Advancing electrochemical CO2 reduction with group 11 metal nanoclusters for renewable energy solutions

Sourav Biswas , Yamato Shingyouchi , Masaki Ogami , Maho Kamiyama , Tokuhisa Kawawaki , Yuichi Negishi

EcoEnergy ›› 2024, Vol. 2 ›› Issue (3) : 400 -418.

PDF (2881KB)
EcoEnergy ›› 2024, Vol. 2 ›› Issue (3) : 400 -418. DOI: 10.1002/ece2.56
REVIEW

Advancing electrochemical CO2 reduction with group 11 metal nanoclusters for renewable energy solutions

Author information +
History +
PDF (2881KB)

Abstract

Understanding the intricate relationship between structure and properties is paramount in distinguishing nanocluster (NC) materials from their counterparts. Despite the progress in synthesizing new NCs, the sluggish exploration of their potential applications persists due to the difficulty in stabilizing these materials. However, recent investigations have unveiled their remarkable efficacy as catalysts in electrochemical CO2 reduction reactions, surpassing traditional materials. This discovery, addressing urgent global concerns, has quickly drawn significant attention to this field, leading to its rapid expansion. Hence, there is an urgent need to outline this research landscape and pinpoint effective strategies, marking a significant advancement. In this context, our endeavor is dedicated to offering researchers a thorough understanding of recently synthesized NC materials. We aim to elucidate their distinct structural architectures and associated properties essential for catalyst design. We envision that this systematic review will serve as a guiding beacon for future research endeavors in this burgeoning field.

Keywords

CO 2 reduction / metal nanoclusters / renewable energy solutions

Cite this article

Download citation ▾
Sourav Biswas, Yamato Shingyouchi, Masaki Ogami, Maho Kamiyama, Tokuhisa Kawawaki, Yuichi Negishi. Advancing electrochemical CO2 reduction with group 11 metal nanoclusters for renewable energy solutions. EcoEnergy, 2024, 2(3): 400-418 DOI:10.1002/ece2.56

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: current status, future prospects and their enabling technology. Renewable Sustainable Energy Rev. 2014;39:748-764.

[2]

Davis SJ, Caldeira K, Matthews HD. Future CO2 emissions and climate change from existing energy infrastructure. Science. 2010;329(5997):1330-1333.

[3]

Olah GA, Prakash GKS, Goeppert A. Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc. 2011;133(33):12881-12898.

[4]

Østergaard PA, Duic N, Noorollahi Y, Kalogirou S. Renewable energy for sustainable development. Renew Energy. 2022;199:1145-1152.

[5]

Dincer I. Renewable energy and sustainable development: a crucial review. Renewable Sustainable Energy Rev. 2000;4(2):157-175.

[6]

Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019;24:38-50.

[7]

Wu J, Huang Y, Ye W, Li Y. CO2 reduction: from the electrochemical to photochemical approach. Adv Sci. 2017;4(11):1700194.

[8]

Nam D.-H, De Luna P, Rosas-Hernández A, et al. Molecular enhancement of heterogeneous CO2 reduction. Nat Mater. 2020;19(3):266-276.

[9]

Ozin GA. Throwing new light on the reduction of CO2. Adv Mater. 2015;27(11):1957-1963.

[10]

Peter SC. Reduction of CO2 to chemicals and fuels: a solution to global warming and energy crisis. ACS Energy Lett. 2018;3(7):1557-1561.

[11]

Zhang W, Hu Y, Ma L, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci. 2018;5(1):1700275.

[12]

Marcandalli G, Monteiro MCO, Goyal A, Koper MTM. Electrolyte effects on CO2 electrochemical reduction to CO. Acc Chem Res. 2022;55(14):1900-1911.

[13]

Ringe S, Clark EL, Resasco J, et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ Sci. 2019;12(10):3001-3014.

[14]

Kibria MG, Edwards JP, Gabardo CM, et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv Mater. 2019;31(31):1807166.

[15]

Garg S, Li M, Weber AZ, et al. Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials. J Mater Chem A. 2020;8(4):1511-1544.

