Recent advances in functionalized separator for dendritesfree and stable lithium metal batteries

Xiaojuan Zhang , Yu Wu , Bo Yu , Kunpeng Hu , Ping Zhang , Fei Ding , Lin Zhang , Yuanfu Chen , Jian Zhen Ou , Zhigang Zhang

EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 549 -598.

PDF (13544KB)
EcoEnergy ›› 2024, Vol. 2 ›› Issue (4) : 549 -598. DOI: 10.1002/ece2.58
REVIEW

Recent advances in functionalized separator for dendritesfree and stable lithium metal batteries

Author information +
History +
PDF (13544KB)

Abstract

Lithium (Li) metal anode is considered the “Holy grail” for the most promising next-generation rechargeable lithium metal batteries (LMBs) because of ultra-high theoretical specific capacity, ultra-low reduction potential and small density. However, uncontrolled lithium dendrite growth and inevitable side reaction seriously hindered the application of practical LMBs because of the deteriorating electrochemical performances and exacerbating the safety issues of LMBs. Thus, improving the electrochemical performances of LMBs by constructed of functionalized separator is promising for overcoming the above-mentioned challenges due to its’ significantly advantages, such as enhancing mechanical and thermal stability, regulating the diffusion and migration of Li ions, homogenizing Li ion flux, forming protective layer on Li anode surfaces, etc. The relational investigations have significantly increased since 2020, while the comprehensive reviews on this research direction are relatively rare, especially in the detailed mechanism aspects. In this review, an overview in functionalized separator for stable LMBs is discussed in detail. Firstly, the current issues of LMBs are in-depth discussion and the general strategies are summarized. Subsequently, the requirements and limitations of separator, as well as the advantages of functionalized separator are summarized and reviewed. Most importantly, the protection mechanisms and research advances of advanced functionalized separator are comprehensively discussed and summarized. Furthermore, the applications of functionalized separator in rechargeable lithium metal-based full cells are reviewed. Finally, the challenges and potential opportunities for the future development and rational design of functionalized separator are highlighted in rechargeable LMBs to obtain future research directions related to the significant strategy of constructing dendrite-free and stable LMBs.

Keywords

functional materials design / functionalized separator / lithium dendrite / lithium metal anode / lithium metal batteries

Cite this article

Download citation ▾
Xiaojuan Zhang, Yu Wu, Bo Yu, Kunpeng Hu, Ping Zhang, Fei Ding, Lin Zhang, Yuanfu Chen, Jian Zhen Ou, Zhigang Zhang. Recent advances in functionalized separator for dendritesfree and stable lithium metal batteries. EcoEnergy, 2024, 2(4): 549-598 DOI:10.1002/ece2.58

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen X, Zhao B, Yan C, Zhang Q. Review on Li deposition in working batteries: from nucleation to early growth. Adv Mater. 2021;33(8):2004128.

[2]

Wang L, Zhou Z, Yan X, et al. Engineering of lithium-metal anodes towards a safe and stable battery. Energy Storage Mater. 2018;14:22-48.

[3]

Lin D, Liu Y, Cui Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017;12(3):194-206.

[4]

Zhao P, Li Y, Chen S, et al. Constructing self-adapting electrostatic interface on lithium metal anode for stable 400 Wh kg-1 pouch cells. Adv Energy Mater. 2022;12(26):2200568.

[5]

Xue W, Huang M, Li Y, et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat Energy. 2021;6(5):495-505.

[6]

Liu X, Qian T, Liu J, Wang M, Chen H, Yan C. High Coulombic efficiency cathode with nitryl grafted sulfur for Li-S battery. Energy Storage Mater. 2019;17:260-265.

[7]

Zhou T, Shen J, Wang Z, et al. Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode. Adv Funct Mater. 2020;30(14):1909159.

[8]

Hu A, Chen W, Du X, et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ Sci. 2021;14(7):4115-4124.

[9]

Li Q, Zhu S, Lu Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv Funct Mater. 2017;27(18):1606422.

[10]

Dong L, Liu Y, Wen K, et al. High-polarity fluoroalkyl ether electrolyte enables solvation-free Li+ transfer for high-rate lithium metal batteries. Adv Sci. 2022;9(5):2104699.

[11]

Piao Z, Xiao P, Luo R, et al. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv Mater. 2022;34(8):2108400.

[12]

Xiao L, Zeng Z, Liu X, et al. Stable Li metal anode with “ion-solvent-coordinated” nonflammable electrolyte for safe Li metal batteries. ACS Energy Lett. 2019;4(2):483-488.

[13]

Chen H, Liu J, Zhou X, et al. Rapid leakage responsive and self-healing Li-metal batteries. Chem Eng J. 2021;404:126470.

[14]

Zhu Y, Zheng Y, Liu J, et al. Molecular coupling strategy achieving in situ synthesis of agglomeration-free solid composite electrolytes. J Phys Chem Lett. 2024;15(3):733-743.

[15]

Qian Y, Chen K, Feng Z, et al. A fluorinated-polyimide-based composite nanofibrous separator with homogenized pore size for wide-temperature lithium metal batteries. Small Struct. 2023;4(8):2200383.

[16]

Yan M, Wang CY, Fan M, et al. In situ derived mixed ion/electron conducting layer on top of a functional separator for high-performance, dendrite-free rechargeable lithium-metal batteries. Adv Funct Mater. 2023;34(5):2301638.

[17]

Sheng L, Wang Q, Liu X, et al. Suppressing electrolyte-lithium metal reactivity via Li+-desolvation in uniform nano-porous separator. Nat Commun. 2022;13(1):172.

