Electrode materials for calcium batteries: Future directions and perspectives

Titus Masese , Godwill Mbiti Kanyolo

EcoEnergy ›› 2024, Vol. 2 ›› Issue (3) : 339 -368.

PDF (9039KB)
EcoEnergy ›› 2024, Vol. 2 ›› Issue (3) : 339 -368. DOI: 10.1002/ece2.53
PERSPECTIVE

Electrode materials for calcium batteries: Future directions and perspectives

Author information +
History +
PDF (9039KB)

Abstract

Despite the prevailing dominance of lithium-ion batteries in consumer electronics and electric vehicle markets, the growing apprehension over lithium availability has ignited a quest for alternative high-energy-density electrochemical energy storage systems. Rechargeable batteries featuring calcium (Ca) metal as negative electrodes (anodes) present compelling prospects, promising notable advantages in energy density, cost-effectiveness, and safety. However, unlocking the full potential of rechargeable Ca metal batteries particularly hinges upon the strategic identification or design of high-energydensity positive electrode (cathode) materials. This imperative task demands expeditious synthetic routes tailored for their meticulous design. In this Perspective, we mainly highlight the development in the cathode materials for calcium batteries and accentuate the unparalleled promise of solid-state metathesis routes in designing a diverse array of high-performance electrode materials.

Keywords

calcium batteries / current status / electrode materials / perspectives

Cite this article

Download citation ▾
Titus Masese, Godwill Mbiti Kanyolo. Electrode materials for calcium batteries: Future directions and perspectives. EcoEnergy, 2024, 2(3): 339-368 DOI:10.1002/ece2.53

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Remick KA, Helmann JD. Advances in microbial physiology. Elsevier. 2023;82:1-127.

[2]

Schmidt H, Paschke I, Freyer D, Voigt W. Water channel structure of bassanite at high air humidity: crystal structure of CaSO4·0.625H2O. Acta Crystallogr Sect B Struct Sci. 2011;67(6):467-475.

[3]

Cheng G, Zussman J. The crystal structure of anhydrite (CaSO4). Acta Crystallogr. 1963;16(8):767-769.

[4]

Cole W, Lancucki C. A refinement of the crystal structure of gypsum CaSO4 2H2O. Acta Crystallogr B Struct Crystallogr Cryst Chem. 1974;30(4):921-929.

[5]

Tilleu C. Portlandite, a new mineral from scawt hill, Co. Antrim. Mineral Mag J Mineral Soc. 1933;23(142):419-420.

[6]

Fayyaz A, Asghar H, Alrebdi TA. Laser-Induced breakdown spectroscopy and Energy-Dispersive X-ray analyses for green mineral fluorite (CaF2). Results Phys. 2023;52:106850.

[7]

Grishina S, Koděra P, Uriarte LM, et al. Identification of anhydrous CaCl2 and KCaCl3 in natural inclusions by Raman spectroscopy. Chem Geol. 2018;493:532-543.

[8]

Aljubouri ZA, Aldabbagh SM. Sinjarite, a new mineral from Iraq. Mineral Mag. 1980;43(329):643-645.

[9]

Rossi M, Nestola F, Zorzi F, et al. Ghiaraite: a new mineral from Vesuvius volcano, Naples (Italy). Am Mineral. 2014;99(2-3):519-524.

[10]

Torii T, Ossaka J. Antarcticite: a new mineral, calcium chloride hexahydrate, discovered in Antarctica. Science. 1965;149(3687):975-977.

[11]

Shepard CU. Treatise on Mineralogy: Second Part, Consisting of Descriptions of the Species, and Tables Illustrative of Their Natural and Chemical Affinities…. Vol 1. H. Howe and Company and Herrick and Noyes;1835.

[12]

Combes C, Cazalbou S, Rey C. Apatite biominerals. Minerals. 2016;6(2):34.

[13]

White T, Ferraris C, Kim J, Madhavi S. Apatite—an adaptive framework structure. Rev Mineral Geochem. 2005;57(1):307-401.

[14]

Hull H, Turnbull A. A thermochemical study of monohydrocalcite. Geochem Cosmochim Acta. 1973;37(3):685-694.

[15]

Shearman D, Smith A. Ikaite, the parent mineral of jarrowite-type pseudomorphs. PGA (Proc Geol Assoc). 1985;96(4):305-314.

[16]

Warren J. Dolomite: occurrence, evolution and economically important associations. Earth Sci Rev. 2000;52(1-3):1-81.

[17]

Sadooni F, Al Awadi M. Dolomite: perspectives on a perplexing mineral. Oilfield Rev. 2009;21:32-45.

[18]

Bragg WL. The structure of aragonite. Proc R Soc Lond—Ser A Contain Pap a Math Phys Character. 1924;105:16-39.

[19]

McConnell J. Vaterite from ballycraigy, larne, Northern Ireland. Mineral Mag J Mineral Soc. 1960;32(250):535-544.

[20]

Dufresne WJ, Rufledt CJ, Marshall CP. Raman spectroscopy of the eight natural carbonate minerals of calcite structure. J Raman Spectrosc. 2018;49(12):1999-2007.

[21]

Ribbe PH. Feldspar Mineralogy. Vol 2. Walter de Gruyter GmbH and Co KG;2018.

[22]

Yokoi R, Kataoka R, Masese T, et al. Potentials and hotspots of post-lithium-ion batteries: environmental impacts and supply risks for sodium-and potassium-ion batteries. Resour Conserv Recycl. 2024;204:1-11.

[23]

Arroyo-de Dompablo ME, Ponrouch A, Johansson P, Palacín MR. Achievements, challenges, and prospects of calcium batteries. Chem Rev. 2019;120(14):6331-6357.

[24]

Yang J-L, Liu H-H, Zhao X-X, et al. Janus binder chemistry for synchronous enhancement of iodine species adsorption and redox kinetics toward sustainable aqueous Zn–I2 batteries. J Am Chem Soc. 2024;146(10):6628-6637.

[25]

Liu Y-N, Yang J-L, Gu Z-Y, et al. Entropy-regulated cathode with low strain and constraint phase-change toward ultralong-life aqueous Al-ion batteries. Angew Chem Int Ed. 2024;63(12):e202316925.

[26]

Xie D, Sang Y, Wang D-H, et al. Frontispiece: ZnF2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew Chem Int Ed. 2023;62(7):e202216934.

[27]

Gummow RJ, Vamvounis G, Kannan MB, He Y. Calcium-ion batteries: current state-of-the-art and future perspectives. Adv Mater. 2018;30(39):1801702.

[28]

Lipson AL, Pan B, Lapidus SH, Liao C, Vaughey JT, Ingram BJ. Rechargeable Ca-ion batteries: a new energy storage system. Chem Mater. 2015;27(24):8442-8447.

[29]

Ponrouch A, Frontera C, Bardé F, Palacín MR. Towards a calcium-based rechargeable battery. Nat Mater. 2016;15(2):169-172.

