Recent advances in MXene nanomaterials: Fundamentals to applications in environment sector

Muhammad Altaf Nazir , Tayyaba Najam , Sami Ullah , Ismail Hossain , Muhammad Sufyan Javed , Mamoona Naseer , Aziz ur Rehman , Syed Shoaib Ahmad Shah

EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 505 -548.

PDF (11892KB)
EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 505 -548. DOI: 10.1002/ece2.60
REVIEW

Recent advances in MXene nanomaterials: Fundamentals to applications in environment sector

Author information +
History +
PDF (11892KB)

Abstract

MXenes are a new type of 2D transition metal carbon/nitride or carbonitride, which are composed of Mn+1AXn phase material (MAX phase) through single-layer or thin-layer nanosheets obtained by exfoliation. Owning to unique two-dimensional layered structure, large specific surface area, excellent electrical conductivity and mechanical stability, the MXenes have quickly become a research hotspot due to their magnetic and other properties, and have been widely used in many fields such as electrochemical sensors, energy storage, catalysis, and adsorption. This article summarizes and introduces preparation methods of two-dimensional materials MXenes, and focus on reviewing their application research progress in the electrochemical sensors and environmental field in recent years, including detection of biomarkers and environmental pollutants, adsorption of heavy metals, adsorption of radiation metals, adsorption of organic matter, selective adsorption of carbon dioxide, membrane separation, sensors, electrocatalysis, photocatalysis, electromagnetic absorption and shielding, etc. A summary and review were conducted, and finally the existing problems and future development at this stage were analyzed.

Keywords

adsorption / catalysis / electrochemical sensors / environment / MXenes / two-dimensional materials

Cite this article

Download citation ▾
Muhammad Altaf Nazir, Tayyaba Najam, Sami Ullah, Ismail Hossain, Muhammad Sufyan Javed, Mamoona Naseer, Aziz ur Rehman, Syed Shoaib Ahmad Shah. Recent advances in MXene nanomaterials: Fundamentals to applications in environment sector. EcoEnergy, 2024, 2(4): 505-548 DOI:10.1002/ece2.60

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiJ.-R, Kuppler RJ, ZhouH.-C. Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev. 2009;38(5):1477-1504.

[2]

StollerMD, ParkS, ZhuY, AnJ, RuoffRS. Graphene-based ultracapacitors. Nano Lett. 2008;8(10):3498-3502.

[3]

NovoselovKS, GeimAK, MorozovSV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306(5696):666-669.

[4]

KhazaeiM, AraiM, SasakiT, Estili M, SakkaY. Two-dimensional molybdenum carbides: potential thermoelectric materials of the MXene family. Phys Chem Chem Phys. 2014;16(17):7841-7849.

[5]

ZhaoY, Watanabe K, HashimotoK. Self-supporting oxygen reduction electrocatalysts made from a nitrogen-rich network polymer. J Am Chem Soc. 2012;134(48):19528-19531.

[6]

Sai Bhargava ReddyM, Aich S. Recent progress in surface and heterointerface engineering of 2D MXenes for gas sensing applications. Coord Chem Rev. 2024;500:215542.

[7]

TawalbehM, KhanHA, Al-OthmanA. Insights on the applications of metal oxide nanosheets in energy storage systems. J Energy Storage. 2023;60:106656.

[8]

BibiS, ShahSSA, NazirMA, et al. MOF/MXene composites: synthesis, application and future perspectives. Adv Sustain Syst. 2024:2400011.

[9]

NaguibM, Kurtoglu M, PresserV, et al. Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4207.

[10]

WanP, TangQ. Theoretical progress of MXenes as electrocatalysts for the hydrogen evolution reaction. Mater Chem Front. 2024;8(2):507-527.

[11]

ShahSSA, ZafarHK, JavedMS, et al. Mxenes for Zn-based energy storage devices: nano-engineering and machine learning. Coord Chem Rev. 2024;501:215565.

[12]

JavedMS, MateenA, HussainI, et al. Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices. Energy Storage Mater. 2022;53:827-872.

[13]

LiY, HuangS, PengS, et al. Toward smart sensing by MXene. Small. 2023;19(14):2206126.

[14]

ZhuangX, ZhangS, TangY, Yu F, LiZ, PangH. Recent progress of MOF/MXene-based composites: synthesis, functionality and application. Coord Chem Rev. 2023;490:215208.

[15]

David Gaima KafadiA, Yusuf HH, MohammedJ, NdikilarCE, Suleiman AB, IsahAT. A recent prospective and progress on MXene-based photocatalysts for efficient solar fuel (hydrogen) generation via photocatalytic water-splitting. Int J Hydrogen Energy. 2024;53:1242-1258.

[16]

BuF, ZaghoMM, IbrahimY, Ma B, ElzatahryA, ZhaoD. Porous MXenes: synthesis, structures, and applications. Nano Today. 2020;30:100803.

[17]

KumarJA, Prakash P, KrithigaT, et al. Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review. Chemosphere. 2022;286:131607.

[18]

NaguibM, Mashtalir O, CarleJ, et al. Two-dimensional transition metal carbides. ACS Nano. 2012;6:1322-1331.

[19]

UrbankowskiP, Anasori B, MakaryanT, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale. 2016;8(22):11385-11391.

[20]

ZhangP, WangK, NanX, et al. Enhanced electrochemical performance of Ti3C2 MXene via a copper and silver nitrate mixed solution etching process with minimal fluorine. J Electroanal Chem. 2023;947:117789.

[21]

ChaudhariNK, JinH, KimB, San Baek D, JooSH, LeeK. MXene: an emerging two-dimensional material for future energy conversion and storage applications. J Mater Chem A. 2017;5(47):24564-24579.

[22]

GhidiuM, Lukatskaya MR, ZhaoM.-Q, GogotsiY, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014;516(7529):78-81.

[23]

HalimJ, Lukatskaya MR, CookKM, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater. 2014;26(7):2374-2381.

[24]

WangX, Garnero C, RochardG, et al. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J Mater Chem A. 2017;5(41):22012-22023.

[25]

NaguibM, Mochalin VN, BarsoumMW, GogotsiY. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater. 2014;26(7):992-1005.

[26]

MorelA, Borjon-Piron Y, PortoRL, BrousseT, Belanger D. Suitable conditions for the use of vanadium nitride as an electrode for electrochemical capacitor. J Electrochem Soc. 2016;163(6):a1077.

[27]

ZhongY, XiaX, ShiF, ZhanJ, TuJ, FanHJ. Transition metal carbides and nitrides in energy storage and conversion. Adv Sci. 2016;3(5):1500286.

[28]

LiT, YaoL, LiuQ, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew Chem Int Ed. 2018;57(21):6115-6119.

[29]

LiM, LuJ, LuoK, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J Am Chem Soc. 2019;141(11):4730-4737.

[30]

LiY, ShaoH, LinZ, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater. 2020;19(8):894-899.

[31]

ShiH, ZhangP, LiuZ, et al. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew Chem Int Ed. 2021;60(16):8689-8693.