[18]

Zhang Y, Li J, Tan S, et al. Fullerene-derivative C60-(OLi)n modified separators toward stable wide-temperature lithium metal batteries. Chem Eng J. 2022;446:137207.

[19]

Park S, Jin HJ, Yun YS. Advances in the design of 3D-structured electrode materials for lithium-metal anodes. Adv Mater. 2020;32(51):2002193.

[20]

Yang H, Guo C, Naveed A, et al. Recent progress and perspective on lithium metal anode protection. Energy Storage Mater. 2018;14:199-221.

[21]

Li S, Huang J, Cui Y, et al. A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes. Nat Nanotechnol. 2022;17(6):613-621.

[22]

Petla RK, Lindsey I, Li J, Meng X. Interface modifications of lithium metal anode for lithium metal batteries. ChemSusChem. 2024:e202400281.

[23]

Yu Z, Wang H, Kong X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat Energy. 2020;5(7):526-533.

[24]

Wang T, Luo W, Huang Y. Engineering Li metal anode for garnet-based solid-state batteries. Acc Chem Res. 2023;56(6):667-676.

[25]

Guo R, Zhang K, Zhao W, et al. Interfacial challenges and strategies toward practical sulfide-based solid-state lithium batteries. Energy Material Advances. 2023;4:22.

[26]

Li Y, Zhao Y, Yang Y, Wang Z, Yang Q, Deng J. Functional separators for long-life and safe Li metal batteries: a minireview. Polymers. 2022;14(21):4546.

[27]

Ren W, Zheng Y, Cui Z, Tao Y, Li B, Wang W. Recent progress of functional separators in dendrite inhibition for lithium metal batteries. Energy Storage Mater. 2021;35:157-168.

[28]

Lin G, Jia K, Bai Z, et al. Metal-organic framework sandwiching porous super-engineering polymeric membranes as anionphilic separators for dendrite-free lithium metal batteries. Adv Funct Mater. 2022;32(47):2207969.

[29]

Cheng X, Zhang R, Zhao C, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403-10473.

[30]

Tikekar MD, Choudhury S, Tu Z, Archer LA. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy. 2016;1(9):16114.

[31]

Aurbach D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J Power Sources. 2000;89(2):206-218.

[32]

Shi S, Lu P, Liu Z, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase. J Am Chem Soc. 2012;134(37):15476-15487.

[33]

Liu X, Liu J, Qian T, Chen H, Yan C. Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free lithium metal anode. Adv Mater. 2020;32(2):1902724.

[34]

Peled E, Golodntsky D, Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc. 1997;144(8): L208-L210.

[35]

Wang Q, Lu T, Liu Y, et al. Li+ migration and transformation at the interface: a review for stable Li metal anode. Energy Storage Mater. 2023;55:782-807.

[36]

Wang Z, Sun Z, Li J, et al. Insights into the deposition chemistry of Li ions in nonaqueous electrolyte for stable Li anodes. Chem Soc Rev. 2021;5:3178-3321.

[37]

Liu S, Ji X, Yue J, et al. High Interfacial-energy interphase promoting safe lithium metal batteries. J Am Chem Soc. 2020;142(5):2438-2447.

[38]

Cui C, Yang C, Eidson N, et al. A highly reversible, dendrite-free lithium metal anode enabled by a lithium-fluoride-enriched interphase. Adv Mater. 2020;32(12):1906427.

[39]

Li Y, Zhou X, Hu J, et al. Reversible Mg metal anode in conventional electrolyte enabled by durable heterogeneous SEI with low surface diffusion barrier. Energy Storage Mater. 2022;46:1-9.

[40]

Yuan Y, Wu F, Chen G, Bai Y, Wu C. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. J Energy Chem. 2019;37:197-203.

[41]

He M, Guo R, Hobold GM, Gao H, Gallant BM. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. PANS (Pest Artic News Summ). 2020;117(1):73-79.

[42]

Sun H, Dolocan A, Weeks JA, Rodriguez R, Heller A, Mullins CB. In situ formation of a multicomponent inorganic-rich SEI layer provides a fast charging and high specific energy Li-metal battery. J Mater Chem A. 2019;7(30):17782-17789.

[43]

Zhang J, Zhang H, Li R, et al. Diluent decomposition-assisted formation of LiF-rich solid-electrolyte interfaces enables high-energy Li-metal batteries. J Energy Chem. 2023;78:71-79.

[44]

Meyerson ML, Papa PE, Heller A, Mullins CB. Recent developments in dendrite-free lithium-metal deposition through tailoring of micro-and nanoscale artificial coatings. ACS Nano. 2021;15(1):29-46.

[45]

Boateng B, Zhang X, Zhen C, et al. Recent advances in separator engineering for effective dendrite suppression of Li-metal anodes. Nano Select. 2021;2(6):993-1010.

[46]

Zhang SS. A review on the separators of liquid electrolyte Li-ion batteries. J Power Sources. 2007;164(1):351-364.

[47]

Arora P, Zhang ZJ. Battery separators. Chem Rev. 2004;104(50):4419-4462.

[48]

Lin D, Zhuo D, Liu Y, Cui Y. All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J Am Chem Soc. 2016;138(34):11044-11050.

[49]

Francis C, Kyratzis IL, Best AS. Lithium-ion battery separators for ionic-liquid electrolytes: a review. Adv Mater. 2020;32(18):e1904205.

[50]

Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci. 2014;7(12):3857-3886.