[30]

Monti D, Ponrouch A, Araujo RB, Barde F, Johansson P, Palacín MR. Multivalent batteries—prospects for high energy density: Ca batteries. Front Chem. 2019;7:79.

[31]

Ponrouch A, Palacín MR. On the road toward calcium-based batteries. Curr Opin Electrochem. 2018;9:1-7.

[32]

Ji B, He H, Yao W, Tang Y. Recent advances and perspectives on calcium-ion storage: key materials and devices. Adv Mater. 2021;33(2):2005501.

[33]

Chen C, Shi F, Xu Z-L. Advanced electrode materials for nonaqueous calcium rechargeable batteries. J Mater Chem A. 2021;9(20):11908-11930.

[34]

Taghavi-Kahagh A, Roghani-Mamaqani H, Salami-Kalajahi M. Powering the future: a comprehensive review on calcium-ion batteries. J Energy Chem. 2023;90:77-97.

[35]

Yan L, Yang W, Yu H, Zhang L, Shu J. Recent progress in rechargeable calcium-ion batteries for high-efficiency energy storage. Energy Storage Mater. 2023;60:102822.

[36]

Yu X, Manthiram A. Toward reversible room-temperature calcium-ion batteries. Chem. 2018;4(6):1200-1202.

[37]

Stievano L, de Meatza I, Bitenc J, Cavallo C, Brutti S, Navarra MA. Emerging calcium batteries. J Power Sources. 2021;482:228875.

[38]

Pu SD, Gong C, Gao X, et al. Current-density-Dependent electroplating in Ca electrolytes: from globules to dendrites. ACS Energy Lett. 2020;5(7):2283-2290.

[39]

Shin J, Fincher CD, Pharr M. Nano to macro-scale elastic and plastic characteristics of calcium metal and implications for rechargeable battery applications. Extrem Mechan Lett. 2023;64:102081.

[40]

Tinker HR, Howard CA, Zhou M, Xu Y. Exploring anodes for calcium-ion batteries. Mater Adv. 2023;4(9):2028-2041.

[41]

Park J, Xu Z-L, Yoon G, et al. Stable and high-power calcium-ion batteries enabled by calcium intercalation into graphite. Adv Mater. 2020;32(4):1904411.

[42]

Richard Prabakar S, Ikhe AB, Park WB, et al. Graphite as a long-life Ca2+-intercalation anode and its implementation for rocking-chair type calcium-ion batteries. Adv Sci. 2019;6(24):1902129.

[43]

Nishimura Y, Yamazaki S, Sakoda T, Nakagawa K. Investigation of the electrochemical intercalation of Ca2+ into graphite layer carbon nano filaments as a novel electrode material for calcium-ion batteries. SN Appl Sci. 2023;5(2):58.

[44]

Nishimura Y, Nakatani N, Nakagawa K. Role of solution structure in the electrochemical intercalation of Ca2+ into graphite layers. J Solid State Electrochem. 2021;25(10-11):2495-2501.

[45]

Bier D, Li Z, Klyatskaya S, et al. Long cycle-life Ca batteries with poly(anthraquinonylsulfide) cathodes and Ca–Sn alloy anodes. ChemSusChem. 2023;16(21):e202300932.

[46]

Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H-M. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem. 2018;10(6):667-672.

[47]

Zhao-Karger Z, Xiu Y, Li Z, Reupert A, Smok T, Fichtner M. Calcium-tin alloys as anodes for rechargeable non-aqueous calcium-ion batteries at room temperature. Nat Commun. 2022;13(1):3849.

[48]

Yao Z, Hegde VI, Aspuru-Guzik A, Wolverton C. Discovery of calcium-metal alloy anodes for reversible Ca-ion batteries. Adv Energy Mater. 2019;9:1802994.

[49]

Ponrouch A, Tchitchekova D, Frontera C, Bardé F, Arroyo-de Dompablo ME, Palacín MR. Assessing Si-based anodes for Ca-ion batteries: electrochemical decalciation of CaSi2. Electrochem Commun. 2016;66:75-78.

[50]

Kawaguchi M, Ishikawa H, Berger P, Fauchard M, Cahen S, Hérold C. Novel Ca and Ca-Li intercalated B/C and B/C/N materials with layered structures. Bull Chem Soc Jpn. 2022;95(10):1453-1460.

[51]

Zhang S, Zhu Y-L, Ren S, et al. Covalent organic framework with multiple redox active sites for high-performance aqueous calcium ion batteries. J Am Chem Soc. 2023;145(31):17309-17320.

[52]

Biria S, Pathreeker S, Genier FS, Li H, Hosein ID. Plating and stripping calcium at room temperature in an ionic-liquid electrolyte. ACS Appl Energy Mater. 2020;3:2310-2314.

[53]

Biria S, Pathreeker S, Li H, Hosein ID. Plating and stripping of calcium in an alkyl carbonate electrolyte at room temperature. ACS Appl Energy Mater. 2019;2(11):7738-7743.

[54]

Jie Y, Tan Y, Li L, et al. Electrolyte solvation manipulation enables unprecedented room-temperature calcium-metal batteries. Angew Chem Int Ed. 2020;59(31):12689-12693.

[55]

Reinsberg P, Bondue CJ, Baltruschat H. Calcium–oxygen batteries as a promising alternative to sodium–oxygen batteries. J Phys Chem C. 2016;120(39):22179-22185.

[56]

Ye L, Liao M, Zhang K, et al. A rechargeable calcium–oxygen battery that operates at room temperature. Nature. 2024;626(7998):313-318.

[57]

Shiga T, Kato Y, Hase Y. Coupling of nitroxyl radical as an electrochemical charging catalyst and ionic liquid for calcium plating/stripping toward a rechargeable calcium–oxygen battery. J Mater Chem A. 2017;5(25):13212-13219.

[58]

Schröder D, Janek J, Adelhelm P. Nonlithium aprotic metal/oxygen batteries using Na, K, or Ca as metal anode. Encyclo Electrochem Online. 2007:1-29.

[59]

Kim S, Hahn NT, Fister TT, et al. Investigation of rechargeable calcium metal-selenium batteries enabled by borate-based electrolytes. Chem Mater. 2023;35(6):2363-2370.

[60]

Zhou R, Hou Z, Liu Q, Du X, Huang J, Zhang B. Unlocking the reversible selenium electrode for non-aqueous and aqueous calcium-ion batteries. Adv Funct Mater. 2022;32(26):2200929.

[61]

Wang S, Zhi C. A rechargeable Ca/Cl2 battery. Sci China Chem. 2024:1-2.

[62]

Geng S, Zhao X, Xu Q, et al. A rechargeable Ca/Cl2 battery. Nat Commun. 2024;15(1):944.

[63]

Yu X, Boyer MJ, Hwang GS, Manthiram A. Toward a reversible calcium-sulfur battery with a lithium-ion mediation approach. Adv Energy Mater. 2019;9(14):1803794.

[64]

Li Z, Vinayan BP, Diemant T, Behm RJ, Fichtner M, Zhao-Karger Z. Rechargeable calcium–sulfur batteries enabled by an efficient borate-based electrolyte. Small. 2020;16(39):2001806.

