reaction of Cu-MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life. J Mater Chem A. 2020;8(34):17595-17607.

[99]

Samanta A, Barman BK, Mallick S, Raj CR. Three-dimensional nitrogen-doped graphitic carbon-encapsulated MnO-Co heterostructure: a bifunctional energy storage material for Zn-ion and Zn-air batteries. ACS Appl Energy Mater. 2020;3(10):10108-10118.

[100]

Fu YQ, Wei QL, Zhang GX, et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv Energy Mater. 2018;8(26):1801445.

[101]

Tao YY, Li Z, Tang LB, et al. Nickel and cobalt Co-substituted spinel ZnMn2O4@ N-rGO for increased capacity and stability as a cathode material for rechargeable aqueous zinc-ion battery. Electrochim Acta. 2020;331:135296.

[102]

Deng SZ, Tie ZW, Yue F, Cao HM, Yao MJ, Niu ZQ. Rational design of ZnMn2O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries. Angew Chem Int Ed. 2022;61(12):e202115877.

[103]

Soundharrajan V, Sambandam B, Kim S, et al. Aqueous magnesium zinc hybrid battery: an advanced high-voltage and high-energy MgMn2O4 cathode. ACS Energy Lett. 2018;3(8):1998-2004.

[104]

Wu TH, Liang WY. Reduced intercalation energy barrier by rich structural water in spinel ZnMn2O4 for high-rate zinc-ion batteries. ACS Appl Mater Interfaces. 2021;13(20):23822-23832.

[105]

Zhai XZ, Qu J, Hao SM, et al. Layered birnessite cathode with a displacement/intercalation mechanism for high-performance aqueous zinc-ion batteries. Nano-Micro Lett. 2020;12(1):56.

[106]

Wu XW, Li YH, Xiang YH, et al. The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte. J Power Sources. 2016;336:35-39.

[107]

Yuan GH, Bai JT, Doan TNL, Chen P. Synthesis and electrochemical investigation of nanosized LiMn2O4 as cathode material for rechargeable hybrid aqueous batteries. Mater Lett. 2014;137:311-314.

[108]

Zhai XZ, Qu J, Wang J, et al. Diffusion-driven fabrication of yolk-shell structured K-birnessite@mesoporous carbon nanospheres with rich oxygen vacancies for high-energy and high-power zinc-ion batteries. Energy Storage Mater. 2021;42:753-763.

[109]

Li XM, Qu JQ, Xu JM, et al. K-preintercalated MnO2 nanosheets as cathode for high-performance Zn-ion batteries. J Electroanal Chem. 2021;895:115529.

[110]

Liu LY, Wu YC, Huang L, et al. Alkali ions pre-intercalated layered MnO2 nanosheet for zinc-ions storage. Adv Energy Mater. 2021;11(31):2101287.

[111]

Fang GZ, Zhu CY, Chen MH, et al. Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous zinc-ion battery. Adv Funct Mater. 2019;29(15):1808375.

[112]

Long J, Gu JX, Yang ZH, et al. Highly porous, low band-ga. NixMn3-xO4 (0.55≤x≤1.2) spinel nanoparticles with in situ coated carbon as advanced cathode materials for zinc-ion batteries. J Mater Chem A. 2019;7(30):17854-17866.

[113]

Chen LL, Yang ZH, Qin HG, Zeng X, Meng JL. Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery. J Power Sources. 2019;425:162-169.

[114]

Zhu TT, Zheng K, Wang PP, et al. A new zinc-ion battery cathode with high-performance: loofah-like lanthanum manganese perovskite. J Colloid Interface Sci. 2022;610:796-804.

[115]

Ding SX, Liu LL, Qin RZ, et al. Progressive “layer to hybrid spinel/layer”phase evolution with proton and Zn2+ Co-intercalation to enable high performance of MnO2-based aqueous batteries. ACS Appl Mater Interfaces. 2021;13(19):22466-22474.

[116]

Zhao JW, Li YQ, Peng X, et al. High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of “water-in-salt”electrolyte. Electrochem Commun. 2016;69:6-10.

[117]

Hu Y, Liu Z, Li L, et al. Reconstructing interfacial manganese deposition for durable aqueous zinc-manganese batteries. Natl Sci Rev. 2023;10:nwad220.