[51]

Huang X. Separator technologies for lithium-ion batteries. J Solid State Electrochem. 2011;15(4):649-662.

[52]

Yamada Y, Wang J, Ko S, Watanabe E, Yamada A. Advances and issues in developing salt-concentrated battery electrolytes. Nat Energy. 2019;4:269-280.

[53]

Yang P, Zhang P, Shi C, Chen L, Dai J, Zhao J. The functional separator coated with core-shell structured silica-poly(methyl methacrylate) sub-microspheres for lithium-ion batteries. J Membr Sci. 2015;474:148-155.

[54]

Liu R, Yuan B, Zhong S, et al. Poly(vinylidene fluoride) separators for next-generation lithium based batteries. Nano Select. 2021;2(12):2308-2345.

[55]

Liu Y, Zhu Y, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy. 2019;4(7):540-550.

[56]

Costa CM, Lee Y, Kim J, Lee S, Lanceros-Méndez S. Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes. Energy Storage Mater. 2019;22:346-375.

[57]

Liu K, Liu Y, Lin D, Pei A, Cui Y. Materials for lithium-ion battery safety. Sci Adv. 2018;4(6):eaaS9820.

[58]

Hao W, Bo X, Xie J, Xu T. Mechanical properties of macromolecular separators for lithium-ion batteries based on nanoindentation experiment. Polymers. 2022;14(17):3664.

[59]

Zhang X, Sahraei E, Wang K. Deformation and failure characteristics of four types of lithium-ion battery separators. J Power Sources. 2016;327:693-701.

[60]

An H, Roh Y, Jo Y, et al. Separator dependency on cycling stability of lithium metal batteries under practical conditions. Energy Environ Mater. 2023;6(5):e12397.

[61]

Wu H, Zhuo D, Kong D, Cui Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nat Commun. 2014;5(1):5193.

[62]

Hao X, Zhu J, Jiang X, et al. Ultrastrong polyoxyzole nanofiber membranes for dendrite-proof and heat-resistant battery separators. Nano Lett. 2016;16(5):2981-2987.

[63]

Patel A, Wilcox K, Li Z, et al. High modulus, thermally stable, and self-extinguishing aramid nanofiber separators. ACS Appl Mater Interfaces. 2020;12(23):25756-25766.

[64]

Min Yang K, Yang K, Cho M, Kim S, Lee Y. Self-assembled functional layers onto separator toward practical lithium metal batteries. Chem Eng J. 2023;454:140191.

[65]

Shen L, Liu X, Dong J, et al. Functional lithiophilic polymer modified separator for dendrite-free and pulverization-free lithium metal batteries. J Energy Chem. 2021;52:262-268.

[66]

Wu J, Zeng H, Li X, et al. Ultralight layer-by-layer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites. Adv Energy Mater. 2018;8(35):1802430.

[67]

Zhou C, Zong W, Zhou G, Fan X, Miao Y. Radical-functionalized polymer nanofiber composite separator for ultra-stable dendritic-free lithium metal batteries. Compos Commun. 2021;25:100696.

[68]

Fang Y, Zhang Z, Liu S, Pei Y, Luo X. Polydopamine-modified cellulose-based composite separator for inhibiting dendritic growth of lithium metal batteries. Electrochemica acta. 2024;475:143661.

[69]

Liang J, Chen Q, Liao X, et al. A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew Chem Int Ed. 2020;59(16):6561-6566.

[70]

Na W, Lee AS, Lee JH, et al. Lithium dendrite suppression with UV-curable polysilsesquioxane separator binders. ACS Appl Mater Interfaces. 2016;8(20):12852-12858.

[71]

Zhou M, Zhang Z, Xu J, Wei J, Yu J, Yang Z. PDA modified commercial paper separator engineering with excellent lithiophilicity and mechanical strength for lithium metal batteries. J Electroanal Chem. 2020;868:114195.

[72]

Zhou Y, Zhao K, Zhang J, et al. Synergistic effects of nanodiamond modified separators toward highly stable and safe lithium metal batteries. J Mater Chem A. 2021;9(29):16046-16055.

[73]

Li Z, Peng M, Zhou X, et al. In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes. Adv Mater. 2021;33(37):2100793.

[74]

Rajendran S, Tang Z, George A, et al. Inhibition of lithium dendrite formation in lithium metal batteries via regulated cation transport through ultrathin sub-nanometer porous carbon nanomembranes. Adv Energy Mater. 2021;11(29):2100666.

[75]

Li J, Jia H, Li H, et al. Thin buffer layer assist carbon-modifying separator for long-life lithium metal anodes. J Energy Chem. 2021;57:61-68.

[76]

Liu M, Deng N, Ju J, et al. Silver nanoparticle-doped 3D porous carbon nanofibers as separator coating for stable lithium metal anodes. ACS Appl Mater Interfaces. 2019;11(19):17843-17852.

[77]

Xu Y, Yan H, Li T, et al. Can carbon sponge be used as separator in Li metal batteries? Energy Storage Mater. 2021;36:108-114.

[78]

Li C, Liu S, Shi C, et al. Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes. Nat Commun. 2019;10(1):1363.

[79]

Gong YJ, Heo JW, Lee H, et al. Nonwoven rGO fiber-aramid separator for high-speed charging and discharging of Li metal anode. Adv Energy Mater. 2020;10(27):2001479.

[80]

Zhao Q, Wang R, Hu X, et al. Functionalized 12 µm polyethylene separator to realize dendrite-free lithium deposition toward highly stable lithium-metal batteries. Adv Sci. 2022;9(13):2102215.