[32]

PangS.-Y, WongY.-T, YuanS, et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J Am Chem Soc. 2019;141(24):9610-9616.

[33]

YangS, ZhangP, WangF, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem. 2018;130(47):15717-15721.

[34]

MaleskiK, Mochalin VN, GogotsiY. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem Mater. 2017;29(4):1632-1640.

[35]

ZhangQ, LaiH, FanR, JiP, FuX, LiH. High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano. 2021;15(3):5249-5262.

[36]

UllahS, NajamT, RehmanA, et al. MXene nanomaterials: synthesis, properties and applications in energy and environment sector. J Alloys Compd. 2024;1001:175172.

[37]

AnasoriB, Lukatskaya MR, GogotsiY. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;2(2):1-17.

[38]

PeiY, ZhangX, HuiZ, et al. Ti3C2Tx MXene for sensing applications: recent progress, design principles, and future perspectives. ACS Nano. 2021;15(3):3996-4017.

[39]

LuoY, JiaS, YiY, et al. Nitrogen-doped Ti3C2 MXene films with low -F terminal groups achieving an ultrahigh volumetric capacitance. J Alloys Compd. 2024;977:173355.

[40]

DinMAU, ShahSSA, JavedMS, et al. Synthesis of MXene-based single-atom catalysts for energy conversion applications. Chem Eng J. 2023;474:145700.

[41]

ZhangY, WangL, ZhangN, Zhou Z. Adsorptive environmental applications of MXene nanomaterials: a review. RSC Adv. 2018;8(36):19895-19905.

[42]

UllahS, ShahSSA, AltafM, et al. Activated carbon derived from biomass for wastewater treatment: synthesis, application and future challenges. J Anal Appl Pyrol. 2024;179:106480.

[43]

AhmadK, NazirMA, QureshiAK, et al. Engineering of Zirconium based metal-organic frameworks (Zr-MOFs) as efficient adsorbents. Mater Sci Eng B. 2020;262:114766.

[44]

ChowdhuryS, Mazumder MJ, Al-AttasO, HusainT. Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci Total Environ. 2016;569:476-488.

[45]

GrandclémentC, Seyssiecq I, PiramA, et al. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Res. 2017;111:297-317.

[46]

WangL, SongH, YuanL, et al. Efficient U (VI) reduction and sequestration by Ti2CTx MXene. Environ Sci Technol. 2018;52(18):10748-10756.

[47]

BuryD, Jakubczak M, KumarR, et al. Cleaning the environment with MXenes. MRS Bull. 2023;48(3):271-282.

[48]

PengQ, GuoJ, ZhangQ, et al. Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J Am Chem Soc. 2014;136(11):4113-4116.

[49]

GuoJ, PengQ, FuH, ZouG, ZhangQ. Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations. J Phys Chem C. 2015;119(36):20923-20930.

[50]

GuP, XingJ, WenT, et al. Experimental and theoretical calculation investigation on efficient Pb (II) adsorption on etched Ti3AlC2 nanofibers and nanosheets. Environ Sci Nano. 2018;5(4):946-955.

[51]

ZhangY, LuoJ, FengB, et al. Delamination of multilayer Ti3C2Tx MXene alters its adsorpiton and reduction of heavy metals in water. Environ Pollut. 2023;330:121777.

[52]

ChengY, LiM, SongY. Theoretical study of M2CO2 MXenes stability and adsorption properties for heavy metals ions removal from water. Comput Mater Sci. 2023;220:112042.

[53]

OthmanZ, MackeyHR, MahmoudKA. MXene/chitosan/lignosulfonate (MCL) nanocomposite for simultaneous removal of Co(II), Cr(VI), Cu(II), Ni(II) and Pb(II) heavy metals from wastewater. 2D Mater. 2023;10(2):024004.

[54]

FardAK, MckayG, ChamounR, Rhadfi T, Preud’ HommeH, AtiehMA. Barium removal from synthetic natural and produced water using MXene as two dimensional (2-D) nanosheet adsorbent. Chem Eng J. 2017;317:331-342.

[55]

ShahzadA, RasoolK, MiranW, et al. Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite. J Hazard Mater. 2018;344:811-818.

[56]

YingY, LiuY, WangX, et al. Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium (VI) from water. ACS Appl Mater Interfaces. 2015;7(3):1795-1803.

[57]

WangS, WangL, LiZ, et al. Highly efficient adsorption and immobilization of U(VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. J Hazard Mater. 2021;408:124949.

[58]

ZhangP, WangL, YuanL.-Y, Lan J.-H, ChaiZ.-F, ShiW.-Q. Sorption of Eu (III) on MXene-derived titanate structures: the effect of nano-confined space. Chem Eng J. 2019;370:1200-1209.

[59]

ZouG, GuoJ, PengQ, Zhou A, ZhangQ, LiuB. Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation. J Mater Chem A. 2016;4(2):489-499.

[60]

WangL, TaoW, YuanL, et al. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem Commun. 2017;53(89):12084-12087.

[61]

ZhangY.-J, LanJ.-H, WangL, et al. Adsorption of uranyl species on hydroxylated titanium carbide nanosheet: a first-principles study. J Hazard Mater. 2016;308:402-410.

[62]

MushtaqS, Husnain SM, KazmiSAR, et al. MXene/AgNW composite material for selective and efficient removal of radioactive cesium and iodine from water. Sci Rep. 2023;13(1):19696.

[63]

WangZ, YangP, HeX, YuQ. Preparation of intercalated MXene by TPAOH and its adsorption characteristics towards U(VI). J Radioanal Nucl Chem. 2024.

[64]

NazirMA, Elsadek MF, UllahS, et al. Synthesis of bimetallic Mn@ZIF-8 nanostructure for the adsorption removal of methyl orange dye from water. Inorg Chem Commun. 2024;165:112294.

[65]

NazirMA, NajamT, ShahzadK, et al. Heterointerface engineering of water stable ZIF-8@ZIF-67: adsorption of rhodamine B from water. Surface Interfac. 2022;34:102324.

[66]

IshfaqM, KhanSA, NazirMA, et al. The in situ synthesis of sunlight-driven Chitosan/MnO2@MOF-801 nanocomposites for photocatalytic reduction of Rhodamine-B. J Mol Struct. 2024;1301:137384.

[67]

AhmadU, UllahS, RehmanA, et al. ZIF-8 composites for the removal of wastewater pollutants. ChemistrySelect. 2024;9(24):e202401719.

[68]

NazirMA, JavedMS, IslamM, et al. MOF@graphene nanocomposites for energy and environment applications. Compos Commun. 2024;45:101783.

[69]

KhanNA, Shaheen S, NajamT, et al. Efficient removal of norfloxacin by MOF@GO composite: isothermal, kinetic, statistical, and mechanistic study. Toxin Rev. 2021;40(4):915-927.

[70]

TranNM, TaQTH, SreedharA, Noh J.-S. Ti3C2Tx MXene playing as a strong methylene blue adsorbent in wastewater. Appl Surf Sci. 2021;537:148006.

[71]

MashtalirO, CookKM, MochalinVN, Crowe M, BarsoumMW, GogotsiY. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J Mater Chem A. 2014;2(35):14334-14338.