[118]

Dou X, Xie X, Liang S, Fang G. Low-current-density stability of vanadium-based cathodes for aqueous zinc-ion batteries. Sci Bull. 2024;69(6):833-845.

[119]

Zhang N, Dong Y, Jia M, et al. Rechargeable aqueous Zn-V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 2018;3(6):1366-1372.

[120]

Yan M, He P, Chen Y, et al. Water-Lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater. 2018;30(1):1703725.

[121]

Qin H, Chen L, Wang L, Chen X, Yang Z. V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim Acta. 2019;306:307-316.

[122]

Zhou J, Shan L, Wu Z, Guo X, Fang G, Liang S. Investigation of V2O5 as a low-cost rechargeable aqueous zinc ion battery cathode. Chem Commun. 2018;54(35):4457-4460.

[123]

Chen D, Rui X, Zhang Q, et al. Persistent zinc-ion storage in mass-produced V2O5 architectures. Nano Energy. 2019;60:171-178.

[124]

Li Y, Huang Z, Kalambate PK, et al. V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy. 2019;60:752-759.

[125]

Brown E, Acharya J, Elangovan A, Pandey GP, Wu J, Li J. Disordered bilayered V2O5·nH2O shells deposited on vertically aligned carbon nanofiber arrays as stable high-capacity sodium ion battery cathodes. Energy Technol. 2018;6(12):2436-2449.

[126]

Wang ZH, Song Y, Wang J, et al. Vanadium oxides with amorphous-crystalline heterointerface network for aqueous zinc-ion batteries. Angew Chem Int Ed. 2023;26(13):e202216290.

[127]

He P, Zhang G, Liao X, et al. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv Energy Mater. 2018;8(10):1702463.

[128]

Xia C, Guo J, Li P, Zhang X, Alshareef HN. Highly stable aqueous zincion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem Int Ed. 2018;57(15):3943-3948.

[129]

Ming F, Liang H, Lei Y, Kandambeth S, Eddaoudi M, Alshareef HN. Layered MgxV2O5 center dot nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 2018;3(10):2602-2609.

[130]

He P, Quan Y, Xu X, et al. High-Performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small. 2017;13(47):1702551.

[131]

Pang Q, Sun C, Yu Y, et al. H2V3O8 nanowire/graphene electrodes for aqueous rechargeable zinc ion batteries with high rate capability and large capacity. Adv Energy Mater. 2018;8(19):1800144.

[132]

Oka Y, Yao T, Yamamoto N. Structure determination of H2V3O8 by powder X-ray diffraction. J Solid State Chem. 1990;89(2):372-377.

[133]

Shin J, Choi DS, Lee HJ, Jung Y. Hydrated intercalation for high-performance aqueous zinc ion batteries. Adv Energy Mater. 2019;9(14):201900083.

[134]

Wei T, Li Q, Yang G, Wang C. An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. J Mater Chem A. 2018;6(17):8006-8012.

[135]

Song M, Tan H, Chao D, Fan HJ. Recent advances in Zn-ion batteries. Adv Funct Mater. 2018;28(14):1802564.

[136]

Ming J, Guo J, Xia C, Wang W, Alshareef HN. Zinc-Ion batteries: materials, mechanisms, and applications. Math Sci Eng R. 2019;135:58-84.

[137]

Islam S, Alfaruqi MH, Sambandam B, et al. A new rechargeable battery based on zinc anode and NaV6O15 nanorod cathode. Chem Commun. 2019;55(26):3793-3796.

[138]

Liang W, Rao D, Chen T, Tang R, Li J, Jin H. Zn0.52V2O5·1.8H2O cathode stabilized by in situ phase transformation for aqueous zinc-ion batteries with ultra-long cyclability. Angew Chem Int Ed. 2022;61(35):e202207779.

[139]

Alfaruqi MH, Mathew V, Song JJ, et al. Electrochemical zinc intercalation in lithium vanadium oxide: a highcapacity zinc-ion battery cathode. Chem Mater. 2017;29(4):1684-1694.

[140]

Hu P, Zhu T, Wang X, et al. Highly durable Na2V6O16·1.63H2O nanowire cathode for aqueous zinc ion battery. Nano Lett. 2018;18(3):1758-1763.