[81]

Han D, Wang X, Zhou YN, et al. A graphene-coated thermal conductive separator to eliminate the dendrite-induced local hotspots for stable lithium cycling. Adv Energy Mater. 2022;12(25):2201190.

[82]

Ryou M, Lee DJ, Lee J, Lee YM, Park J, Choi JW. Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators. Adv Energy Mater. 2012;2(6):645-650.

[83]

Kim PJ, Pol VG. High performance lithium metal batteries enabled by surface tailoring of polypropylene separator with a polydopamine/graphene layer. Adv Energy Mater. 2018;8(36):1802665.

[84]

Pan R, Xu X, Sun R, et al. Nanocellulose modified polyethylene separators for lithium metal batteries. Small. 2018;14(21):1704371.

[85]

Jin R, Fu L, Zhou H, et al. High Li+ ionic flux separator enhancing cycling stability of lithium metal anode. ACS Sustainable Chem Eng. 2018;6(3):2961-2968.

[86]

Shi K, Xu Z, Zheng D, Yang Z, Zhang W. Sandwich-like solid composite electrolytes employed as bifunctional separators for safe lithium metal batteries with excellent cycling performance. J Mater Chem A. 2022;10(9):4660-4670.

[87]

Qiu Z, Shi L, Wang Z, et al. Surface activated polyethylene separator promoting Li+ ion transport in gel polymer electrolytes and cycling stability of Li-metal anode. Chem Eng J. 2019;368:321-330.

[88]

Chi M, Shi L, Wang Z, et al. Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. Nano Energy. 2016;28:1-11.

[89]

Tan L, Sun Y, Wei C, et al. Design of robust, lithiophilic, and flexible inorganic-polymer protective layer by separator engineering enables dendrite-free lithium metal batteries with LiNi0.8Mn0.1Co0.1O2 cathode. Small. 2021;17(13):2007717.

[90]

Zheng S, Mo L, Chen K, et al. Precise control of Li+ directed transport via electronegative polymer brushes on polyolefin separators for dendrite-free lithium deposition. Adv Funct Mater. 2022;32(41):2201430.

[91]

Jeong J, Lee J, Kim J, et al. A biopolymer-based functional separator for stable Li metal batteries with an additive-free commercial electrolyte. J Mater Chem A. 2021;9(12):7774-7781.

[92]

Hu Y, Wang C, Wu Y, et al. Negatively charged separators facilitating lithium-ion conduction to stabilize lithium metal anodes. J Mater Chem A. 2023;11(23):1252-1261.

[93]

Lee H, Ren X, Niu C, et al. Suppressing lithium dendrite growth by metallic coating on a separator. Adv Funct Mater. 2017;27(45):1704391.

[94]

Liu Y, Xiong S, Wang J, et al. Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Mater. 2019;19:24-30.

[95]

Din M, Murugan R. Metal coated polypropylene separator with enhanced surface wettability for high capacity lithium metal batteries. Sci Rep. 2019;9(1):16795.

[96]

Thang AQ, Tso S, Jia BE, et al. Functionalizing separator by coating a lithiophilic metal for dendrite-free anode-free lithium metal batteries. Chem Asian J. 2023;19(2):e202300917.

[97]

Du Q, Yang M, Yang J, et al. Bendable network built with ultralong silica nanowires as a stable separator for high-safety and high-power lithium-metal batteries. ACS Appl Mater Interfaces. 2019;11(38):34895-34903.

[98]

Wang Q, Yang J, Wang Z, Shi L, Zhao Y, Yuan S. Dual-scale Al2O3 particles coating for high-performance separator and lithium metal anode. Energy Technol. 2020;8(5):1901429.

[99]

Zhou T, Tang W, Lv J, et al. Yolk-shell structured ST@Al2O3 enables functional PE separator with enhanced Lewis acid sites for high-performance lithium metal batteries. Small. 2023;19(48):2303924.

[100]

Zhu Y, He X, Mo Y. Strategies based on nitride materials chemistry to stabilize Li metal anode. Adv Sci. 2017;4(8):1600517.

[101]

Zhang X, Chen Y, Yu B, et al. Lithiophilic 3D VN@N-rGO as a multifunctional interlayer for dendrite-free and ultra-stable lithium-metal batteries. ACS Appl Mater Interfaces. 2021;13(17):20125-20136.

[102]

Ma F, Chen Z, Srinivas K, et al. VN quantum dots anchored N-doped carbon nanosheets as bifunctional interlayer for high-performance lithium-metal and lithium-sulfur batteries. Chem Eng J. 2023;459:141526.

[103]

Ma F, Srinivas K, Zhang X, et al. MO2N quantum dots decorated N-doped graphene nanosheets as dual-functional interlayer for dendrite-free and shuttle-free lithium-sulfur batteries. Adv Funct Mater. 2022;32(40):2206113.

[104]

Zhang X, Zhou L, Hu K, et al. Uniform lithium deposition regulated by lithiophilic MO3N2/Mon heterojunction nanobelts interlayer for stable lithium metal batteries. Chem Eng J. 2023;476:146612.

[105]

Zhang X, Ma F, Srinivas K, et al. Fe3N@N-doped graphene as a lithiophilic interlayer for highly stable lithium metal batteries. Energy Storage Mater. 2022;45:656-666.

[106]

Ma F, Zhang X, Sriniva K, et al. NbN nanodot decorated N-doped graphene as a multifunctional interlayer for high-performance lithium-sulfur batteries. J Mater Chem A. 2022;10(15):8578-8590.