[72]

KimS, YuM, YoonY. Fouling and retention mechanisms of selected cationic and anionic dyes in a Ti3C2Tx MXene-ultrafiltration hybrid system. ACS Appl Mater Interfaces. 2020;12(14):16557-16565.

[73]

LiK, ZouG, JiaoT, et al. Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities. Colloids Surf A Physicochem Eng Asp. 2018;553:105-113.

[74]

WangR, CaoH, YaoC, et al. Construction of alkalized MXene-supported CoFe2O4/CS composites with super-strong adsorption capacity to remove toxic dyes from aqueous solution. Appl Surf Sci. 2023;624:157091.

[75]

Shahriyari FarH, NajafiM, HasanzadehM, Rahimi R. Designing a novel porous Ti3C2Tx MXene/MOF-based 3D-printed architecture as an efficient and easy recoverable adsorbent for organic dye removal from aqueous solution. Int J Environ Anal Chem. 2023:1-16.

[76]

AnumA, NazirMA, IbrahimSM, et al. Synthesis of Bi-Metallic-Sulphides/MOF-5@graphene oxide nanocomposites for the removal of hazardous moxifloxacin. Catalysts. 2023;13(6):984.

[77]

KumarOP, Shahzad K, NazirMA, et al. Photo-Fenton activated C3N4x/AgOy@Co1-xBi0.1-yO7 dual s-scheme heterojunction towards degradation of organic pollutants. Opt Mater. 2022;126:112199.

[78]

KimS, Gholamirad F, YuM, et al. Enhanced adsorption performance for selected pharmaceutical compounds by sonicated Ti3C2TX MXene. Chem Eng J. 2021;406:126789.

[79]

WangR, YaoC, PengC, et al. Ultra-strong adsorption of organic dyes and antibiotic onto the alk-MXene/ZIF adsorbents with a specific intercalation structure. Chem Eng J. 2024;485:149916.

[80]

MengF, Seredych M, ChenC, et al. MXene sorbents for removal of urea from dialysate: a step toward the wearable artificial kidney. ACS Nano. 2018;12(10):10518-10528.

[81]

MaharI, MaharFK, MaharN, et al. Fabrication and characterization of MXene/carbon composite-based nanofibers (MXene/CNFs) membrane: an efficient adsorbent material for removal of Pb+2 and As+3 ions from water. Chem Eng Res Des. 2023;191:462-471.

[82]

AsifUA, Mahmood K, NaqviSR, MehranMT, NoorT. Development of high-capacity surface-engineered MXene composite for heavy metal Cr (VI) removal from industrial wastewater. Chemosphere. 2023;326:138448.

[83]

IlyasM, YounasM, ShahMUH, et al. MXene-based 2D Ti3C2Tx nanosheets for highly efficient cadmium (Cd2+) adsorption. J Water Proc Eng. 2023;55:104131.

[84]

FengX, YuZ, LongR, et al. Self-assembling 2D/2D (MXene/LDH) materials achieve ultra-high adsorption of heavy metals Ni2+ through terminal group modification. Separ Purif Technol. 2020;253:117525.

[85]

ShahzadA, JangJ, LimS.-R, Lee DS. Unique selectivity and rapid uptake of molybdenum-disulfide-functionalized MXene nanocomposite for mercury adsorption. Environ Res. 2020;182:109005.

[86]

FengY, WangH, XuJ, et al. Fabrication of MXene/PEI functionalized sodium alginate aerogel and its excellent adsorption behavior for Cr(VI) and Congo Red from aqueous solution. J Hazard Mater. 2021;416:125777.

[87]

KongA, SunY, PengM, et al. Amino-functionalized MXenes for efficient removal of Cr(VI). Colloids Surf A Physicochem Eng Asp. 2021;617:126388.

[88]

XueH, GaoX, SeliemMK, et al. Efficient adsorption of anionic azo dyes on porous heterostructured MXene/biomass activated carbon composites: experiments, characterization, and theoretical analysis via advanced statistical physics models. Chem Eng J. 2023;451:138735.

[89]

WangX, ZhangA, ChenM, et al. Adsorption of azo dyes and Naproxen by few-layer MXene immobilized with dialdehyde starch nanoparticles: adsorption properties and statistical physics modeling. Chem Eng J. 2023;473:145385.

[90]

WangX, XuQ, ZhangL, Pei L, XueH, LiZ. Adsorption of methylene blue and Congo red from aqueous solution on 3D MXene/carbon foam hybrid aerogels: a study by experimental and statistical physics modeling. J Environ Chem Eng. 2023;11(1):109206.

[91]

XieL, YanJ, LiuZ, WenH, LiuP, LiuH. Synthesis of a two-dimensional MXene modified by chloroacetic acid and its adsorption of uranium. ChemistrySelect. 2022;7(1):e202103583.

[92]

WangS, WangL, LiZ, et al. Highly efficient adsorption and immobilization of U (VI) from aqueous solution by alkalized MXene-supported nanoscale zero-valent iron. J Hazard Mater. 2021;408:124949.

[93]

ZhangP, WangL, HuangZ, et al. Aryl diazonium-assisted amidoximation of MXene for boosting water stability and uranyl sequestration via electrochemical sorption. ACS Appl Mater Interfaces. 2020;12(13):15579-15587.

[94]

QiuK, ZhangY, WangL, Wu M, JinJ, ShiW. N-functionalized Ti2C MXene as a high-performance adsorbent for strontium ions: a first-principles study. J Phys Chem C. 2023;127(23):11167-11175.

[95]

WangR, LiC, TianW, et al. A novel phosphorylated MXene composite for enhanced selective adsorption of uranium. J Environ Chem Eng. 2024;12(3):112518.

[96]

ZhangP, XiangM, LiuH, YangC, DengS. Novel two-dimensional magnetic titanium carbide for methylene blue removal over a wide pH range: insight into removal performance and mechanism. ACS Appl Mater Interfaces. 2019;11(27):24027-24036.

[97]

ShahSSA, NazirMA, KhanK, et al. Solar energy storage to chemical: photocatalytic CO2 reduction over pristine metal-organic frameworks with mechanistic studies. J Energy Storage. 2024;75:109725.

[98]

PerssonI, HalimJ, LindH, et al. 2D transition metal carbides (MXenes) for carbon capture. Adv Mater. 2019;31(2):1805472.

[99]

ArifutzzamanA, MusaIN, ArouaMK, Saidur R. MXene based activated carbon novel nano-sandwich for efficient CO2 adsorption in fixed-bed column. J CO2 Util. 2023;68:102353.

[100]

ThomasT, Ramos Ramón JA, AgarwalV, et al. Highly stable, fast responsive MO2CTx MXene sensors for room temperature carbon dioxide detection. Microporous Mesoporous Mater. 2022;336:111872.

[101]

AliyuM, YusufBO, AbdullahiAS, et al. Ti2C-MXene/activated carbon nanocomposite for efficient CO2 capture: insights into thermodynamics properties. Separ Purif Technol. 2024;340:126737.