[16]

Zhang S, Fan Q, Xia R, Meyer TJ. CO2 reduction: from homogeneous to heterogeneous electrocatalysis. Acc Chem Res. 2020;53(1):255-264.

[17]

Diercks CS, Liu Y, Cordova KE, Yaghi OM. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat Mater. 2018;17(4):301-307.

[18]

Sa YJ, Lee CW, Lee SY, Na J, Lee U, Hwang YJ. Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction. Chem Soc Rev. 2020;49(18):6632-6665.

[19]

Fujita E, Grills DC, Manbeck GF, Polyansky DE. Understanding the role of inter-and intramolecular promoters in electro-and photochemical CO2 reduction using Mn, Re, and Ru catalysts. Acc Chem Res. 2022;55(5):616-628.

[20]

Jiang H, Wu X, Zhang H, et al. Toward effective electrocatalytic C–N coupling for the synthesis of organic nitrogenous compounds using CO2 and biomass as carbon sources. SusMat. 2023;3(6):781-820.

[21]

Wu X, Yan Q, Wang H, et al. Heterostructured catalytic materials as advanced electrocatalysts: classification, synthesis, characterization, and application. Adv Funct Mater. 2024:2404535.

[22]

Gao C, Chen S, Wang Y, et al. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: the role of electron transfer. Adv Mater. 2018;30(13):1704624.

[23]

Chen J, Wang L. Effects of the catalyst dynamic changes and influence of the reaction environment on the performance of electrochemical CO2 reduction. Adv Mater. 2022;34(25):2103900.

[24]

Huang J, Hörmann N, Oveisi E, et al. Potential-induced nanoclustering of metallic catalysts during electrochemical CO2 reduction. Nat Commun. 2018;9(1):3117.

[25]

Zhao S, Jin R, Jin R. Opportunities and challenges in CO2 reduction by gold-and silver-based electrocatalysts: from bulk metals to nanoparticles and atomically precise nanoclusters. ACS Energy Lett. 2018;3(2):452-462.

[26]

Li S, Nagarajan AV, Alfonso DR, et al. Boosting CO2 electrochemical reduction with atomically precise surface modification on gold nanoclusters. Angew Chem Int Ed. 2021;60(12):6351-6356.

[27]

Kawawaki T, Okada T, Takemae K, Tomihari S, Negishi Y. Size-dependent carbon dioxide reduction activity of copper nanoparticle and nanocluster electrocatalysts. Chem Nano Mat. 2024;10(5):e202300575.

[28]

Kwak K, Lee D. Electrochemistry of atomically precise metal nanoclusters. Acc Chem Res. 2019;52(1):12-22.

[29]

Yuan S.-F, He R.-L, Han XS, Wang J.-Q, Guan Z.-J, Wang Q.-M. Robust gold nanocluster protected with amidinates for electrocatalytic CO2 reduction. Angew Chem Int Ed. 2021;60(26):14345-14349.

[30]

Levchenko TI, Yi H, Aloisio MD, et al. Electrocatalytic CO2 reduction with atomically precise Au13 nanoclusters: effect of ligand shell on catalytic performance. ACS Catal. 2024;14(6):4155-4163.

[31]

Deng G, Yun H, Bootharaju MS, et al. Copper doping boosts electrocatalytic CO2 reduction of atomically precise gold nanoclusters. J Am Chem Soc. 2023;145(50):27407-27414.

[32]

Ding M, Tang L, Ma X, Song C, Wang S. Effects of ligand tuning and core doping of atomically precise copper nanoclusters on CO2 electroreduction selectivity. Commun Chem. 2022;5(1):172.

[33]

Liu Y, Yu J, Lun Y, Wang Y, Wang Y, Song S. Ligand design in atomically precise copper nanoclusters and their application in electrocatalytic reactions. Adv Funct Mater. 2023;33(44):2304184.

[34]

Li S, Alfonso D, Nagarajan AV, et al. Monopalladium substitution in gold nanoclusters enhances CO2 electroreduction activity and selectivity. ACS Catal. 2020;10(20):12011-12016.