[107]

Zhang X, Chen Y, Ma F, et al. Regulating Li uniform deposition by lithiophilic interlayer as Li-ion redistributor for highly stable lithium metal batteries. Chem Eng J. 2022;436:134945.

[108]

Ma F, Yu B, Zhang X, et al. WN0.67-embedded N-doped graphene-nanosheet interlayer as efficient polysulfide catalyst and absorbant for high-performance lithium-sulfur batteries. Chem Eng J. 2022;431:133439.

[109]

Huangfu Y, Zheng T, Zhang K, et al. Facile fabrication of permselective g-C3N4 separator for improved lithium-sulfur batteries. Electrochim Acta. 2018;272:60-67.

[110]

Di S, Li H, Zhai B, et al. A crystalline carbon nitride-based separator for high-performance lithium metal batteries. Proc Natl Acad Sci USA. 2023;120(33):e1992592176.

[111]

Ma T, Wang R, Jin S, et al. Functionalized boron nitride-based modification layer as ion regulator toward stable lithium anode at high current densities. ACS Appl Mater Interfaces. 2021;13(1):391-399.

[112]

Zhang Q, Wang Z, Liu Y, et al. Homogeneous deposition of lithium ions enabled by BN coated separator for high-performance lithium-metal batteries. Surface Interfac. 2023;43:103568.

[113]

Liu X, Tang F, Hu H, et al. Regulation of Li+ diffusion via an engineered separator to realize a homogeneous lithium microstructure in advanced Li-metal batteries. ACS Appl Mater Interfaces. 2023;15(10):13761-13771.

[114]

Rodriguez JR, Kim PJ, Kim K, Qi Z, Wang H, Pol VG. Engineered heat dissipation and current distribution boron nitride-graphene layer coated on polypropylene separator for high performance lithium metal battery. J Colloid Interface Sci. 2021;583:362-370.

[115]

Yan J, Liu F, Hu Z, et al. Realizing dendrite-free lithium deposition with a composite separator. Nano Lett. 2020;20(5):3798-3807.

[116]

Kim YM, Kim HS, Park BK, et al. Flattening of lithium plating in carbonate electrolytes enabled by all-in-one separator. Small. 2023;19(28):2301754.

[117]

Song J, Jiang Y, Lu Y, et al. A forceful “dendrite-killer” of polyoxomolybdate with reusability effectively dominating dendrite-free lithium metal anode. Small. 2023;19(40):2301740.

[118]

Li R, Zhang G, Wang Y, et al. Fast ion diffusion kinetics based on ferroelectric and piezoelectric effect of SnO2/BaTiO3 heterostructures for high-rate sodium storage. Nano Energy. 2021;90:106591.

[119]

Du P, Li B, Mao Z, Nan Y, Guo D, Wu S. Regulating lithium-ion flow by piezoelectric effect of the poled-BaTiO3 film for dendrite-free lithium metal anode. J Electroanal Chem. 2022;919:116538.

[120]

Ji Y, Yuan B, Zhang J, et al. A single-layer piezoelectric composite separator for durable operation of Li metal anode at high rates. Energy Environ Mater. 2022;7(1):e12510.

[121]

Liu W, Mi Y, Weng Z, Zhong Y, Wu Z, Wang H. Functional metal-organic framework boosting lithium metal anode performance via chemical interactions. Chem Sci. 2017;8(6):4285-4291.

[122]

Shen L, Wu HB, Liu F, et al. Anchoring anions with metal-organic framework-functionalized separators for advanced lithium batteries. Nanoscale Horiz. 2019;4(3):705-711.

[123]

Hao Z, Wu Y, Zhao Q, et al. Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv Funct Mater. 2021;31(33):2102938.

[124]

Li J, Chen L, Wang F, et al. Anionic metal-organic framework modified separator boosting efficient Li-ion transport. Chem Eng J. 2023;451:138536.

[125]

Zuo L, Ma Q, Xiao P, et al. Upgrading the separators integrated with desolvation and delective deposition toward the stable lithium metal batteries. Adv Mater. 2023;36(13):e2311529.

[126]

Sun X, Li M, Ren S, et al. Zeolitic imidazolate framework-cellulose nanofiber hybrid membrane as Li-Ion battery separator: basic membrane property and battery performance. J Power Sources. 2020;454:227878.

[127]

Chang Z, Yang H, Pan A, He P, Zhou H. An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell. Nat Commun. 2022;13(1):6788.

[128]

Zhai L, Li G, Yang X, et al. Li+-accommodating covalent organic frameworks as ultralong cyclable high-capacity Li-ion battery electrodes. Adv Funct Mater. 2022;32(9):2108798.

[129]

Li J, Jing X, Li Q, et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem Soc Rev. 2020;49(11):3565-3604.

[130]

Zhao X, Pachfule P, Thomas A. Covalent organic frameworks (COFs) for electrochemical applications. Chem Soc Rev. 2021;5(12):6871-6913.

[131]

Wang C, Li W, Jin Y, Liu J, Wang H, Zhang Q. Functional separator enabled by covalent organic frameworks for high-performance Li metal batteries. Small. 2023;19(28):2300023.

[132]

Yao S, Yang Y, Liang Z, et al. A dual-functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv Funct Mater. 2023;33(13):2212466.

[133]

An Q, Wang HE, Zhao G, et al. Understanding dual-polar group functionalized COFs for accelerating Li-ion transport and dendrite-free deposition in lithium metal anodes. Energy Environ Mater. 2023;6(2):e12345.