[102]

JinS, GuoY, WangJ, Wang L, HuQ, ZhouA. Carbon dioxide adsorption of two-dimensional MO2C MXene. Diam Relat Mater. 2022;128:109277.

[103]

WangB, ZhouA, LiuF, CaoJ, WangL, Hu Q. Carbon dioxide adsorption of two-dimensional carbide MXenes. Journal of Advanced Ceramics. 2018;7(3):237-245.

[104]

LiuF.-Q, LiuX, SunL, LiR, YinC.-X, Wu B. MXene-supported stable adsorbents for superior CO2 capture. J Mater Chem A. 2021;9(21):12763-12771.

[105]

TangQ, SunZ, DengS, Wang H, WuZ. Decorating g-C3N4 with alkalinized Ti3C2 MXene for promoted photocatalytic CO2 reduction performance. J Colloid Interface Sci. 2020;564:406-417.

[106]

LiuF.-Q, LiuX, SunL, LiR, YinC.-X, Wu B. MXene-supported stable adsorbents for superior CO2 capture. J Mater Chem A. 2021;9(21):12763-12771.

[107]

Morales-GarcíaÁ, Fernández-FernándezA, ViñesF, IllasF. CO2 abatement using two-dimensional MXene carbides. J Mater Chem A. 2018;6(8):3381-3385.

[108]

KumarOP, AhmadM, NazirMA, et al. Strategic combination of metal-organic frameworks and C3N4 for expeditious photocatalytic degradation of dye pollutants. Environ Sci Pollut Control Ser. 2022;29(23):35300-35313.

[109]

NazirMA, NajamT, AltafM, et al. Tuning the photocatalytic hydrogen production via co-catalyst engineering. J Alloys Compd. 2024;990:174378.

[110]

ShahidMU, NajamT, HelalMH, et al. Transition metal chalcogenides and phosphides for photocatalytic H2 generation via water splitting: a critical review. Int J Hydrogen Energy. 2024;62:1113-1138.

[111]

HalmannM. Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature. 1978;275(5676):115-116.

[112]

AnumA, Ibrahim SM, TahirAA, et al. Construction of hybrid sulfur-doped MOF-235@g-C3N4 photocatalyst for the efficient removal of nicotine. Inorg Chem Commun. 2023;157:111268.

[113]

MalikM, Ibrahim SM, NazirMA, et al. Engineering of a hybrid g-C3N4/ZnO-W/Cox heterojunction photocatalyst for the removal of methylene blue dye. Catalysts. 2023;13(5):813.

[114]

UllahS, RehmanA, NajamT, et al. Advances in metal-organic framework@activated carbon (MOF@AC) composite materials: synthesis, characteristics and applications. J Ind Eng Chem. 2024;137:87-105.

[115]

TawalbehM, Mohammed S, Al-OthmanA, YusufM, Mofijur M, KamyabH. MXenes and MXene-based materials for removal of pharmaceutical compounds from wastewater: critical review. Environ Res. 2023;228:115919.

[116]

ZengZ, YanY, ChenJ, Zan P, TianQ, ChenP. Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv Funct Mater. 2019;29(2):1806500.

[117]

TahirM, TahirB. 2D/2D/2D O-C3N4/Bt/Ti3C2Tx heterojunction with novel MXene/clay multi-electron mediator for stimulating photo-induced CO2 reforming to CO and CH4. Chem Eng J. 2020;400:125868.

[118]

LowJ, ZhangL, TongT, Shen B, YuJ. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J Catal. 2018;361:255-266.

[119]

LiuN, LuN, YuH, ChenS, QuanX. Efficient day-night photocatalysis performance of 2D/2D Ti3C2/Porous g-C3N4 nanolayers composite and its application in the degradation of organic pollutants. Chemosphere. 2020;246:125760.

[120]

VigneshwaranS, ParkCM, MeenakshiS. Designed fabrication of sulfide-rich bi-metallic-assembled MXene layered sheets with dramatically enhanced photocatalytic performance for Rhodamine B removal. Separ Purif Technol. 2021;258:118003.

[121]

ShaoB, LiuZ, ZengG, et al. Synthesis of 2D/2D CoAl-LDHs/Ti3C2Tx Schottky-junction with enhanced interfacial charge transfer and visible-light photocatalytic performance. Appl Catal B Environ. 2021;286:119867.

[122]

RazafintsalamaAR, Mishra RP, SahooMK, et al. Efficient photocatalytic reduction of hexavalent chromium by BiVO4-decorated MXene photocatalysts and their charge carrier dynamics. Langmuir. 2023;39(36):12725-12739.

[123]

HisatomiT, KubotaJ, DomenK. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev. 2014;43(22):7520-7535.

[124]

ShahSSA, NajamT, MolochasC, et al. Nanostructure engineering of metal-organic derived frameworks: cobalt phosphide embedded in carbon nanotubes as an efficient ORR catalyst. Molecules. 2021;26(21):6672.

[125]

LiX, BaiY, ShiX, et al. Applications of MXene (Ti3C2Tx) in photocatalysis: a review. 10.1039/D0MA00938E. Materials Advances. 2021;2(5):1570-1594.

[126]

XiaoR, ZhaoC, ZouZ, et al. In situ fabrication of 1D CdS nanorod/2D Ti3C2 MXene nanosheet Schottky heterojunction toward enhanced photocatalytic hydrogen evolution. Appl Catal B Environ. 2020;268:118382.

[127]

TasleemS, TahirM. Constructing exfoliated, Ti3C2Tx MXene-dispersed, LaCoO3 and pC3N4-based nanocomposites with in situ grown Titania through etching/oxidation for stimulating solar H2 production. Energy & Fuels. 2023;37(2):1421-1440.

[128]

WangH, PengR, HoodZD, Naguib M, AdhikariSP, WuZ. Titania composites with 2 D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem. 2016;9(12):1490-1497.

[129]

AiZ, ZhangK, XuL, et al. In situ configuration of dual S-scheme BP/(Ti3C2Tx@TiO2) heterojunction for broadband spectrum solar-driven photocatalytic H2 evolution in pure water. J Colloid Interface Sci. 2022;610:13-23.

[130]

YangW, MaG, FuY, et al. Rationally designed Ti3C2 MXene@ TiO2/CuInS2 Schottky/S-scheme integrated heterojunction for enhanced photocatalytic hydrogen evolution. Chem Eng J. 2022;429:132381.

[131]

LiuH, WuC, LvK, TangD, LiQ. In-situ generation of Au-carbon-TiO2 Ohmic junction from Ti3C2 MXene for efficient photocatalytic H2 evolution. J Mater Sci Technol. 2024;188:144-154.

[132]

RenD, ShenR, JiangZ, Lu X, LiX. Highly efficient visible-light photocatalytic H2 evolution over 2D-2D CdS/Cu7S4 layered heterojunctions. Chin J Catal. 2020;41(1):31-40.

[133]

WangH, ChenL, SunY, et al. Ti3C2 Mxene modified SnNb2O6 nanosheets Schottky photocatalysts with directed internal electric field for tetracycline hydrochloride removal and hydrogen evolution. Separ Purif Technol. 2021;265:118516.