[65]

Wu S, Jiang Z, Wu C, et al. High-content carbon layer confined small-molecule/covalent sulfur cathode enables long-life calcium–sulfur batteries in hybrid-ion electrolyte. Adv Funct Mater. 2024;34(19):2313441.

[66]

Melemed AM, Khurram A, Gallant BM. Current understanding of nonaqueous electrolytes for calcium-based batteries. Batter Supercaps. 2020;3(7):570-580.

[67]

Zhao H, Xu J, Yin D, Du Y. Electrolytes for batteries with earth-abundant metal anodes. Chem—Eur J. 2018;24(69):18220-18234.

[68]

Li Z, Fuhr O, Fichtner M, Zhao-Karger Z. Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries. Energy Environ Sci. 2019;12:3496-3501.

[69]

Kisu K, Kim S, Shinohara T, Zhao K, Züttel A, Orimo S-i. Monocarborane cluster as a stable fluorine-free calcium battery electrolyte. Sci Rep. 2021;11(1):7563.

[70]

Pavčnik T, Forero-Saboya JD, Ponrouch A, Robba A, Dominko R, Bitenc J. A novel calcium fluorinated alkoxyaluminate salt as a next step towards Ca metal anode rechargeable batteries. J Mater Chem A. 2023;11(27):14738-14747.

[71]

Li J, Han C, Ou X, Tang Y. Concentrated electrolyte for high-performance Ca-ion battery based on organic anode and graphite cathode. Angew Chem. 2022;134(14):e202116668.

[72]

Kisu K, Mohtadi R, Orimo S-I. Calcium metal batteries with long cycle life using a hydride-based electrolyte and copper sulfide electrode. Adv Sci. 2023;10(22):2301178.

[73]

Melemed AM, Skiba DA, Gallant BM. Toggling calcium plating activity and reversibility through modulation of Ca2+ speciation in borohydride-based electrolytes. J Phys Chem C. 2022;126(2):892-902.

[74]

Biria S, Pathreeker S, Genier FS, Hosein ID. A highly conductive and thermally stable ionic liquid gel electrolyte for calcium-ion batteries. ACS Appl Polym Mater. 2020;2(6):2111-2118.

[75]

Anh CD, Kim YJ, Vo TN, et al. Three-dimensional electrodes in hybrid electrolytes for high-loading and long-lasting calcium-ion batteries. Chem Eng J. 2023;471:144631.

[76]

Forero-Saboya JD, Lozinšek M, Ponrouch A. Towards dry and contaminant free Ca(BF4)2-based electrolytes for Ca plating. J Power Sources Adv. 2020;6:100032.

[77]

Forero-Saboya J, Marchante E, Araujo R, Monti D, Johansson P, Ponrouch A. Cation solvation and physicochemical properties of Ca battery electrolytes. J Phys Chem C. 2019;123(49):29524-29532.

[78]

Ta K, Zhang R, Shin M, Rooney RT, Neumann EK, Gewirth AA. Understanding Ca electrodeposition and speciation processes in nonaqueous electrolytes for next-generation Ca-ion batteries. ACS Appl Mater Interfaces. 2019;11(24):21536-21542.

[79]

Nguyen LHB, Picard T, Iojoiu C, et al. Investigating the abnormal conductivity behaviour of divalent cations in low dielectric constant tetraglyme-based electrolytes. Phys Chem Chem Phys. 2022;24(36):21601-21611.

[80]

Zeng F, Li S, Hu S, et al. Weak solvation effect enhancing capacity and rate performance of vanadium-based calcium ion batteries: A Strategy guided by donor number. Adv Funct Mater. 2023;34(5):2302397.

[81]

Leon NJ, Xie X, Yang M, et al. Room-temperature calcium plating and stripping using a perfluoroalkoxyaluminate anion electrolyte. J Phys Chem C. 2022;126(32):13579-13584.

[82]

Hahn NT, Self J, Driscoll DM, et al. Concentration-dependent ion correlations impact the electrochemical behavior of calcium battery electrolytes. Phys Chem Chem Phys. 2022;24(2):674-686.

[83]

Driscoll DM, Dandu NK, Hahn NT, et al. Rationalizing calcium electrodeposition behavior by quantifying ethereal solvation effects on Ca2+ coordination in well-dissociated electrolytes. J Electrochem Soc. 2020;167(16):160512.

[84]

Yang Z, Leon NJ, Liao C, Ingram BJ, Trahey L. Effect of salt concentration on the interfacial solvation structure and early stage of solid–electrolyte interphase formation in Ca(BH4)2/THF for Ca batteries. ACS Appl Mater Interfaces. 2023;15(20):25018-25028.

[85]

Wang H, Ryu J, Shao Y, et al. Advancing electrolyte solution chemistry and interfacial electrochemistry of divalent metal batteries. Chemelectrochem. 2021;8(16):3013-3029.

[86]

Stettner T, Dugas R, Ponrouch A, Balducci A. Ionic liquid-based electrolytes for calcium-based energy storage systems. J Electrochem Soc. 2020;167(10):100544.

[87]

Yang F, Feng X, Zhuo Z, et al. Ca2+ solvation and electrochemical solid/electrolyte interphase formation toward the multivalent-ion batteries. Arabian J Sci Eng. 2023:1-20.

[88]

Melemed AM, Skiba DA, Steinberg KJ, Kim K-H, Gallant BM. Impact of differential Ca2+ coordination in borohydride-based electrolyte blends on calcium electrochemistry and SEI formation. J Phys Chem C. 2023;127(40):19886-19899.

[89]

Shakourian-Fard M, Kamath G, Taimoory SM, Trant JF. Calcium-ion batteries: identifying ideal electrolytes for next-generation energy storage using computational analysis. J Phys Chem C. 2019;123(26):15885-15896.

[90]

Alfaruqi MH, Lee S, Kang H, et al. Recent achievements in experimental and computational studies of positive electrode materials for nonaqueous Ca-and Al-ion batteries. J Phys Chem C. 2022;126(22):9209-9227.

[91]

Araujo RB, Thangavel V, Johansson P. Towards novel calcium battery electrolytes by efficient computational screening. Energy Storage Mater. 2021;39:89-95.

[92]

Liepinya D, Smeu M. A computational comparison of ether and ester electrolyte stability on a Ca metal anode. Energy Mater Adv. 2021;2021:1-13.

[93]

Jeong H, Kamphaus EP, Redfern PC, et al. Computational predictions of the stability of fluorinated calcium aluminate and borate salts. ACS Appl Mater Interfaces. 2023;15(5):6933-6941.

[94]

Hahn NT, Self J, Han KS, et al. Quantifying species populations in multivalent borohydride electrolytes. J Phys Chem B. 2021;125(14):3644-3652.

[95]

Nguyen LHB, Filhol J-S. Solvation–reduction coupling in Ca2+ electroactivity in glyme-based electrolytes: a first principles study. Adv Energy Mater. 2023;13(27):2300311.