[134]

Wu W, Xu Y, Ke X, et al. Superorganophilic MAF-6/PP composite separator boosts lithium metal anode performance. Energy Storage Mater. 2021;37:387-395.

[135]

Yang Y, Yao S, Wu Y, et al. Hydrogen-bonded organic framework as superior separator with high lithium affinity C═N bond for low N/P ratio lithium metal batteries. Nano Lett. 2023;23(11):5061-5069.

[136]

Zhao C, Chen P, Zhang R, et al. An ion redistributor for dendrite-free lithium metal anodes. Sci Adv. 2018;4(11):eaat3446.

[137]

Huo H, Li X, Chen Y, et al. Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries. Energy Storage Mater. 2020;29:361-366.

[138]

Wang M, Wang J, Si J, Chen F, Cao K, Chen C. Bifunctional composite separator with redistributor and anion absorber for dendrites-free and fast-charging lithium metal batteries. Chem Eng J. 2022;430:132971.

[139]

Huang B, Luo J, Xu B, et al. Surface coating on a separator with a reductive solid Li-ion conductor for dendrite-free Li-metal batteries. ACS Appl Energy Mater. 2021;4(8):8621-8628.

[140]

Jiang G, Li K, Mao J, et al. Sandwich-like Prussian blue/graphene oxide composite films as ion-sieves for fast and uniform Li ionic flux in highly stable Li metal batteries. Chem Eng J. 2020;385:123398.

[141]

Xie H, Hao Z, Xie S, et al. Molecular sieve based Janus separators for Li-ions redistribution to enable stable lithium deposition. Nano Res. 2022;15(6):5143-5152.

[142]

Xie H, Hao Q, Jin H, et al. Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: a mechanism based on a Galton Board. Sci China Chem. 2020;63(9):1306-1314.

[143]

He Q, Li Z, Wu M, et al. Ultra-uniform and functionalized nano-ion divider for regulating ion distribution toward dendrite-free lithium-metal batteries. Adv Mater. 2023;35(39):2302418.

[144]

Si J, Li X, Ren N, He H, Zeng S, Chen C. Bifunctional separators with high transference number and uniform ion flux for dendrite-free lithium metal batteries. J Power Sources. 2024;599:234225.

[145]

Wang L, Fu S, Zhao T, et al. In situ formation of a LiF and Li-Al alloy anode protected layer on a Li metal anode with enhanced cycle life. J Mater Chem A. 2020;8(3):1247-1253.

[146]

Xiao J, Zhai P, Wei Y, et al. In-situ formed protecting layer from organic/inorganic concrete for dendrite-free lithium metal anodes. Nano Lett. 2020;20(5):3911-3917.

[147]

Tan L, Wei C, Zhang Y, An Y, Xiong S, Feng J. LiF-rich and self-repairing interface induced by MgF2 engineered separator enables dendrite-free lithium metal batteries. Chem Eng J. 2022;442:136243.

[148]

Yadav P, Thakur P, Maity D, Narayanan TN. High rate, dendrite free lithium metal batteries of extended cyclability via a scalable separator modification approach. Small. 2023;20(19):2308344.

[149]

Han X, Wu T, Gu L, et al. Li-MOF-based ions regulator enabling fast-charging and dendrite-free lithium metal anode. Chin Chem Lett. 2023;34(2):107594.

[150]

Wen Y, Ding J, Liu J, Zhu M, Hu R. A separator rich in SnF2 and NO3- directs an ultra-stable interface toward high performance Li metal batteries. Energy Environ Sci. 2023;16(7):2957-2967.

[151]

Wang W, Liao C, Liew KM, et al. A 3D flexible and robust HAPs/PVA separator prepared by a freezing-drying method for safe lithium metal batteries. J Mater Chem A. 2019;7(12):6859-6868.

[152]

Yang J, Wang C, Wang C, Chen K, Mou C, Wu H. Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes. J Mater Chem A. 2020;8(10):5014-5095.

[153]

Huang K, Zhai P, Song Chen J, et al. Enhanced and evenly-distributed Li+ transport in well-aligned nanochannels enables stable lithium metal anode. Electrochem Commun. 2022;144-145:107395.

[154]

Hao Z, Wang C, Wu Y, et al. Electronegative nanochannels accelerating lithium-ion transport for enabling highly stable and high-rate lithium metal anodes. Adv Energy Mater. 2023;13(28):2204007.

[155]

Zhao H, Yan J, Deng N, Kang W, Cheng B. A versatile nano-TiO2 decorated gel separator with derived multi-scale nanofibers towards dendrite-blocking and polysulfide-inhibiting lithium-metal batteries. J Energy Chem. 2021;55:190-201.

[156]

Zhao H, Deng N, Wang G, Ren H, Kang W, Cheng B. A core@sheath nanofiber separator with combined hardness and softness for lithium-metal batteries. Chem Eng J. 2021;404:126542.

[157]

Zhao Q, Zhou R, Wang C, et al. Anion immobilization enabled by cation-selective separators for dendrite-free lithium metal batteries. Adv Funct Mater. 2022;32(23):2112711.

[158]

Yang Y, Wang W, Li M, Zhou S, Zhang J, Wang A. Plant leaf-inspired separators with hierarchical structure and exquisite fluidic channels for dendrite-free lithium metal batteries. Small. 2023;19(35):2301237.

[159]

Guo C, Luo ZH, Zhou MX, et al. Clay-originated two-dimensional holey silica separator for dendrite-free lithium metal anode. Small. 2023;19(36):2301428.