[141]

Zhu K, Wu T, Bergh W, Stefik M, Huang K. Reversible molecular and ionic storage mechanisms in high-performance Zn0.1V2O5·nH2O xerogel cathode for aqueous Zn-ion batteries. ACS Nano. 2021;15(6):10678-10688.

[142]

Liu X, Zhang H, Geiger D, et al. Calcium vanadate sub-microfibers as highly reversible host cathode material for aqueous zinc-ion batteries. Chem Commun. 2019;55(16):2265-2268.

[143]

Qin H, Yang Z, Chen L, Chen X, Wang L. A high-rate aqueous rechargeable zinc ion battery based on VS4@rGO nanocomposite. J Mater Chem A. 2018;6(46):23757-23765.

[144]

He P, Yan M, Zhang G, et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater. 2017;7(11):1601920.

[145]

Peng Z, Wei Q, Tan S, et al. Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. Chem Commun. 2018;54(32):4041-4044.

[146]

Jo JH, Sun Y, Myung ST. Hollandite-Type Al-doped VO1.52(OH)0.77 as a zinc ion insertion host material. J Mater Chem A. 2017;5(18):8367-8375.

[147]

Kaveevivitchai W, Manthiram A. High-Capacity zinc-ion storage in an open-tunnel oxide for aqueous and nonaqueous Zn-ion batteries. J Mater Chem A. 2016;4(48):18737-18741.

[148]

Xia C, Guo J, Lei Y, Liang H, Zhao C, Alshareef HN. Rechargeable aqueous zincion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv Mater. 2017;30(5):01705580.

[149]

Wang X, Li Y, Das P, Zheng S, Zhou F, Wu ZS. Layer-by-layer stacked amorphous V2O5/Graphene 2D heterostructures with strong-coupling effect for high-capacity aqueous zinc-ion batteries with ultra-long cycle life. Energy Storage Mater. 2020;31:156-163.

[150]

Yan M, He P, Chen Y, et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater. 2018;30(1):1703725.

[151]

Wang M, Zhang J, Zhang L, et al. Graphene-like vanadium oxygen hydrate (VOH) nanosheets intercalated and exfoliated by polyaniline (PANI) for aqueous zinc-ion batteries (ZIBs). ACS Appl Mater Interfaces. 2020;12(28):31564-31574.

[152]

Chen X, Wang L, Li H, Chen F, Chen J. Porous V2O5 nanofibers as cathode materials for rechargeable aqueous zinc-ion batteries. J Energy Chem. 2019;38:20-25.

[153]

He B, Zhou Z, Man P, et al. V2O5 nanosheets supported on 3D N-doped carbon nanowall arrays as an advanced cathode for high energy and high power fiber-shaped zinc-ion batteries. J Mater Chem A. 2019;7(21):12979-12986.

[154]

Lu Y, Zhu T, van den Bergh W, Stefik M, Huang K. A high performing Zn-ion battery cathode enabled by in situ transformation of V2O5 atomic layers. Angew Chem Int Ed. 2020;132(39):17152-17159.

[155]

Deng S, Yuan Z, Tie Z, Wang C, Song L, Niu Z. Electrochemically induced MOF derived amorphous V2O5 for superior rate aqueous Zn-ion batteries. Angew Chem Int Ed. 2020;59(49):22002-22006.

[156]

Yin B, Zhang S, Ke K, et al. Binder-free V2O5/CNT paper electrode for high rate performance zinc ion battery. Nanoscale. 2019;11(42):19723-19728.

[157]

Shi J, Wang S, Chen X, et al. An ultrahigh energy density quasi-solid-state zinc ion microbattery with excellent flexibility and thermostability. Adv Energy Mater. 2019;9(37):1901957.

[158]

Luo H, Wang B, Wang C, et al. Synergistic deficiency and heterojunction engineering boosted VO2 redox kinetics for aqueous zinc-ion batteries with superior comprehensive performance. Energy Storage Mater. 2020;33:390-398.

[159]

Dai X, Wan F, Zhang L, Cao H, Niu Z. Freestanding graphene/VO2 composite films for highly stable aqueous Zn-ion batteries with superior rate performance. Energy Storage Mater. 2019;17:143-150.