[96]

Batzinger K, Liepinya D, Smeu M. A computational study of electron transport in dynamic tetrahydrofuran and ethylene carbonate solvents on a Ca metal anode. Phys Chem Chem Phys. 2024;26(6):5218-5225.

[97]

Sanz Matias A, Roncoroni F, Sundararaman S, Prendergast D. Ca-dimers, solvent layering, and dominant electrochemically active species in Ca(BH4)2 in THF. Nat Commun. 2024;15(1):1397.

[98]

Martin P-A, Årén F, Johansson P. (Localized) highly concentrated electrolytes for calcium batteries. Batter Supercaps. 2023;6(5):e202300003.

[99]

Landers AT, Self J, McClary SA, et al. Calcium cosalt addition to alter the cation solvation structure and enhance the Ca metal anode performance. J Phys Chem C. 2023;127(49):23664-23674.

[100]

Leon NJ, Ilic S, Xie X, et al. Design principles and routes for calcium alkoxyaluminate electrolytes. J Phys Chem Lett. 2024;15(19):5096-5102.

[101]

Poizeau S, Kim H, Newhouse JM, Spatocco BL, Sadoway DR. Determination and modeling of the thermodynamic properties of liquid calcium–antimony alloys. Electrochim Acta. 2012;76:8-15.

[102]

Kim H, Boysen DA, Bradwell DJ, et al. Thermodynamic properties of calcium–bismuth alloys determined by EMF measurements. Electrochim Acta. 2012;60:154-162.

[103]

Bakker A, Gejji S, Lindgren J, Hermansson K, Probst MM. Contact ion pair formation and ether oxygen coordination in the polymer electrolytes M[N(CF3SO2)2]2PEOn for M = Mg, Ca, Sr and Ba. Polymer. 1995;36(23):4371-4378.

[104]

Genier FS, Burdin CV, Biria S, Hosein ID. A novel calcium-ion solid polymer electrolyte based on crosslinked poly(ethylene glycol) diacrylate. J Power Sources. 2019;414:302-307.

[105]

Aziam H, Larhrib B, Hakim C, Sabi N, Youcef HB, Saadoune I. Solid-state electrolytes for beyond lithium-ion batteries: a review. Renew Sustain Energy Rev. 2022;167:112694.

[106]

Koettgen J, Bartel CJ, Shen J-X, Persson KA, Ceder G. First-principles study of CaB12H12 as a potential solid-state conductor for Ca. Phys Chem Chem Phys. 2020;22(47):27600-27604.

[107]

Shinde SS, Wagh NK, Kim S-H, Lee J-H, Li, Na, K, Mg, Zn, Al, and Ca anode interface chemistries developed by solid-state electrolytes. Adv Sci. 2023;10(32):2304235.

[108]

Berger A, Ibrahim A, Buckley CE, Paskevicius M. Divalent closo-monocarborane solvates for solid-state ionic conductors. Phys Chem Chem Phys. 2023;25(7):5758-5775.

[109]

Ford HO, Cui C, Schaefer JL. Comparison of single-ion conducting polymer gel electrolytes for sodium, potassium, and calcium batteries: influence of polymer chemistry, cation identity, charge density, and solvent on conductivity. Batteries. 2020;6(1):11.

[110]

Martinez-Cisneros CS, Fernandez A, Antonelli C, et al. Opening the door to liquid-free polymer electrolytes for calcium batteries. Electrochim Acta. 2020;353:136525.

[111]

Biria S, Pathreeker S, Genier FS, et al. Gel polymer electrolytes based on cross-linked poly(ethylene glycol) diacrylate for calcium-ion conduction. ACS Omega. 2021;6(26):17095-17102.

[112]

Kim K, Siegel DJ. Multivalent ion transport in anti-perovskite solid electrolytes. Chem Mater. 2021;33(6):2187-2197.

[113]

Pathreeker S, Hosein ID. Vinylimidazole-based polymer electrolytes with superior conductivity and promising electrochemical performance for calcium batteries. ACS Appl Polym Mater. 2022;4(10):6803-6811.

[114]

Wang J, Genier FS, Li H, Biria S, Hosein ID. A solid polymer electrolyte from cross-linked polytetrahydrofuran for calcium ion conduction. ACS Appl Polym Mater. 2019;1(7):1837-1844.

[115]

Chen Y, Bartel CJ, Avdeev M, et al. Solid-state calcium-ion diffusion in Ca1.5Ba0.5Si5O3N6. Chem Mater. 2021;34(1):128-139.

[116]

Fukuda K, Harada R, Banno H, Urushihara D, Asaka T. Discovery of fast calcium-ion conduction in grossite-type compounds CaAl4O7 and CaGa4O7 by bond valence screening method. ACS Appl Energy Mater. 2022;5(3):3227-3234.

[117]

Wei Q, Zhang L, Sun X, Liu TL. Progress and prospects of electrolyte chemistry of calcium batteries. Chem Sci. 2022;13(20):5797-5812.

[118]

Wang D, Gao X, Chen Y, Jin L, Kuss C, Bruce PG. Plating and stripping calcium in an organic electrolyte. Nat Mater. 2018;17(1):16-20.

[119]

Tchitchekova D, Monti D, Johansson P, et al. On the reliability of half-cell tests for monovalent (Li+, Na+) and divalent (Mg2+, Ca2+) cation based batteries. J Electrochem Soc. 2017;164(7): A1384-A1392.

[120]

Batzinger K, Smeu M. Electron passivation in CaF2 on calcium metal anodes. Phys Chem Chem Phys. 2022;24(48):29579-29585.

[121]

Song H, Su J, Wang C. Hybrid solid electrolyte interphases enabled ultralong life Ca-metal batteries working at room temperature. Adv Mater. 2021;33(2):2006141.

[122]

Melemed AM, Gallant BM. Electrochemical signatures of interface-dominated behavior in the testing of calcium foil anodes. J Electrochem Soc. 2020;167(14):140543.

[123]

Zhao Y, Wang A, Ren L, Liu X, Luo J. Revealing the solid electrolyte interface on calcium metal anodes. J Energy Chem. 2022;70:174-190.

[124]

Young J, Kulick PM, Juran TR, Smeu M. Comparative study of ethylene carbonate-based electrolyte decomposition at Li, Ca, and Al anode interfaces. ACS Appl Energy Mater. 2019;2(3):1676-1684.

[125]

Forero-Saboya J, Davoisne C, Dedryvère R, Yousef I, Canepa P, Ponrouch A. Understanding the nature of the passivation layer enabling reversible calcium plating. Energy Environ Sci. 2020;13(10):3423-3431.

[126]

Hou Z, Zhou R, Min Z, Lu Z, Zhang B. Realizing wide-temperature reversible Ca metal anodes through a Ca2+-conducting artificial layer. ACS Energy Lett. 2022;8(1):274-279.

[127]

Young J, Smeu M. Ethylene carbonate-based electrolyte decomposition and solid–electrolyte interphase formation on Ca metal anodes. J Phys Chem Lett. 2018;9(12):3295-3300.