[35]

Tang S, Xu J, Liu X, Zhu Y. Ag doped Au44 nanoclusters for electrocatalytic conversion of CO2 to CO. Chem-Euro J. 2022;28(46):e202201262.

[36]

Jin R, Zeng C, Zhou M, Chen Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev. 2016;116(18):10346-10413.

[37]

Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev. 2017;117(12):8208-8271.

[38]

Hirai H, Ito S, Takano S, Koyasu K, Tsukuda T. Ligand-protected gold/silver superatoms: current status and emerging trends. Chem Sci. 2020;11(45):12233-12248.

[39]

Li G, Jin R. Atomically precise gold nanoclusters as new model catalysts. Acc Chem Res. 2013;46(8):1749-1758.

[40]

Higaki T, Li Y, Zhao S, et al. Atomically tailored gold nanoclusters for catalytic application. Angew Chem Int Ed. 2019;58(25):8291-8302.

[41]

Zhu Y, Qian H, Jin R. Catalysis opportunities of atomically precise gold nanoclusters. J Mater Chem. 2011;21(19):6793-6799.

[42]

Zhao J, Jin R. Heterogeneous catalysis by gold and gold-based bimetal nanoclusters. Nano Today. 2018;18:86-102.

[43]

Yamazoe S, Koyasu K, Tsukuda T. Nonscalable oxidation catalysis of gold clusters. Acc Chem Res. 2014;47(3):816-824.

[44]

Wan X.-K, Wang J.-Q, Nan Z.-A, Wang Q.-M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci Adv. 2017;3(10):e1701823.

[45]

Tang Q, Hu G, Fung V, Jiang D.-E. Insights into interfaces, stability, electronic properties, and catalytic activities of atomically precise metal nanoclusters from first principles. Acc Chem Res. 2018;51(11):2793-2802.

[46]

Zou X, Kang X, Zhu M. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem Soc Rev. 2023;52(17):5892-5967.

[47]

Kauffman DR, Alfonso D, Matranga C, Qian H, Jin R. Experimental and computational investigation of Au25 clusters and CO2: a unique interaction and enhanced electrocatalytic activity. J Am Chem Soc. 2012;134(24):10237-10243.

[48]

Kauffman DR, Alfonso D, Matranga C, et al. Probing active site chemistry with differently charged Au25q nanoclusters (q=−1, 0, +1). Chem Sci. 2014;5(8):3151-3157.

[49]

Seong H, Efremov V, Park G, Kim H, Yoo JS, Lee D. Atomically precise gold nanoclusters as model catalysts for identifying active sites for electroreduction of CO2. Angew Chem Int Ed. 2021;60(26):14563-14570.

[50]

Li S, Nagarajan AV, Li Y, Kauffman DR, Mpourmpakis G, Jin R. The role of ligands in atomically precise nanocluster-catalyzed CO2 electrochemical reduction. Nanoscale. 2021;13(4):2333-2337.

[51]

Wang J, Xu F, Wang Z.-Y, Zang S.-Q, Mak TCW. Ligand-shell engineering of a Au28 nanocluster boosts electrocatalytic CO2 reduction. Angew Chem Int Ed. 2022;61(32):e202207492.

[52]

Narouz MR, Osten KM, Unsworth PJ, et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat Chem. 2019;11(5):419-425.

[53]

Li S, Nagarajan AV, Du X, et al. Dissecting critical factors for electrochemical CO2 reduction on atomically precise Au nanoclusters. Angew Chem Int Ed. 2022;61(47):e202211771.

[54]

Sharma SK, Ahangari HT, Johannessen B, Golovko VB, Marshall AT. Au cluster-derived electrocatalysts for CO2 reduction. Electrocatalysis. 2023;14(4):611-623.

[55]

Zhang C, Ding M, Ren Y, et al. The smallest superatom Au4(PPH3)4I2 with two free electrons: synthesis, structure analysis, and electrocatalytic conversion of CO2 to CO. Nanoscale Adv. 2023;5(12):3287-3292.