[160]

Ding Y, Peng Y, Chen S, et al. Hierarchical porous metallic V2O3@C for advanced aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2019;11(47):44109-44117.

[161]

Wei T, Li Q, Yang G, Wang C. High-rate and durable aqueous zinc ion battery using dendritic V10O24·12H2O cathode material with large interlamellar spacing. Electrochim Acta. 2018;287:60-67.

[162]

Shin J, Choi DS, Lee HJ, Jung Y, Choi JW. Hydrated intercalation for high-performance aqueous zinc ion batteries. Adv Energy Mater. 2019;9(14):1900083.

[163]

Lai J, Zhu H, Zhu X, Koritala H, Wang Y. Interlayer-expanded V6O13·nH2O architecture constructed for an advanced rechargeable aqueous zinc-ion battery. ACS Appl Energy Mater. 2019;2(3):1988-1996.

[164]

Lin Y, Zhou F, Chen M, Zhang S, Deng C. Building defect-rich oxide nanowires@graphene coaxial scrolls to boost high-rate capability, cycling durability and energy density for flexible Zn-ion batteries. Chem Eng J. 2020;396:125259.

[165]

Zhang N, Jia M, Dong Y, et al. Hydrated layered vanadium oxide as a highly reversible cathode for rechargeable aqueous zinc batteries. Adv Funct Mater. 2019;29(10):1807331.

[166]

He P, Yan M, Zhang G, et al. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater. 2017;7(11):1601920.

[167]

Qin H, Yang Z, Chen L, Chen X, Wang L. A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite. J Mater Chem A. 2018;6(46):23757-23765.

[168]

Sambandam B, Soundharrajan V, Kim S, et al. Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation. J Mater Chem A. 2018;6(9):3850-3856.

[169]

Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy. 2016;1(10):1-8.

[170]

Wang H, Zhang S, Deng C. In situ encapsulating metal oxides into core-shell hierarchical hybrid fibers for flexible zinc-ion batteries toward high durability and ultrafast capability for wearable applications. ACS Appl Mater Interfaces. 2019;11(39):35796-35808.

[171]

Xia C, Guo J, Lei Y, Liang H, Zhao C, Alshareef HN. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv Mater. 2018;30(5):1705580.

[172]

Yang Y, Tang Y, Fang G, et al. Li+intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ Sci. 2018;11:3157-3162.

[173]

He P, Zhang G, Liao X, et al. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv Energy Mater. 2018;8(10):1702463.

[174]

Wan F, Zhang L, Dai X, Wang X, Niu Z, Chen J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat Commun. 2018;9(1):1656.

[175]

Li Z, Wu B, Yan M, et al. Novel charging-optimized cathode for a fast and high-capacity zinc-ion battery. ACS Appl Mater Interfaces. 2020;12(9):10420-10427.

[176]

Zhan W, Tang C, Lan B, et al. K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance. J Alloys Compd. 2020;819:152971.

[177]

Hao Y, Zhang S, Tao P, et al. Pillaring effect of K ion anchoring for stable V2O5-based zinc-ion battery cathodes. ChemNanoMat. 2020;6(5):797-805.

[178]

Xia C, Guo J, Li P, Zhang X, Alshareef HN. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem Int Ed. 2018;57(15):3943-3948.

[179]

Shan L, Yang Y, Zhang W, et al. Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. 2019;18:10-14.

[180]

Li J, McColl K, Lu X, et al. Multi-scale investigations of δ-Ni0.25V2O5·nH2O cathode materials in aqueous zinc-ion batteries. Adv Energy Mater. 2020;10(15):2000058.

[181]

Liu Y, Li Q, Ma K, Yang G, Wang C. Graphene oxide wrapped CuV2O6 nanobelts as high-capacity and long-life cathode materials of aqueous zinc-ion batteries. ACS Nano. 2019;13(10):12081-12089.

[182]

He P, Quan Y, Xu X, et al. High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small. 2017;13(47):1702551.

[183]

Zhao H, Fu Q, Yang D, et al. In operando synchrotron studies of NH4+ preintercalated V2O5·nH2O nanobelts as the cathode material for aqueous rechargeable zinc batteries. ACS Nano. 2020;14(9):11809-11820.