[128]

Deng X, Li L, Zhang G, et al. Anode chemistry in calcium ion batteries: a review. Energy Storage Mater. 2022;53:467-481.

[129]

Shyamsunder A, Blanc LE, Assoud A, Nazar LF. Reversible calcium plating and stripping at room temperature using a borate salt. ACS Energy Lett. 2019;4(9):2271-2276.

[130]

Bu H, Lee H, Setiawan D, Hong S-T. Intercalation-type positive electrode materials for nonaqueous calcium-ion batteries. Chem Phys Rev. 2022;3(1):011309.

[131]

Wu Y, Zhao Z, Hao X, et al. Cathode materials for calcium-ion batteries: current status and prospects. Carbon Neutralization. 2023;2(5):551-573.

[132]

Masese T, Kanyolo GM. Advancements in cathode materials for potassium-ion batteries: current landscape, obstacles, and prospects. Energy Adv. 2024;3(1):60-107.

[133]

Jin T, Li H, Zhu K, Wang P-F, Liu P, Jiao L. Polyanion-type cathode materials for sodium-ion batteries. Chem Soc Rev. 2020;49(8):2342-2377.

[134]

Gong Z, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci. 2011;4(9):3223-3242.

[135]

Torres A, Casals JL, Arroyo-de Dompablo ME. Enlisting potential cathode materials for rechargeable Ca batteries. Chem Mater. 2021;33(7):2488-2497.

[136]

Torres A, Luque F, Tortajada J, Arroyo-de Dompablo M. Analysis of minerals as electrode materials for Ca-based rechargeable batteries. Sci Rep. 2019;9(1):9644.

[137]

Xu Z-L, Park J, Wang J, et al. A new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries. Nat Commun. 2021;12(1):3369.

[138]

Prabakar SR, Park W-B, Seo JY, et al. Ultra-stable Ti2O(PO4)2(H2O) as a viable new Ca2+ storage electrode material for calcium-ion batteries. Energy Storage Mater. 2021;43:85-96.

[139]

Chen C, Shi F, Zhang S, Su Y, Xu Z-L. Ultrastable and high energy calcium rechargeable batteries enabled by calcium intercalation in a NASICON cathode. Small. 2022;18(14):2107853.

[140]

Kim S, Yin L, Lee MH, et al. High-voltage phosphate cathodes for rechargeable Ca-ion batteries. ACS Energy Lett. 2020;5(10):3203-3211.

[141]

Jeon B, Heo JW, Hyoung J, Kwak HH, Lee DM, Hong S-T. Reversible calcium-ion insertion in NASICON-type NaV2(PO4)3. Chem Mater. 2020;32(20):8772-8780.

[142]

Blanc LE, Choi Y, Shyamsunder A, et al. Phase stability and kinetics of topotactic dual Ca2+-Na+ ion electrochemistry in NaSICON NaV2(PO4)3. Chem Mater. 2022;35(2):468-481.

[143]

Shannon RT, Prewitt CT. Effective ionic radii in oxides and fluorides. Acta Crystallogr B Struct Crystallogr Cryst Chem. 1969;25(5):925-946.

[144]

Wang J, Tan S, Xiong F, et al. VOPO4·2H2O as a new cathode material for rechargeable Ca-ion batteries. Chem Commun. 2020;56(26):3805-3808.

[145]

Qiao F, Wang J, Yu R, et al. K3V2(PO4)3/C as a new high-voltage cathode material for calcium-ion batteries with a water-in-salt electrolyte. Small Methods. 2023;8(1):2300865.

[146]

Li R, Lee Y, Lin H, et al. KxVPO4F(x~0): a new high-voltage and low-stain cathode material for ultrastable calcium rechargeable batteries. Adv Energy Mater. 2024;14(11):2302700.

[147]

Lipson AL, Kim S, Pan B, Liao C, Fister TT, Ingram BJ. Calcium intercalation into layered fluorinated sodium iron phosphate. J Power Sources. 2017;369:133-137.

[148]

Orikasa Y, Masese T, Koyama Y, et al. High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci Rep. 2014;4(1):5622.

[149]

Huang Z-D, Masese T, Orikasa Y, Mori T, Yamamoto K. Vanadium phosphate as a promising high-voltage magnesium ion (de)-intercalation cathode host. RSC Adv. 2015;5(12):8598-8603.

[150]

Newnham R, Caron L, Santoro R. Magnetic properties of CaCoSiO4 and CaFeSiO4. J Am Ceram Soc. 1966;49(5):284-286.

[151]

Caron L, Santoro R, Newnham R. Magnetic structure of CaMnSiO4. J Phys Chem Solid. 1965;26(5):927-930.

[152]

Mori T, Masese T, Orikasa Y, et al. Anti-site mixing governs the electrochemical performances of olivine-type MgMnSiO4 cathodes for rechargeable magnesium batteries. Phys Chem Chem Phys. 2016;18(19):13524-13529.

[153]

Masquelier C, Croguennec L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev. 2013;113(8):6552-6591.

[154]

Guo J-Z, Zhang H-X, Gu Z-Y, et al. Heterogeneous NASICON-type composite as low-cost, high-performance cathode for sodium-ion batteries. Adv Funct Mater. 2022;32(52):2209482.

[155]

Zhou H, Cao Z, Zhou Y, et al. Unlocking rapid and robust sodium storage of fluorophosphate cathode via multivalent anion substitution. Nano Energy. 2023;114:108604.

[156]

Ding C, Li C, Tian H, Tong Y, Huang W, Zhang Q. Recent progress on organic electrode materials for multivalent (Zn, Al, Mg, Ca) secondary batteries. Batt Supercaps. 2022;5(7):e202200160.

[157]

Xiu Y, Mauri A, Dinda S, et al. Anion storage chemistry of organic cathodes for high-energy and high-power density divalent metal batteries. Angew Chem Int Ed. 2023;62(2):e202212339.

[158]

Zhou R, Hou Z, Fan K, et al. An advanced organic cathode for non-aqueous and aqueous calcium-based dual ion batteries. J Power Sources. 2023;569:232995.

[159]

Wu S, Zhang F, Tang Y. A novel calcium-ion battery based on dual-carbon configuration with high working voltage and long cycling life. Adv Sci. 2018;5(8):1701082.

[160]

Song H, Su J, Wang C. Multi-ions electrolyte enabled high performance voltage tailorable room-temperature Ca-metal batteries. Adv Energy Mater. 2021;11(10):2003685.

[161]

Zhang S, Zhu Y, Wang D, et al. Poly(Anthraquinonyl sulfide)/CNT composites as high-rate-performance cathodes for nonaqueous rechargeable calcium-ion batteries. Adv Sci. 2022;9(14):2200397.

[162]

Chae MS, Nimkar A, Shpigel N, Gofer Y, Aurbach D. High performance aqueous and nonaqueous Ca-ion cathodes based on fused-ring aromatic carbonyl compounds. ACS Energy Lett. 2021;6(8):2659-2665.