[134]

LiJ, ZhaoL, WangS, Li J, WangG, WangJ. In situ fabrication of 2D/3D g-C3N4/Ti3C2 (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution. Appl Surf Sci. 2020;515:145922.

[135]

LiW, ZhuangC, LiY, et al. Anchoring ultra-small TiO2 quantum dots onto ultra-thin and large-sized Mxene nanosheets for highly efficient photocatalytic water splitting. Ceram Int. 2021/08/01/ 2021;47(15):21769-21776.

[136]

LiuZ, ZhouY, YangL, Yang R. Green preparation of in-situ oxidized TiO2/Ti3C2 heterostructure for photocatalytic hydrogen production. Adv Powder Technol. 2021;32(12):4857-4861.

[137]

MeeranMN, Haridharan N, ShkirM, AlgarniH, ReddyVRM. Rationally designed 1D CdS/TiO2@ Ti3C2 multi-components nanocomposites for enhanced visible light photocatalytic hydrogen production. Chem Phys Lett. 2022;809:140150.

[138]

YuanX, ZhangY, ZhangY, et al. Cyano-bridged Schottky junction of CN-TiC for enhanced photocatalytic H2 evolution and tetracycline degradation. Appl Surf Sci. 2022;583:152515.

[139]

WangY, FangX, ZengJ, Li S, WangX, ZhangB. 0D/2D/3D ternary Au/Ti3C2/TiO2 photocatalyst based on accelerating charge transfer and enhanced stability for efficiently hydrogen production. Appl Surf Sci. 2023;615:156397.

[140]

BaiJ, ShenR, ChenW, et al. Enhanced photocatalytic H2 evolution based on a Ti3C2/Zn0.7Cd0.3S/Fe2O3 Ohmic/S-scheme hybrid heterojunction with cascade 2D coupling interfaces. Chem Eng J. 2022;429:132587.

[141]

WangL, YangT, PengL, et al. Dual transfer channels of photo-carriers in 2D/2D/2D sandwich-like ZnIn2S4/g-C3N4/Ti3C2 MXene S-scheme/Schottky heterojunction for boosting photocatalytic H2 evolution. Chin J Catal. 2022;43(10):2720-2731.

[142]

LiW, WangF, ZhangZ, Min S. MAPbi3 microcrystals integrated with Ti3C2Tx MXene nanosheets for efficient visible-light photocatalytic H2 evolution. Chem Commun. 2021;57(63):7774-7777.

[143]

LiH, LvX, LiR, TaoX, ZhengY. Stable and efficient Ti3C2 MXene/MAPbi3-HI system for visible-light-driven photocatalytic HI splitting. J Power Sources. 2022;522:231006.

[144]

KhanAA, TahirM. Well-designed 2D/2D Ti3C2TA/R MXene coupled g-C3N4 heterojunction with in-situ growth of anatase/rutile TiO2 nucleates to boost photocatalytic dry-reforming of methane (DRM) for syngas production under visible light. Appl Catal B Environ. 2021;285:119777.

[145]

TianP, HeX, ZhaoL, et al. Enhanced charge transfer for efficient photocatalytic H2 evolution over UiO-66-NH2 with annealed Ti3C2Tx MXenes. Int J Hydrogen Energy. 2019;44(2):788-800.

[146]

RanJ, GaoG, LiF.-T, Ma T.-Y, DuA, QiaoS.-Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun. 2017;8(1):13907.

[147]

WangH, SunY, WuY, et al. Electrical promotion of spatially photoinduced charge separation via interfacial-built-in quasi-alloying effect in hierarchical Zn2In2S5/Ti3C2(O, OH)x hybrids toward efficient photocatalytic hydrogen evolution and environmental remediation. Appl Catal B Environ. 2019;245:290-301.

[148]

LiuX, LiuQ, ChenC. Ultrasonic oscillation synthesized ZnS nanoparticles/layered MXene sheet with outstanding photocatalytic activity under visible light. Vacuum. 2021;183:109834.

[149]

GuoY, ZhangD, WangM, et al. Synergistic modulation on atomic-level 2D/2D Ti3C2/Svac-ZnIn2S4 heterojunction for photocatalytic H2 production. Colloids Surf A Physicochem Eng Asp. 2022;648:129229.

[150]

XieF, XiQ, LiH, et al. Two-dimensional/two-dimensional heterojunction-induced accelerated charge transfer for photocatalytic hydrogen evolution over Bi5O7Br/Ti3C2: electronic directional transport. J Colloid Interface Sci. 2022;617:53-64.

[151]

HuangJ, WangM, ZhangX, et al. Anchoring of 2D CdS on Nb2CTX MXene nanosheets for boosting photocatalytic H2 evolution. J Alloys Compd. 2022;923:166256.

[152]

LiuJ, ZhouH, FanJ, XiangQ. In situ oxidation of ultrathin Ti3C2Tx MXene modified with crystalline g-C3N4 nanosheets for photocatalytic H2 evolution. Int J Hydrogen Energy. 2022;47(7):4546-4558.

[153]

ChengL, ChenQ, LiJ, LiuH. Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst. Appl Catal B Environ. 2020;267:118379.

[154]

HieuVQ, LamTC, KhanA, et al. TiO2/Ti3C2/g-C3N4 ternary heterojunction for photocatalytic hydrogen evolution. Chemosphere. 2021;285:131429.

[155]

Das ChakrabortyS, Kumar U, BhattacharyaP, MishraT. Tailoring of visible to near-infrared active 2D MXene with defect-enriched titania-based heterojunction photocatalyst for green H2 generation. ACS Appl Mater Interfaces. 2024;16(2):2204-2215.

[156]

ZhouH, TianJ, WangR, et al. Lewis acid molten salts prepared Ti3C2Cl2 MXenes assembling with g-C3N4 nanosheets for enhanced photocatalytic H2 evolution. Ceram Int. 2023;49(8):13042-13049.

[157]

LiY, ZhengT, LiuY, et al. Chlorophyll derivatives/MXene hybrids for photocatalytic hydrogen evolution: dependence of performance on the central coordinating metals. Int J Hydrogen Energy. 2022;47(6):3824-3833.

[158]

AiZ, ZhangK, ChangB, et al. Construction of CdS@Ti3C2@CoO hierarchical tandem p-n heterojunction for boosting photocatalytic hydrogen production in pure water. Chem Eng J. 2020;383:123130.

[159]

OuM, LiJ, ChenY, et al. Formation of noble-metal-free 2D/2D ZnmIN2Sm+3 (m =1, 2, 3)/MXene Schottky heterojunction as an efficient photocatalyst for hydrogen evolution. Chem Eng J. 2021;424:130170.

[160]

TieL, YangS, YuC, et al. In situ decoration of ZnS nanoparticles with Ti3C2 MXene nanosheets for efficient photocatalytic hydrogen evolution. J Colloid Interface Sci. 2019;545:63-70.

[161]

LiuX, ZhangJ, XuJ, et al. Hydroxyl-modified Nb4C3Tx MXene@ZnIn2S4 sandwich structure for photocatalytic overall water splitting. J Colloid Interface Sci. 2023;633:992-1001.