[160]

Liu J, Bao Z, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat Energy. 2019;4(3):180-186.

[161]

An Q, Liu Q, Wang S, et al. Oxygen vacancies with localized electrons direct a functionalized separator toward dendrite-free and high loading LiFePO4 for lithium metal batteries. J Energy Chem. 2022;75:38-45.

[162]

Ju Y, Liu H, Chen Y, et al. An ultrathin Zn-BDC MOF nanosheets functionalized polyacrylonitrile composite separator with anion immobilization and Li+ redistribution for dendrite-free Li metal battery. Compos Commun. 2023;37:101449.

[163]

Ren W, Zhu K, Zhang W, et al. Dendrite-free lithium metal battery enabled by dendritic mesoporous silica coated separator. Adv Funct Mater. 2023;33(34):2301586.

[164]

Wang Y, Zhou K, Cui L, et al. Ion transport regulation of polyimide separator for safe and durable Li-metal battery. J Power Sources. 2024;591:233853.

[165]

Lee H, Lim H, Ren X, et al. Detrimental effects of chemical crossover from the lithium anode to cathode in rechargeable lithium metal batteries. ACS Energy Lett. 2018;3(12):2921-2930.

[166]

Zhang X, Wang X, Li B, et al. Crosstalk shielding of transition metal ions for long cycling lithium-metal batteries. J Mater Chem A. 2020;8:4283-4289.

[167]

Song Y, Liu X, Ren D, et al. Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Adv Mater. 2022;34(2):2106335.

[168]

Song Y, Wang L, Cui H, et al. Boosting battery safety by mitigating thermal-induced crosstalk with a bi-continuous separator. Adv Energy Mater. 2022;12(44):2201964.

[169]

Muchakayala R, Yarramsetti S, Maram PS, Kalluri S, Ran F, Sangaraju S. Modified ceramic coated polyethylene separator-A strategy for using lithium metal as anode with superior electrochemical performance and thermal stability. J Energy Storage. 2023;68:107687.

[170]

Feng Y, Zhong B, Zhang R, et al. Taming active-ion crosstalk by targeted ion sifter toward high-voltage lithium metal batteries. Adv Energy Mater. 2023;13(45):2302295.

[171]

Lim H, Lee B, Bae Y, et al. Reaction chemistry in rechargeable Li-O2 batteries. Chem Soc Rev. 2017;46(10):2873-2888.

[172]

Feng N, He P, Zhou H. Critical challenges in rechargeable aprotic Li-O2 batteries. Adv Energy Mater. 2016;6(9):1502303.

[173]

Zheng X, Yuan M, Zhao Y, et al. Status and prospects of MXene-based lithium-oxygen batteries: theoretical prediction and experimental modulation. Adv Energy Mater. 2023;13(20):2204019.

[174]

Luo WB, Gao XW, Chou SL, et al. Investigation of promising air electrode for realizing ultimate lithium oxygen battery. Adv Energy Mater. 2017;7(24):1700234.

[175]

Kim BG, Kim JS, Min J, et al. A Moisture-and oxygen-impermeable separator for aprotic Li-O2 Batteries. Adv Funct Mater. 2016;26(11):1747-1756.

[176]

Wu Z, Tian Y, Chen H, et al. Evolving aprotic Li-air batteries. Chem Soc Rev. 2022;51(18):8045-8101.

[177]

Wang Y, Li D, Zhang S, Kang Z, Xie H, Liu J. Poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate)-decorated separator in Li-O2 batteries: suppressing the shuttle effect of dual redox mediators by coulombic interactions. J Power Sources. 2020;466:228336.

[178]

Shi L, Li Z, Li Y, Wang G, Wu M, Wen Z. Suppressing redox shuttle with MXene-modified separators for Li-O2 batteries. ACS Appl Mater Interfaces. 2021;13(26):30766-30775.

[179]

Liu J, Bai L, He J, et al. Interfacial polymerization-modified polyetherimide (PEI) separator for Li-O2 battery with boosted performance. ACS Appl Polym Mater. 2022;4(8):5781-5788.

[180]

Sun Y, Chen K, Zhang C, et al. A novel material for high-performance Li-O2 battery separator: polyetherketone nanofiber membrane. Small. 2022;18(21):2201470.

[181]

Zhang Y, Xie S, Li D, et al. Suppressing redox shuttling with lithiated nafion-modified separators for Li-O2 batteries. ChemSusChem. 2022;15(16):2200769.

[182]

Li D, Kang Z, Sun H, et al. A bifunctional MnxCO3-xO4-decorated separator for efficient Li-LiI-O2 batteries: a novel strategy to promote redox coupling and inhibit redox shuttling. Chem Eng J. 2022;428:131105.

[183]

Zheng L, Bai P, Yan W, Li F, Wang X, Xu J. In situ construction of glass-fiber-directed zeolite microtube woven separator for ultra-high-capacity lithium-oxygen batteries. Matter. 2023;6(1):142-157.

[184]

Zhang G, Zhang D, Yang R, et al. A multifunctional wood-derived separator towards the problems of semi-open system in lithium-oxygen batteries. Adv Funct Mater. 2023;33(40):2304981.

[185]

Liu J, Qian T, Xu N, et al. Dendrite-free and ultra-high energy lithium sulfur battery enabled by dimethyl polysulfide intermediates. Energy Storage Mater. 2020;24:265-271.