[163]

Lužanin O, Lautar AK, Pavčnik T, Bitenc J. Paving the way for future Ca metal batteries through comprehensive electrochemical testing of organic polymer cathodes. Mater Adv. 2024;5(2):642-651.

[164]

Jao W-Y, Tai C-W, Chang C-C, Hu C-C. Non-aqueous calcium-based dual-ion batteries with an organic electrode of high-rate performance. Energy Storage Mater. 2023;63:102990.

[165]

Smok T, Shakouri S, Abouzari-Lotf E, et al. A π-conjugated porphyrin complex as cathode material allows fast and stable energy storage in calcium batteries. Batt Supercaps. 2023;6(12):e202300308.

[166]

Monti D, Patil N, Black AP, et al. Polyimides as promising cathodes for metal-organic batteries: a comparison between divalent (Ca2+, Mg2+) and monovalent (Li+, Na+) cations. ACS Appl Energy Mater. 2023;6(13):7250-7257.

[167]

Jiang B, Su Y, Liu R, Sun Z, Wu D. Calcium based all-organic dual-ion batteries with stable low temperature operability. Small. 2022;18(20):2200049.

[168]

Hazen RM, Hummer DR, Hystad G, Downs RT, Golden JJ. Carbon mineral ecology: predicting the undiscovered minerals of carbon. Am Mineral. 2016;101(4):889-906.

[169]

Minami K, Masese T, Yoshii K. Coronene: a high-voltage anion insertion and de-insertion cathode for potassium-ion batteries. New J Chem. 2021;45(11):4921-4924.

[170]

Liang Y, Tao Z, Chen J. Organic electrode materials for rechargeable lithium batteries. Adv Energy Mater. 2012;2(7):742-769.

[171]

Schon TB, McAllister BT, Li P-F, Seferos DS. The rise of organic electrode materials for energy storage. Chem Soc Rev. 2016;45(22):6345-6404.

[172]

Hu J, Hong Y, Guo M, et al. Emerging organic electrodes for Na-ion and K-ion batteries. Energy Storage Mater. 2023;56:267-299.

[173]

Esser B, Dolhem F, Becuwe M, Poizot P, Vlad A, Brandell D. A perspective on organic electrode materials and technologies for next generation batteries. J Power Sources. 2021;482:228814.

[174]

Qin K, Huang J, Holguin K, Luo C. Recent advances in developing organic electrode materials for multivalent rechargeable batteries. Energy Environ Sci. 2020;13(11):3950-3992.

[175]

Chen Y, Fan K, Gao Y, Wang C. Challenges and perspectives of organic multivalent metal-ion batteries. Adv Mater. 2022;34(52):2200662.

[176]

Shi R, Jiao S, Yue Q, Gu G, Zhang K, Zhao Y. Challenges and advances of organic electrode materials for sustainable secondary batteries. Exploration. 2022;2(4):20220066.

[177]

Wang X, Shang Z, Yang A, et al. Combining quinone cathode and ionic liquid electrolyte for organic sodium-ion batteries. Chem. 2019;5(2):364-375.

[178]

Li M, Hicks RP, Chen Z, et al. Electrolytes in organic batteries. Chem Rev. 2023;123(4):1712-1773.

[179]

Gerlach P, Burges R, Lex-Balducci A, Schubert U, Balducci A. Aprotic and protic ionic liquids as electrolytes for organic radical polymers. J Electrochem Soc. 2020;167(12):120546.

[180]

Xu T, Qin J, Liu Y, et al. Diluted ionic liquid electrolyte-assisted stable cycling of small molecular organics. Chemelectrochem. 2021;8(23):4625-4632.

[181]

Kato M, Masese T, Yao M, Takeichi N, Kiyobayashi T. Organic positive-electrode material utilizing both an anion and cation: a benzoquinone-tetrathiafulvalene triad molecule, Q-TTF-Q, for rechargeable Li, Na, and K batteries. New J Chem. 2019;43(3):1626-1631.

[182]

Xu Y, Zhou M, Lei Y. Organic materials for rechargeable sodium-ion batteries. Mater Today. 2018;21(1):60-78.

[183]

Liang Y, Zhang P, Yang S, Tao Z, Chen J. Fused heteroaromatic organic compounds for high-power electrodes of rechargeable lithium batteries. Adv Energy Mater. 2013;3(5):600-605.

[184]

Zhu L, Ding G, Xie L, et al. Conjugated carbonyl compounds as high-performance cathode materials for rechargeable batteries. Chem Mater. 2019;31(21):8582-8612.

[185]

Lee S, Kwon G, Ku K, et al. Recent progress in organic electrodes for Li and Na rechargeable batteries. Adv Mater. 2018;30(42):1704682.

[186]

Duan A, Wang Z, Huang X, Li Y. Anion-Dependent redox chemistry of p-type poly(vinyldimethylphenazine) cathode materials. Angew Chem Int Ed. 2023;62(24):e202302754.

[187]

Wang J, Liu X, Jia H, et al. A high-voltage organic framework for high-performance Na-and K-ion batteries. ACS Energy Lett. 2022;7(2):668-674.

[188]

Sun Z, Yao H, Li J, et al. Stable hexaazatrinaphthalene-based planar polymer cathode material for organic lithium-ion batteries. ACS Appl Mater Interfaces. 2023;15(36):42603-42610.

[189]

Kye H, Kang Y, Jang D, Kwon JE, Kim B-G. p-Type redox-active organic electrode materials for next-generation rechargeable batteries. Adv Energy Sustain Res. 2022;3(8):2200030.

[190]

Yang J, Xiong P, Shi Y, et al. Rational molecular design of benzoquinone-derived cathode materials for high-performance lithium-ion batteries. Adv Funct Mater. 2020;30(15):1909597.

[191]

Russo R, Murugesan R, Jamali A, et al. N-Substituted carbazole derivate salts as stable organic electrodes for anion insertion. ChemNanoMat. 2022;8:e202200248.

[192]

Zuo C, Xiong F, Wang J, An Y, Zhang L, An Q. MnO2 polymorphs as cathode materials for rechargeable Ca-ion batteries. Adv Funct Mater. 2022;32(33):2202975.

[193]

Kim S, Yin L, Bak S-M, et al. Investigation of Ca insertion into α-MoO3 nanoparticles for high capacity Ca-ion cathodes. Nano Lett. 2022;22(6):2228-2235.

[194]

Cabello M, Nacimiento F, Alcantara R, Lavela P, Perez Vicente C, Tirado JL. Applicability of molybdite as an electrode material in calcium batteries: a structural study of layer-type CaxMoO3. Chem Mater. 2018;30(17):5853-5861.

[195]

Chae MS, Kwak HH, Hong S-T. Calcium molybdenum bronze as a stable high-capacity cathode material for calcium-ion batteries. ACS Appl Energy Mater. 2020;3(6):5107-5112.

[196]

Chando PA, Chen S, Shellhamer JM, et al. Exploring calcium manganese oxide as a promising cathode material for calcium-ion batteries. Chem Mater. 2023;35(20):8371-8381.