[184]

Tang B, Zhou J, Fang G, et al. Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J Mater Chem A. 2019;7(3):940-945.

[185]

Chen S, Zhang Y, Geng H, Yang Y, Rui X. Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries. J Power Sources. 2019;441:227192.

[186]

He B, Zhang Q, Man P, et al. Self-sacrificed synthesis of conductive vanadium-based metal-organic framework nanowire-bundle arrays as binder-free cathodes for high-rate and high-energy-density wearable Zn-ion batteries. Nano Energy. 2019;64:103935.

[187]

Zeng Y, Meng Y, Lai Z, et al. An ultrastable and high-performance flexible fiber-shaped Ni-Zn battery based on a Ni-NiO heterostructured nanosheet cathode. Adv Mater. 2017;29(44):1702698.

[188]

Li J, Aslam MK, Chen C. One-pot hydrothermal synthesis of porous α-Ni(OH)2/C composites and its application in Ni/Zn alkaline rechargeable battery. J Electrochem Soc. 2018;165(5): A910-A917.

[189]

Hu P, Wang T, Zhao J, et al. Ultrafast alkaline Ni/Zn battery based on Ni-Foam-Supported Ni3S2 nanosheets. ACS Appl Mater Interfaces. 2015;7(48):26396-26399.

[190]

Amaranatha D, Hwan L, Gopannagari M, et al. Facile synthesis of cauliflower-like cobalt-doped Ni3Se2 nanostructures as high-performance cathode materials for aqueous zinc-ion batteries. Int J Hydrogen Energy. 2020;45:7741e7750.

[191]

Lu Z, Wu X, Lei X, Li Y, Sun X. Hierarchical nanoarray materials for advanced nickel-zinc batteries. Inorg Chem Front. 2015;2:184-187.

[192]

Gong M, Li Y, Zhang H, et al. Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide. Energy Environ Sci. 2014;7(6):2025.

[193]

Reddy D, Lee H, Gopannagari M, et al. Facile synthesis of cauliflower-like cobalt-doped Ni3Se2 nanostructures as high-performance cathode materials for aqueous zinc-ion batteries. Int J Hydrogen Energy. 2020;45:7741-7750.

[194]

Cen Z, Yang F, Wan J, Xu K. F-doped NiCo2O4@CoMoO4 as an advanced electrode for aqueous Zn-ion batteries. Chem Commun. 2023;59(56):8708-8710.

[195]

Liang Z, Lv CM, Wang LY, Li XR, Cheng SW, Huo YQ. Design of hollow porous P-NiCo2O4@Co3O4 nanoarray and its alkaline aqueous zinc-ion battery performance. Int J Mol Sci. 2023;24(21):15548.

[196]

Yan J, Wang J, Liu H, Bakenov Z, Gosselink D, Chen P. Rechargeable hybrid aqueous batteries. J Power Sources. 2012;216:222-226.

[197]

Yesibolati N, Umirov N, Koishybay A, et al. High performance Zn/LiFePO4 aqueous rechargeable battery for large scale applications. Electrochim Acta. 2015;152:505-511.

[198]

Hao JN, Long J, Li B, et al. Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive. Adv Funct Mater. 2019;29(34):1903605.

[199]

Li G, Yang Z, Jiang Y, et al. Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy. 2016;25:211-217.

[200]

Islam S, Alfaruqi MH, Putro D, et al. Pyrosynthesis of Na3V2(PO4)3@C cathodes for safe and low-cost aqueous hybrid batteries. ChemSusChem. 2018;11(13):2239-2247.

[201]

Li W, Wang K, Cheng S, Jiang K. A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. Energy Storage Mater. 2018;15:14-21.

[202]

Ma N, Wu P, Wu Y, Jiang D, Lei G. Progress and perspective of aqueous zinc ion battery. Progress and perspective of aqueous zinc-ion battery. Funct Mater Lett. 2019;12(5):1930003.

[203]

Fang G, Zhou J, Pan A, Liang S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018;3(10):2480-2501.

[204]

Dai C, Hu L, Chen H, et al. Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions. Nat Commun. 2022;13(1):1863.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF (10135KB)

275

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/