[56]

Zhao S, Austin N, Li M, et al. Influence of atomic-level morphology on catalysis: the case of sphere and rod-like gold nanoclusters for CO2 electroreduction. ACS Catal. 2018;8(6):4996-5001.

[57]

Wan XK, Wang JQ, Wang QM. Ligand-protected Au55 with a novel structure and remarkable CO2 electroreduction performance. Angew Chem Int Ed. 2021;60(38):20748-20753.

[58]

Gao Z.-H, Wei K, Wu T, et al. A heteroleptic gold hydride nanocluster for efficient and selective electrocatalytic reduction of CO2 to CO. J Am Chem Soc. 2022;144(12):5258-5262.

[59]

Kulkarni VK, Khiarak BN, Takano S, et al. N-heterocyclic carbene-stabilized hydrido Au24 nanoclusters: synthesis, structure, and electrocatalytic reduction of CO2. J Am Chem Soc. 2022;144(20):9000-9006.

[60]

Yang D, Wang J, Wang Q, et al. Electrocatalytic CO2 reduction over atomically precise metal nanoclusters protected by organic ligands. ACS Nano. 2022;16(10):15681-15704.

[61]

Chen L, Wang L, Shen Q, Liu Y, Tang Z. All-alkynyl-protected coinage metal nanoclusters: from synthesis to electrocatalytic CO2 reduction applications. Mater Chem Front. 2023;7(8):1482-1495.

[62]

Kawawaki T, Okada T, Hirayama D, Negishi Y. Atomically precise metal nanoclusters as catalysts for electrocatalytic CO2 reduction. Green Chem. 2024;26(1):122-163.

[63]

Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J Am Chem Soc. 2008;130(18):5883-5885.

[64]

Kauffman DR, Thakkar J, Siva R, et al. Efficient electrochemical CO2 conversion powered by renewable energy. ACS Appl Mater Interfaces. 2015;7(28):15626-15632.

[65]

Tian J, Zhong K, Zhu X, et al. Highly exposed active sites of Au nanoclusters for photocatalytic CO2 reduction. Chem Eng J. 2023;451:138392.

[66]

Kim B, Seong H, Song JT, et al. Over a 15.9%solar-to-CO conversion from dilute CO2 streams catalyzed by gold nanoclusters exhibiting a high CO2 binding affinity. ACS Energy Lett. 2020;5(3):749-757.

[67]

Kumar B, Kawawaki T, Shimizu N, et al. Gold nanoclusters as electrocatalysts: size, ligands, heteroatom doping, and charge dependences. Nanoscale. 2020;12(18):9969-9979.

[68]

Yang D, Zhu Y. Evolution of catalytic activity driven by structural fusion of icosahedral gold cluster cores. Chin J Catal. 2021;42(2):245-250.

[69]

Sun Y, Liu X, Xiao K, Zhu Y, Chen M. Active-site tailoring of gold cluster catalysts for electrochemical CO2 reduction. ACS Catal. 2021;11(18):11551-11560.

[70]

Shichibu Y, Negishi Y, Watanabe T, Chaki NK, Kawaguchi H, Tsukuda T. Biicosahedral gold clusters [Au25(PPH3)10(SCnH2n+1)5Cl2]2+(n =2–18): a stepping stone to cluster-assembled materials. J Phys Chem C. 2007;111(22):7845-7847.

[71]

Kang X, Zhu M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem Soc Rev. 2019;48(8):2422-2457.

[72]

Biswas S, Das AK, Mandal S. Surface engineering of atomically precise M (I) nanoclusters: from structural control to room temperature photoluminescence enhancement. Acc Chem Res. 2023;56(13):1838-1849.

[73]

Biswas S, Das AK, Reber AC, et al. The new Ag–S cluster [Ag50S13(StBu)20] [CF3COO]4 with a unique hcp Ag14 kernel and Ag36 Keplerian-shell-based structural architecture and its photoresponsivity. Nano Lett. 2022;22(9):3721-3727.