[162]

LiH, SunB, GaoT, LiH, RenY, ZhouG. Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production. Chin J Catal. 2022;43(2):461-471.

[163]

LiuY, LiY, LiA, et al. Squaraine dye/Ti3C2Tx MXene organic-inorganic hybrids for photocatalytic hydrogen evolution. J Colloid Interface Sci. 2023;633:218-225.

[164]

XuH, XiaoR, HuangJ, Jiang Y, ZhaoC, YangX. In situ construction of protonated g-C3N4/Ti3C2 MXene Schottky heterojunctions for efficient photocatalytic hydrogen production. Chin J Catal. 2021;42(1):107-114.

[165]

TayyabM, Kulsoom UE, LiuY, et al. Visible light-driven photocatalytic H2 evolution and dye degradation by electrostatic self-assembly of CdS nanowires on Nb2C MXene. Int J Hydrogen Energy. 2024;51:1400-1413.

[166]

HuangK, LiC, ZhangX, Wang L, WangW, MengX. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution. Green Energy Environ. 2023;8(1):233-245.

[167]

LiJ.-Y, LiY.-H, ZhangF, Tang Z.-R, XuY.-J. Visible-light-driven integrated organic synthesis and hydrogen evolution over 1D/2D CdS-Ti3C2Tx MXene composites. Appl Catal B Environ. 2020;269:118783.

[168]

MishraBP, DasS, BiswalL, Acharya L, SahuJ, ParidaK. MXene Schottky functionalized Z-scheme ternary heterostructure for enhanced photocatalytic H2O2 production and H2 evolution. J Phys Chem C. 2024;128(5):1921-1935.

[169]

ZhangY, ZhangZ, LiQ, et al. Zero-dimensional/two-dimensional Schottky junction of Mn0.5Cd0.5S/Ti3C2 MXene induces rapid electron transfer and enrichment for boosting photocatalytic H2 production activity. Energy & Fuels. 2024;38(6):5457-5464.

[170]

ChenC, XunL, ZhangP, Zhang J, TianB. Z-scheme structure SnS2-Au-CdS with excellent photocatalytic performance for simultaneous removal of Cr (VI) and methyl orange. Res Chem Intermed. 2019;45(6):3513-3524.

[171]

QiaoX.-Q, ZhangZ.-W, LiQ.-H, et al. In situ synthesis of n-n Bi2MoO6 and Bi2S3 heterojunctions for highly efficient photocatalytic removal of Cr (vi). J Mater Chem A. 2018;6(45):22580-22589.

[172]

WangS, GuanBY, LuY, LouXWD. Formation of hierarchical In2S3-CdIn2S4 heterostructured nanotubes for efficient and stable visible light CO2 reduction. J Am Chem Soc. 2017;139(48):17305-17308.

[173]

HuangH, JiangX, LiN, et al. Noble-metal-free ultrathin MXene coupled with In2S3 nanoflakes for ultrafast photocatalytic reduction of hexavalent chromium. Appl Catal B Environ. 2021;284:119754.

[174]

HaoC, LiG, WangG, Chen W, WangS. Preparation of acrylic acid modified alkalized MXene adsorbent and study on its dye adsorption performance. Colloids Surf A Physicochem Eng Asp. 2022;632:127730.

[175]

YuanZ, HuangH, LiN, et al. All-solid-state WO3/TQDs/In2S3 Z-scheme heterojunctions bridged by Ti3C2 quantum dots for efficient removal of hexavalent chromium and bisphenol A. J Hazard Mater. 2021;409:125027.

[176]

WuZ, LiangY, YuanX, et al. MXene Ti3C2 derived Z-scheme photocatalyst of graphene layers anchored TiO2/g-C3N4 for visible light photocatalytic degradation of refractory organic pollutants. Chem Eng J. 2020;394:124921.

[177]

SajidMM, KhanSB, JavedY, et al. Bismuth vanadate/MXene (BiVO4/Ti3C2) heterojunction composite: enhanced interfacial control charge transfer for highly efficient visible light photocatalytic activity. Environ Sci Pollut Control Ser. 2021;28(27):35911-35923.

[178]

ThirumalV, Yuvakkumar R, KumarPS, et al. Facile hydrothermal synthesis of MXene@antimony nanoneedle composites for toxic pollutants removal. Environ Res. 2022;210:112904.

[179]

ThirumalV, Yuvakkumar R, KumarPS, RaviG, Keerthana SP, VelauthapillaiD. Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants. Chemosphere. 2022;286:131733.

[180]

ShaoB, LiuZ, ZengG, et al. Synthesis of 2D/2D CoAl-LDHs/Ti3C2Tx Schottky-junction with enhanced interfacial charge transfer and visible-light photocatalytic performance. Appl Catal B Environ. 2021;286:119867.

[181]

SunB, TaoF, HuangZ, et al. Ti3C2 MXene-bridged Ag/Ag3PO4 hybrids toward enhanced visible-light-driven photocatalytic activity. Appl Surf Sci. 2021;535:147354.

[182]

ShenJ, ShenJ, ZhangW, et al. Built-in electric field induced CeO2/Ti3C2-MXene Schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction. Ceram Int. 2019;45(18):24146-24153.

[183]

LiuN, LuN, SuY, WangP, QuanX. Fabrication of g-C3N4/Ti3C2 composite and its visible-light photocatalytic capability for ciprofloxacin degradation. Separ Purif Technol. 2019;211:782-789.

[184]

BuryD, Jakubczak M, PurbayantoMAK, WojciechowskaA, Moszczyńska D, JastrzębskaAM. Photocatalytic activity of the oxidation stabilized Ti3C2Tx MXene in decomposing methylene blue, bromocresol green and commercial textile dye. Small Methods. 2023;7(8):2201252.

[185]

ChenS, ShiQ, LiuH. In situ growth of gold nanoparticles onto polydopamine-modified MXene to quickly and efficiently degrade dyes. J Mater Sci. 2023;58(3):1026-1043.

[186]

KashifS, AkramS, MurtazaM, Amjad A, ShahSSA, WaseemA. Development of MOF-MXene composite for the removal of dyes and antibiotic. Diam Relat Mater. 2023;136:110023.

[187]

KalaiselviC, Krishna Chandar N. Accordion-like multilayer Ti3C2Tx MXene sheets decorated 1D Mn2O3 nanorods-based nanocomposites: an efficient catalyst for swift removal of single and mixed dyes. J Phys Chem Solid. 2023;182:111591.

[188]

AlothmanAA, KhanMR, AlbaqamiMD, et al. Ti3C2-MXene/NiO nanocomposites-decorated CsPbi3 perovskite active materials under UV-light irradiation for the enhancement of crystal-violet dye photodegradation. Nanomaterials. 2023;13(23):3026.

[189]

ChandiranK, Pandian MS, BalakrishnanS, PitchaimuthuS, ChenY.-S, Nagamuthu RajaKC. Ti3C2Tx MXene decorated with NiMnO3/NiMn2O4 nanoparticles for simultaneous photocatalytic degradation of mixed cationic and anionic dyes. Colloids Surf A Physicochem Eng Asp. 2024;692:133888.