[197]

Black AP, Frontera C, Torres A, et al. Elucidation of the redox activity of Ca2MnO3.5 and CaV2O4 in calcium batteries using operando XRD: charge compensation mechanism and reversibility. Energy Storage Mater. 2022;47:354-364.

[198]

Adil M, Sarkar A, Sau S, Muthuraj D, Mitra S. Non-aqueous rechargeable calcium-ion batteries based on high voltage zirconium-doped ammonium vanadium oxide cathode. J Power Sources. 2022;541:231669.

[199]

Vo TN, Kim H, Hur J, Choi W, Kim IT. Surfactant-assisted ammonium vanadium oxide as a superior cathode for calcium-ion batteries. J Mater Chem A. 2018;6(45):22645-22654.

[200]

Bu H, Lee H, Hyoung J, et al. (NH4)2V7O16 as a cathode material for rechargeable calcium-ion batteries: structural transformation and Co-intercalation of ammonium and calcium ions. Chem Mater. 2023;35(19):7974-7983.

[201]

Chae MS, Heo JW, Hyoung J, Hong S-T. Double-sheet vanadium oxide as a cathode material for calcium-ion batteries. ChemNanoMat. 2020;6(7):1049-1053.

[202]

Hyoung J, Heo JW, Jeon B, Hong S-T. Silver vanadium bronze, β-Ag0.33V2O5: crystal-water-free high-capacity cathode material for rechargeable Ca-ion batteries. J Mater Chem A. 2021;9(36):20776-20782.

[203]

Dong L-W, Xu R-G, Wang P-P, et al. Layered potassium vanadate K2V6O16 nanowires: a stable and high capacity cathode material for calcium-ion batteries. J Power Sources. 2020;479:228793.

[204]

Wang J, Wang J, Jiang Y, et al. CaV6O16·2.8H2O with Ca2+ pillar and water lubrication as a high-rate and long-life cathode material for Ca-ion batteries. Adv Funct Mater. 2022;32(25):2113030.

[205]

Purbarani ME, Hyoung J, Hong S-T. Crystal-water-Free potassium vanadium bronze (K0.5V2O5) as a cathode material for Ca-ion batteries. ACS Appl Energy Mater. 2021;4(8):7487-7491.

[206]

Xu X, Duan M, Yue Y, et al. Bilayered Mg0.25V2O5·H2O as a stable cathode for rechargeable Ca-ion batteries. ACS Energy Lett. 2019;4(6):1328-1335.

[207]

Zhang X, Xu X, Song B, et al. Towards a stable layered vanadium oxide cathode for high-capacity calcium batteries. Small. 2022;18(43):2107174.

[208]

Tan X, Wang J, Jin S, et al. Cu3(OH)2V2O7·2H2O@rGO with bimetallic redox activity as a novel cathode material for calcium–ion batteries. New J Chem. 2023;47(17):8326-8333.

[209]

Jeon B, Kwak HH, Hong S-T. Bilayered Ca0.28V2O5·H2O: high-capacity cathode material for rechargeable Ca-ion batteries and its charge storage mechanism. Chem Mater. 2022;34(4):1491-1498.

[210]

Lakhnot AS, Bhimani K, Mahajani V, Panchal RA, Sharma S, Koratkar N. Reversible and rapid calcium intercalation into molybdenum vanadium oxides. Proc Natl Acad Sci USA. 2022;119(30):e2205762119.

[211]

Qin X, Zhao X, Zhang G, et al. Highly reversible intercalation of calcium ions in layered vanadium compounds enabled by acetonitrile–water hybrid electrolyte. ACS Nano. 2023;17(13):12040-12051.

[212]

Richard Prabakar SJ, Ikhe AB, Park W-B, Ahn D, Sohn K-S, Pyo M. Ultra-high capacity and cyclability of β-phase Ca0.14V2O5as a promising cathode in calcium-ion batteries. Adv Funct Mater. 2023;33(29):2301399.

[213]

Murata Y, Inada R, Sakurai Y. Electrolyte dependency on Ca2+ insertion and extraction properties of V2O5. J Electrochem Soc. 2021;168(2):020528.

[214]

Wang J, Zhang Y, Qiao F, et al. Freestanding ammonium vanadate composite cathodes with lattice self-regulation and Ion-exchange for long-lasting Ca-ion batteries. Adv Mater. 2024:2403371.

[215]

Xiang L, Yang W-H, Wang Y, et al. Layered BaV6O16·3H2O@GO as a high performance cathode material for calcium ion batteries. Chem Commun. 2024;60(41):5459-5462.

[216]

Wu Y, Zhao Q, Wang Z. Layered vanadium oxides: promising cathode materials for calcium-ion batteries. Chin J Struct Chem. 2024;43(5):100271.

[217]

Hao X, Zheng L, Hu S, et al. Stabilizing Ca-ion batteries with a 7000-cycle lifespan and superior rate capability by a superlattice-like vanadium heterostructure. Mater Today Energy. 2023;38:101456.

[218]

Zhao X, Li L, Zheng L, et al. 3d-Orbital regulation of transition metal intercalated vanadate as optimized cathodes for calcium-ion batteries. Adv Funct Mater. 2024;34(2):2309753.

[219]

Lee C, Jeong Y-T, Nogales PM, et al. Electrochemical intercalation of Ca2+ ions into TiS2 in organic electrolytes at room temperature. Electrochem Commun. 2019;98:115-118.

[220]

Li Z, Vinayan BP, Jankowski P, et al. Multi-electron reactions enabled by anion-based redox chemistry for high-energy multivalent rechargeable batteries. Angew Chem Int Ed. 2020;59(28):11483-11490.

[221]

Chae MS, Setiawan D, Kim HJ, Hong S-T. Layered iron vanadate as a high-capacity cathode material for nonaqueous calcium-ion batteries. Batteries. 2021;7(3):54.

[222]

Cabello M, Nacimiento F, González JR, et al. Advancing towards a veritable calcium-ion battery: CaCO2O4 positive electrode material. Electrochem Commun. 2016;67:59-64.

[223]

Hyoung J, Heo JW, Hong S-T. Investigation of electrochemical calcium-ion energy storage mechanism in potassium birnessite. J Power Sources. 2018;390:127-133.

[224]

Black AP, Monti D, Frontera C, et al. Operando synchrotron X-ray diffraction in calcium batteries: insights into the redox activity of 1D Ca3CoMO6 (M =Co and Mn). Energy Fuels. 2021;35(13):10898-10907.

[225]

Park H, Cui Y, Kim S, Vaughey J, Zapol P. Ca cobaltites as potential cathode materials for rechargeable Ca-ion batteries: theory and experiment. J Phys Chem C. 2020;124(11):5902-5909.

[226]

Pathreeker S, Reed S, Chando P, Hosein ID. A study of calcium ion intercalation in perovskite calcium manganese oxide. J Electroanal Chem. 2020;874:114453.

[227]

Verrelli R, Black AP, Frontera C, et al. On the study of Ca and Mg deintercalation from ternary tantalum nitrides. ACS Omega. 2019;4(5):8943-8952.