[186]

Li D, Liu J, Xu N, et al. Stabilizing cathodes of lithium-sulfur batteries by the chemical binding of sulfur and their discharge products to carbon nanofibers. New J Chem. 2019;43(38):15267-15274.

[187]

Li Y, Wang W, Liu X, et al. Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries. Energy Storage Mater. 2019;23:261-268.

[188]

He Y, Wu S, Li Q, Zhou H. Designing a multifunctional separator for high-performance Li-S batteries at elevated temperature. Small. 2019;15(47):1904332.

[189]

Zhou C, Li M, Hu N, et al. Single-atom-regulated heterostructure of binary nanosheets to enable dendrite-free and kinetics-enhanced Li-S batteries. Adv Funct Mater. 2022;32(33):2204635.

[190]

Zhang Z, Dong Y, Gu Y, et al. Graphene-nanoscroll-based Janus bifunctional separators suppress lithium dendrites and polysulfides shuttling synchronously in high-performance lithium-sulfur batteries. J Mater Chem A. 2022;1(17):9515-9523.

[191]

Xiao R, Yang S, Yu T, et al. A Janus separator for inhibiting shuttle effect and lithium dendrite in lithium-sulfur batteries. Batter Supercaps. 2022;5(4):e202100389.

[192]

Kong Y, Wang L, Mamoor M, et al. Co/Mon invigorated bilateral kinetics modulation for advanced lithium-sulfur batteries. Adv Mater. 2023;36(13):2310143.

[193]

Zhao M, Tan P, Cai D, et al. Customizing component regulated dense heterointerfaces for crafting robust lithium-sulfur batteries. Adv Funct Mater. 2023;33(8):2211505.

[194]

Mu J, Zhang M, Li YL, et al. Laser irradiation constructing all-in-one defective graphene-polyimide separator for effective restraint of lithium dendrites and shuttle effect. Nano Res. 2023;16(10):12304-12314.

[195]

Zhu Y, Zhang Y, Jin S, et al. Toward safe and high-performance lithium-sulfur batteries via polyimide nanosheets-modified separator. ACS Sustainable Chem Eng. 2023;11(4):1434-1447.

[196]

Liu T, Li J, Cui H, et al. Tuning Li nucleation and growth via oxygen vacancy-enriched 3D flexible self-supporting protection layer of P-MN3O4 for advanced lithium-sulfur batteries. J Energy Chem. 2023;76:339-348.

[197]

Fan C, Yang R, Huang Y, et al. Graphene quantum dots as sulfiphilic and lithiophilic mediator toward high stability and durable life lithium-sulfur batteries. J Energy Chem. 2023;85:254-266.

[198]

Zhou W, Chen M, Zhao D, et al. Acceleration of bidirectional sulfur conversion kinetics and inhibition of lithium dendrites growth via a “ligand-induced” transformation strategy. Nano Res. 2023;16(7):9496-9506.

[199]

Hou Q, Yu M, Jiang H, et al. Scalable, flexible and fire-retardant janus membranes for simultaneously inhibiting dendrite growth and catalyzing polysulfide conversion in lithium-sulfur batteries. Energy Storage Mater. 2023;60:102807.

[200]

Li X, Zhao X, Wang J, Chen C, Hu C. A multifunctional separator based on dilithium tetraaminophthalocyanine self-assembled on rGO with improved cathode and anode performance in Li-S batteries. Carbon. 2023;201:307-317.

[201]

Feng S, Wang J, Wen J, et al. Improvement of redox kinetics of dendrite-free lithium-sulfur battery by bidirectional catalysis of cationic dual-active sites. ACS Sustainable Chem Eng. 2023;11(23):8544-8555.

[202]

Zhang Y, Guo C, Zhou J, et al. Anisotropically hybridized porous crystalline Li-S battery separators. Small. 2023;19(5):2206616.

[203]

An Q, Wang L, Zhao G, et al. Constructing cooperative interface via bi-functional COF for facilitating the sulfur conversion and Li+ dynamics. Adv Mater. 2024;36(4):2305818.

[204]

Sun L, Li H, Zhou J, et al. Bifunctional separator with nest-like MnOOH network via facile in situ synthesis for highly stable and “Li-dendrite free” lithium-sulfur batteries. Mater Today Energy. 2024;40:101489.

[205]

Razaq R, Din MMU, Småbråten DR, et al. Synergistic effect of bimetallic MOF modified separator for long cycle life lithium-sulfur batteries. Adv Energy Mater. 2024;14(3):2302897.

[206]

Wang Y, Wu Y, Mao P, et al. A Keggin Al13-montmorillonite modified separator retards the polysulfide shuttling and accelerates Li-ion transfer in Li-S batteries. Small. 2024;20(1):2304898.

[207]

Xu J, An S, Song X, et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv Mater. 2021;33(49):2105178.

[208]

Song P, Zheng S, Ullah Z, et al. Synergistic effects of FeCo bimetallic single-atom catalysts: accelerating the redox conversion of polysulfides and inhibiting the growth of lithium dendrites in lithium-sulfur batteries. ACS Appl Energy Mater. 2023;6(9):4671-4682.

[209]

Yue W, Li X, Zhao J, et al. Ultra-small ferromagnetic Fe3O4 nanoparticles modified separator for high-rate and long cycling lithium-sulfur batteries. Batter Supercaps. 2022;5:e202200020.

[210]

Yu B, Chen D, Wang Z, et al. MO2C quantum dots@graphene functionalized separator toward high-current-density lithium metal anodes for ultrastable Li-S batteries. Chem Eng J. 2020;399:125837.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF (13544KB)

252

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/