[190]

ShahSSA, NajamT, NazirMA, et al. Salt-assisted gas-liquid interfacial fluorine doping: metal-free defect-induced electrocatalyst for oxygen reduction reaction. Mol Catal. 2021;514:111878.

[191]

DuM, YangX, ZhangJ, et al. Defect-modulated and heteroatom-functionalized Ti3-xC2Ty MXene 3D nanocavities induce growth of MoSe2 nanoflakes toward electrocatalytic hydrogen evolution in all pH electrolytes. Nano Res. 2024;17(7):1-11.

[192]

NajamT, Ibraheem S, NazirMA, et al. Partially oxidized cobalt species in nitrogen-doped carbon nanotubes: enhanced catalytic performance to water-splitting. Int J Hydrogen Energy. 2021;46(13):8864-8870.

[193]

LiuA, LiangX, RenX, et al. Recent progress in MXene-based materials: potential high-performance electrocatalysts. Adv Funct Mater. 2020;30(38):2003437.

[194]

ShiMM, BaoD, WulanBR, et al. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv Mater. 2017;29(17):1606550.

[195]

GruberN, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature. 2008;451(7176):293-296.

[196]

ZhuX, MouS, PengQ, et al. Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: recent advances in catalyst development and performance improvement. J Mater Chem A. 2020;8(4):1545-1556.

[197]

ZhaoJ, ZhangL, XieX.-Y, et al. Ti3C2Tx (T=F, OH) MXene nanosheets: conductive 2D catalysts for ambient electrohydrogenation of N2 to NH3. J Mater Chem A. 2018;6(47):24031-24035.

[198]

LiL, WangX, GuoH, et al. Theoretical screening of single transition metal atoms embedded in MXene defects as superior electrocatalyst of nitrogen reduction reaction. Small Methods. 2019;3(11):1900337.

[199]

ZhaoQ, ZhangC, HuR, et al. Selective etching quaternary MAX phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano. 2021;15(3):4927-4936.

[200]

LiJ, ZhanG, YangJ, et al. Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. J Am Chem Soc. 2020;142(15):7036-7046.

[201]

SunWJ, JiHQ, LiLX, et al. Built-in electric field triggered interfacial accumulation effect for efficient nitrate removal at ultra-low concentration and electroreduction to ammonia. Angew Chem Int Ed. 2021;60(42):22933-22939.

[202]

ChengF, ChenJ. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev. 2012;41(6):2172-2192.

[203]

SeitzLC, Dickens CF, NishioK, et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science. 2016;353(6303):1011-1014.

[204]

YuM, ZhouS, WangZ, Zhao J, QiuJ. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy. 2018;44:181-190.

[205]

XieX, ChenS, DingW, Nie Y, WeiZ. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X=OH, F) nanosheets for oxygen reduction reaction. Chem Commun. 2013;49(86):10112-10114.

[206]

CuiC, ChengR, ZhangH, et al. Ultrastable MXene@ Pt/SWCNTs’ nanocatalysts for hydrogen evolution reaction. Adv Funct Mater. 2020;30(47):2000693.

[207]

LiN, ChenX, OngW.-J, et al. Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano. 2017;11(11):10825-10833.

[208]

ZhangL, JiangH, ZhangJ, et al. Flexible nanofiber sensor for low-concentration hydrogen detection. Nanotechnology. 2019;31(1):015504.

[209]

WangY, WangJ, HanG, et al. Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction. Ceram Int. 2019;45(2):2411-2417.

[210]

ChenJ, XiaY, DaiQ. Electrochemical degradation of chloramphenicol with a novel Al doped PbO2 electrode: performance, kinetics and degradation mechanism. Electrochim Acta. 2015;165:277-287.

[211]

YangL, ChenZ, CuiD, et al. Ultrafine palladium nanoparticles supported on 3D self-supported Ni foam for cathodic dechlorination of florfenicol. Chem Eng J. 2019;359:894-901.

[212]

LiL.-X, ZhangG.-C, SunW.-J, et al. Construction of ultra-small Pt nanoparticles@ Ti3C2Tx MXene electrocatalyst for efficient and stable electrochemical hydrodechlorination of chloramphenicol. Chem Eng J. 2022;433:134415.

[213]

YuX, LiY, PeiC, et al. Interfacial design of Ti3C2Tx MXene/graphene heterostructures boosted Ru nanoclusters with high activity toward hydrogen evolution reaction. Adv Sci. 2024;11(22):2310013.

[214]

XieX, WuZ, ZhangN. Robust and easily retrievable Pd/Ti3C2Tx⊂ graphene hydrogels for efficient catalytic hydrogenation of nitroaromatic compounds. Chin Chem Lett. 2020;31(4):1014-1017.

[215]

TanY, ZhuZ, ZhangX, et al. Nb4C3Tx (MXene) as a new stable catalyst for the hydrogen evolution reaction. Int J Hydrogen Energy. 2021;46(2):1955-1966.

[216]

RasoolF, Pirzada BM, TalibSH, et al. In situ growth of interfacially nanoengineered 2D-2D WS2/Ti3C2Tx MXene for the enhanced performance of hydrogen evolution reactions. ACS Appl Mater Interfaces. 2024;16(11):14229-14242.

[217]

ZhangX, ShaoB, SunZ, et al. Platinum nanoparticle-deposited Ti3C2Tx MXene for hydrogen evolution reaction. Ind Eng Chem Res. 2020;59(5):1822-1828.

[218]

WangZ, YuK, FengY, Qi R, RenJ, ZhuZ. Stabilizing Ti3C2Tx-MXenes with TiOF2 nanospheres intercalation to improve hydrogen evolution reaction and humidity-sensing performance. Appl Surf Sci. 2019;496:143729.

[219]

LiX, LvX, SunX, et al. Edge-oriented, high-percentage 1T’-phase MoS2 nanosheets stabilize Ti3C2 MXene for efficient electrocatalytic hydrogen evolution. Appl Catal B Environ. 2021;284:119708.

[220]

RenJ, ZongH, SunY, et al. 2D organ-like molybdenum carbide (MXene) coupled with MoS2 nanoflowers enhances the catalytic activity in the hydrogen evolution reaction. CrystEngComm. 2020;22(8):1395-1403.

[221]

ZhangS, ZhuoH, LiS, et al. Effects of surface functionalization of mxene-based nanocatalysts on hydrogen evolution reaction performance. Catal Today. 2021;368:187-195.

[222]

LuY, FanD, ChenZ, Xiao W, CaoC, YangX. Anchoring CO3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci Bull. 2020;65(6):460-466.

[223]

ChenJ, LongQ, XiaoK, et al. Vertically-interlaced NiFeP/MXene electrocatalyst with tunable electronic structure for high-efficiency oxygen evolution reaction. Sci Bull. 2021;66(11):1063-1072.

[224]

WenY, WeiZ, LiuJ, et al. Synergistic cerium doping and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution. J Energy Chem. 2021;52:412-420.