[74]

Das AK, Biswas S, Manna SS, Pathak B, Mandal S. An atomically precise silver nanocluster for artificial light-harvesting system through supramolecular functionalization. Chem Sci. 2022;13(28):8355-8364.

[75]

Biswas S, Das AK, Manna SS, Pathak B, Mandal S. Template-assisted alloying of atom-precise silver nanoclusters: a new approach to generate cluster functionality. Chem Sci. 2022;13(38):11394-11404.

[76]

Xie Y.-P, Shen Y.-L, Duan G.-X, Han J, Zhang L.-P, Lu X. Silver nanoclusters: synthesis, structures and photoluminescence. Mater Chem Front. 2020;4(8):2205-2222.

[77]

Biswas S, Das S, Negishi Y. Progress and prospects in the design of functional atomically-precise Ag(I)-thiolate nanoclusters and their assembly approaches. Coord Chem Rev. 2023;492:215255.

[78]

Yang J, Jin R. New advances in atomically precise silver nanoclusters. ACS Mater Lett. 2019;1(4):482-489.

[79]

Jin Y, Zhang C, Dong X.-Y, Zang S.-Q, Mak TCW. Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem Soc Rev. 2021;50(4):2297-2319.

[80]

Seong H, Choi M, Park S, et al. Promoting CO2-to-CO electroreduction via the active-site engineering of atomically precise silver nanoclusters. ACS Energy Lett. 2022;7(12):4177-4184.

[81]

Qin L, Sun F, Ma X, et al. Homoleptic alkynyl-protected Ag15 nanocluster with atomic precision: structural analysis and electrocatalytic performance toward CO2 reduction. Angew Chem Int Ed. 2021;60(50):26136-26141.

[82]

Chen L, Sun F, Shen Q, et al. Homoleptic alkynyl-protected Ag32 nanocluster with atomic precision: probing the ligand effect toward CO2 electroreduction and 4-nitrophenol reduction. Nano Res. 2022;15(10):8908-8913.

[83]

Ma G, Qin L, Liu Y, et al. A review of CO2 reduction reaction catalyzed by atomical-level Ag nanomaterials: atom-precise nanoclusters and atomically dispersed catalysts. Surface Interfac. 2023;36:102555.

[84]

Wang L, Chen W, Zhang D, et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem Soc Rev. 2019;48(21):5310-5349.

[85]

Zhang X.-G, Liu Y, Zhan C, et al. Reaction selectivity for plasmon-driven carbon dioxide reduction on silver clusters: a theoretical prediction. J Phys Chem C. 2019;123(17):11101-11108.

[86]

Wang Z, Li T, Wang Q, et al. Hydrophobically made Ag nanoclusters with enhanced performance for CO2 aqueous electroreduction. J Power Sources. 2020;476:228705.

[87]

Baghdasaryan A, Bürgi T. Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications. Nanoscale. 2021;13(13):6283-6340.

[88]

Biswas S, Negishi Y. Exploring the impact of various reducing agents on Cu nanocluster synthesis. Dalton Trans. 2024;53(23):9657-9663.

[89]

Liu X, Astruc D. Atomically precise copper nanoclusters and their applications. Coord Chem Rev. 2018;359:112-126.

[90]

Hu X, Liu T, Zhuang Y, et al. Recent advances in the analytical applications of copper nanoclusters. Trac Trends Anal Chem. 2016;77:66-75.

[91]

Wang Z, Chen B, Rogach AL. Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horiz. 2017;2(3):135-146.

[92]

Das AK, Biswas S, Wani VS, Nair AS, Pathak B, Mandal S. [Cu18H3(S-Adm)12(PPH3)4Cl2]: fusion of Platonic and Johnson solids through a Cu(0) center and its photophysical properties. Chem Sci. 2022;13(25):7616-7625.

[93]

Biswas S, Negishi Y. A comprehensive analysis of luminescent crystallized Cu nanoclusters. J Phys Chem Lett. 2024;15(4):947-958.

[94]

Biswas S, Das S, Negishi Y. Advances in Cu nanocluster catalyst design: recent progress and promising applications. Nanoscale Horiz. 2023;8(11):1509-1522.