[225]

LiuY, BaiL, LiT, et al. MXene-supported NiMn-LDHs as efficient electrocatalysts towards enhanced oxygen evolution reactions. Materials Advances. 2022;3(10):4359-4368.

[226]

YanL, ZhangB, WuS, YuJ. A general approach to the synthesis of transition metal phosphide nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting. J Mater Chem A. 2020;8(28):14234-14242.

[227]

TianM, JiangY, TongH, Xu Y, XiaL. MXene-supported FeCo-LDHs as highly efficient catalysts for enhanced electrocatalytic oxygen evolution reaction. ChemNanoMat. 2020;6(1):154-159.

[228]

YanL, DuZ, LaiX, et al. Synergistically modulating the electronic structure of Cr-doped FeNi LDH nanoarrays by O-vacancy and coupling of MXene for enhanced oxygen evolution reaction. Int J Hydrogen Energy. 2023;48(5):1892-1903.

[229]

SharmaAK, SharmaV, DebnathA, Saxena V, MahajanA. MXene supported nickel-cobalt layered double hydroxide as efficient bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. J Alloys Compd. 2023;939:168779.

[230]

VazhayilA, Vazhayal L, AshokCS, ThomasJ, ThomasN. NiCO2O4/MXene hybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reaction. ChemCatChem. 2024;16(6):e202301250.

[231]

ZuoW, LanX, LvG, et al. Sulfur and phosphorus Co-doped CoFeLDH/MXene nanoarray electrocatalyst for the oxygen evolution reaction. ACS Appl Nano Mater. 2024;7(10):11599-11608.

[232]

ShahidMU, NajamT, IslamM, et al. Engineering of metal organic framework (MOF) membrane for waste water treatment: synthesis, applications and future challenges. J Water Proc Eng. 2024;57:104676.

[233]

KarahanHE, GohK, ZhangC, et al. MXene materials for designing advanced separation membranes. Adv Mater. 2020;32(29):1906697.

[234]

DingL, WeiY, LiL, et al. MXene molecular sieving membranes for highly efficient gas separation. Nat Commun. 2018;9(1):155.

[235]

ShenJ, LiuG, JiY, et al. 2D MXene nanofilms with tunable gas transport channels. Adv Funct Mater. 2018;28(31):1801511.

[236]

FanY, WeiL, MengX, et al. An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving. J Membr Sci. 2019;569:117-123.

[237]

XingY, Akonkwa G, LiuZ, YeH, HanK. Crumpled two-dimensional Ti3C2Tx MXene lamellar membranes for solvent permeation and separation. ACS Appl Nano Mater. 2020;3(2):1526-1534.

[238]

YangX, LiuY, HuS, et al. Construction of Fe3O4@MXene composite nanofiltration membrane for heavy metal ions removal from wastewater. Polym Adv Technol. 2021;32(3):1000-1010.

[239]

XuZ, LiuG, YeH, JinW, CuiZ. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. J Membr Sci. 2018;563:625-632.

[240]

LiZK, WeiY, GaoX, et al. Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets. Angew Chem Int Ed. 2020;59(24):9751-9756.

[241]

ChenWY, JiangX, LaiS.-N, Peroulis D, StanciuL. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat Commun. 2020;11(1):1302.

[242]

KimSJ, KohH.-J, RenCE, et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano. 2018;12(2):986-993.

[243]

KahnN, LavieO, PazM, SegevY, HaickH. Dynamic nanoparticle-based flexible sensors: diagnosis of ovarian carcinoma from exhaled breath. Nano Lett. 2015;15(10):7023-7028.

[244]

KearneyDJ, Hubbard T, PutnamD. Breath ammonia measurement in Helicobacter pylori infection. Dig Dis Sci. 2002;47(11):2523-2530.

[245]

KimN.-H, ChoiS.-J, KimS.-J, et al. Highly sensitive and selective acetone sensing performance of WO3 nanofibers functionalized by RH2O3 nanoparticles. Sensor Actuator B Chem. 2016;224:185-192.

[246]

KooW.-T, YuS, ChoiS.-J, Jang J.-S, CheongJY, KimI.-D. Nanoscale PdO catalyst functionalized CO3O4 hollow nanocages using MOF templates for selective detection of acetone molecules in exhaled breath. ACS Appl Mater Interfaces. 2017;9(9):8201-8210.

[247]

LiL, CaoH, LiangZ, et al. First-Principles study of Ti-deficient Ti3C2 MXene nanosheets as NH3 gas sensors. ACS Appl Nano Mater. 2022;5(2):2470-2475.

[248]

JiangQ, WangH, WeiX, et al. Efficient BiVO4 photoanode decorated with Ti3C2TX MXene for enhanced photoelectrochemical sensing of Hg (II) ion. Anal Chim Acta. 2020;1119:11-17.

[249]

EsfahaniAN, KatbabA, TaebA, Simon L, PopeMA. Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. Eur Polym J. 2017;95:520-538.

[250]

AbbasiH, Antunes M, VelascoJI. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog Mater Sci. 2019;103:319-373.

[251]

KumarP, Narayan Maiti U, SikdarA, Kumar DasT, KumarA, SudarsanV. Recent advances in polymer and polymer composites for electromagnetic interference shielding: review and future prospects. Polym Rev. 2019;59(4):687-738.

[252]

CuiG, SunX, ZhangG, et al. Electromagnetic absorption performance of two-dimensional MXene Ti3C2Tx exfoliated by HCl+LiF etchant with diverse etching times. Mater Lett. 2019;252:8-10.

[253]

WengC, WangG, DaiZ, PeiY, LiuL, ZhangZ. Buckled AgNW/MXene hybrid hierarchical sponges for high-performance electromagnetic interference shielding. Nanoscale. 2019;11(47):22804-22812.

[254]

LiangL, LiQ, YanX, et al. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano. 2021;15(4):6622-6632.

[255]

LiangL, HanG, LiY, et al. Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl Mater Interfaces. 2019;11(28):25399-25409.

[256]

FengW, LuoH, ZengS, et al. Ni-modified Ti3C2 MXene with enhanced microwave absorbing ability. Mater Chem Front. 2018;2(12):2320-2326.

[257]

LuoC, JiaoT, GuJ, TangY, KongJ. Graphene shield by SiBCN ceramic: a promising high-temperature electromagnetic wave-absorbing material with oxidation resistance. ACS Appl Mater Interfaces. 2018;10(45):39307-39318.

[258]

WangY, GaoX, ZhangL, et al. Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber. Appl Surf Sci. 2019;480:830-838.

[259]

ShahzadF, Alhabeb M, HatterCB, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 2016;353(6304):1137-1140.

[260]

IqbalA, Shahzad F, HantanasirisakulK, et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science. 2020;369(6502):446-450.

[261]

WangL, YuanL, ChenK, et al. Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene. ACS Appl Mater Interfaces. 2016;8(25):16396-16403.

[262]

GuoJ, FuH, ZouG, ZhangQ, ZhangZ, Peng Q. Theoretical interpretation on lead adsorption behavior of new two-dimensional transition metal carbides and nitrides. J Alloys Compd. 2016;684:504-509.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF (11892KB)

279

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/