[95]

Tang Q, Lee Y, Li D.-Y, et al. Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J Am Chem Soc. 2017;139(28):9728-9736.

[96]

Liu L.-J, Wang Z.-Y, Wang Z.-Y, Wang R, Zang S.-Q, Mak TCW. Mediating CO2 electroreduction activity and selectivity over atomically precise copper clusters. Angew Chem Int Ed. 2022;61(35):e202205626.

[97]

Li S, Yan X, Tang J, et al. Cu26 nanoclusters with quintuple ligand shells for CO2 electrocatalytic reduction. Chem Mater. 2023;35(15):6123-6132.

[98]

Han H, Yao Y, Bhargava A, et al. Tertiary hierarchical complexity in assemblies of sulfur-bridged metal chiral clusters. J Am Chem Soc. 2020;142(34):14495-14503.

[99]

Wu Q.-J, Si D.-H, Sun P.-P, et al. Atomically precise copper nanoclusters for highly efficient electroreduction of CO2 towards hydrocarbons via breaking the coordination symmetry of Cu site. Angew Chem Int Ed. 2023;62(36):e202306822.

[100]

Li F, Tang Q. The critical role of hydride (H) ligands in electrocatalytic CO2 reduction to HCOOH by [Cu25H22(PH3)12]Cl nanocluster. J Catal. 2020;387:95-101.

[101]

Shin DY, Won JS, Kwon JA, Kim M.-S, Lim D.-H. First-principles study of copper nanoclusters for enhanced electrochemical CO2 reduction to CH4. Comput Theor Chem. 2017;1120:84-90.

[102]

Rawat KS, Mahata A, Pathak B. Thermochemical and electrochemical CO2 reduction on octahedral Cu nanocluster: role of solvent towards product selectivity. J Catal. 2017;349:118-127.

[103]

Yu Y, He Y, Yan P, Wang S, Dong F. Boosted C–C coupling with Cu–Ag alloy sub-nanoclusters for CO2-to-C2H4 photosynthesis. Proc Natl Acad Sci USA. 2023;120(44):e2307320120.

[104]

Ma X, Sun F, Qin L, et al. Electrochemical CO2 reduction catalyzed by atomically precise alkynyl-protected Au7Ag8, Ag9Cu6, and Au2Ag8Cu5 nanoclusters: probing the effect of multi-metal core on selectivity. Chem Sci. 2022;13(34):10149-10158.

[105]

Shen Q, Cong X, Chen L, et al. Synthesis, structure anatomy, and catalytic properties of Ag14Cu2 nanoclusters co-protected by alkynyl and phosphine ligands. Dalton Trans. 2023;52(45):16812-16818.

[106]

Sun X, Wang P, Yan X, et al. Hydride-doped Ag17Cu10 nanoclusters as high-performance electrocatalysts for CO2 reduction. iScience. 2023;26(10):107850.

[107]

Choi W, Seong H, Efremov V, et al. Controlled syngas production by electrocatalytic CO2 reduction on formulated Au25(SR)18 and PtAu24(SR)18 nanoclusters. J Chem Phys. 2021;155(1):014305.

[108]

Zhuang S, Chen D, Liao L, et al. Hard-sphere random close-packed Au47Cd2 (TBBT)31 nanoclusters with a Faradaic efficiency of up to 96%for electrocatalytic CO2 reduction to CO. Angew Chem Int Ed. 2020;59(8):3073-3077.

[109]

Zhang J, Qi S, Pu N, Chen Y, Liu X, Li L. Catalytic reduction of CO2 in the interface formed by monolayer graphene and metal atom (Pt, Ni, Pd, Co) doped Cu-nanoclusters: a theoretical design and investigation. Mol Catal. 2023;549:113504.

[110]

Kang X, Li Y, Zhu M, Jin R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem Soc Rev. 2020;49(17):6443-6514.

[111]

Kawawaki T, Imai Y, Suzuki D, et al. Atomically precise alloy nanoclusters. Chem Eur J. 2020;26(69):16150-16193.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF (2881KB)

232

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/