[228]

Lu W, Wang J, Sai Gautam G, Canepa P. Searching ternary oxides and chalcogenides as positive electrodes for calcium batteries. Chem Mater. 2021;33(14):5809-5821.

[229]

Tekliye DB, Kumar A, Weihang X, Mercy TD, Canepa P, Sai Gautam G. Exploration of NaSICON frameworks as calcium-ion battery electrodes. Chem Mater. 2022;34(22):10133-10143.

[230]

Black AP, Torres A, Frontera C, Palacín MR, Arroyo-de Dompablo ME. Appraisal of calcium ferrites as cathodes for calcium rechargeable batteries: DFT, synthesis, characterization and electrochemistry of Ca4Fe9O17. Dalton Trans. 2020;49(8):2671-2679.

[231]

Torres A, Luque F, Tortajada J, Arroyo-de Dompablo M. DFT investigation of Ca mobility in reduced-perovskite and oxidized-marokite oxides. Energy Storage Mater. 2019;21:354-360.

[232]

Zhao Z, Yao J, Sun B, et al. First-principles identification of spinel CaCO2O4 as a promising cathode material for Ca-ion batteries. Solid State Ionics. 2018;326:145-149.

[233]

Tchitchekova DS, Ponrouch A, Verrelli R, et al. Electrochemical intercalation of calcium and magnesium in TiS2: fundamental studies related to multivalent battery applications. Chem Mater. 2018;30(3):847-856.

[234]

Houdeville RG, Missyul A, Fuentes V, et al. Method—setups and protocols for operando batteries experiments at variable temperatures applied to CaxTiS2 and Na3−xV2(PO4)3. J Electrochem Soc. 2024;171(2):020533.

[235]

Kozlova MN, Mironov YV, Grayfer ED, et al. Synthesis, crystal structure, and colloidal dispersions of vanadium tetrasulfide (VS4). Chem—Eur J. 2015;21(12):4639-4645.

[236]

Lian R, Feng J, Wang D, et al. Nucleation and conversion transformations of the transition metal polysulfide VS4 in lithium-ion batteries. ACS Appl Mater Interfaces. 2019;11(25):22307-22313.

[237]

Du C-Y, Zhang Z-H, Li X-L, et al. Enhancing structural and cycle stability of Prussian blue cathode materials for calcium-ion batteries by introducing divalent Fe. Chem Eng J. 2023;451:138650.

[238]

Qiao F, Wang J, Yu R, et al. Aromatic organic small-molecule material with (020) crystal plane activation for wide-temperature and 68000 cycle aqueous calcium-ion batteries. ACS Nano. 2023;17(22):23046-23056.

[239]

Vo TN, Kang JE, Lee H, et al. Ultra-stable calcium ion batteries with Prussian blue nanodisks. EcoMat. 2023;5(2):e12285.

[240]

Kuperman N, Padigi P, Goncher G, Evans D, Thiebes J, Solanki R. High performance Prussian Blue cathode for nonaqueous Ca-ion intercalation battery. J Power Sources. 2017;342:414-418.

[241]

Lipson AL, Han S-D, Kim S, et al. Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes. J Power Sources. 2016;325:646-652.

[242]

Lee C, Jeong S-K. Modulating the hydration number of calcium ions by varying the electrolyte concentration: electrochemical performance in a Prussian blue electrode/aqueous electrolyte system for calcium-ion batteries. Electrochim Acta. 2018;265:430-436.

[243]

Padigi P, Goncher G, Evans D, Solanki R. Potassium barium hexacyanoferrate – a potential cathode material for rechargeable calcium ion batteries. J Power Sources. 2015;273:460-464.

[244]

Adil M, Dutta PK, Mitra S. An aqueous Ca-ion full cell comprising BaHCF cathode and MCMB anode. ChemistrySelect. 2018;3(13):3687-3690.

[245]

Shiga T, Kondo H, Kato Y, Inoue M. Insertion of calcium ion into prussian blue analogue in nonaqueous solutions and its application to a rechargeable battery with dual carriers. J Phys Chem C. 2015;119(50):27946-27953.

[246]

Tojo T, Sugiura Y, Inada R, Sakurai Y. Reversible calcium ion batteries using a dehydrated prussian blue analogue cathode. Electrochim Acta. 2016;207:22-27.

[247]

Lee C, Jeong S-K. A novel strategy to improve the electrochemical performance of a prussian blue analogue electrode for calcium-ion batteries. Electrochemistry. 2018;86(3):134-137.

[248]

Kim DY, Lee H, Jeong SK. Electrochemical properties of ball-milled zinc hexacyanoferrate cathode material for calcium ion batteries. Mater Sci Forum. 2019;947:119-124.

[249]

Yang Y, Zhou J, Wang L, et al. Prussian blue and its analogues as cathode materials for Na-, K-, Mg-, Ca-, Zn-and Al-ion batteries. Nano Energy. 2022;99:107424.

[250]

Hosaka T, Kubota K, Hameed AS, Komaba S. Research development on K-ion batteries. Chem Rev. 2020;120(14):6358-6466.

[251]

Murata Y, Minami R, Takada S, et al. A fundamental study on carbon composites of FeF3·0.33H2O as open-framework cathode materials for calcium-ion batteries. AIP Conf Proc. 2017.

[252]

Kim J, Sari D, Chen Q, Rutt A, Ceder G, Persson KA. First-principles and experimental investigation of ABO4 zircons as calcium intercalation cathodes. Chem Mater. 2024;36(9):4444-4455.

[253]

Chen Q, Sari D, Rutt A, Kim J, Ceder G, Persson KA. Zircon structure as a prototype host for fast monovalent and divalent ionic conduction. Chem Mater. 2023;35(16):6313-6322.

[254]

Rutt A, Sari D, Chen Q, Kim J, Ceder G, Persson KA. Novel structural motif to promote Mg-ion mobility: investigating ABO4 zircons as magnesium intercalation cathodes. ACS Appl Mater Interfaces. 2023;15(29):34983-34991.

[255]

Panchal V, Errandonea D, Segura A, et al. The electronic structure of zircon-type orthovanadates: effects of high-pressure and cation substitution. J Appl Phys. 2011;110(4):043723.

[256]

Huang Z, Feng J, Pan W. Theoretical investigations of the physical properties of zircon-type YVO4. J Solid State Chem. 2012;185:42-48.

[257]

Errandonea D, Kumar R, Lopez-Solano J, et al. Experimental and theoretical study of structural properties and phase transitions in YAsO4 and YCrO4. Phys Rev B Condens Matter. 2011;83(13):134109.

[258]

Konno H, Aoki Y, Klencsár Z, et al. Structure of EuCrO4 and its electronic and magnetic properties. Bull Chem Soc Jpn. 2001;74(12):2335-2341.

[259]

Li L-P, Li G-S, Xue Y-F, Inomata H. Structure, luminescence, and transport properties of EuVO4. J Electrochem Soc. 2001;148(9): J45.

[260]

Esaka T, Kobayashi Y, Obata H, Iwahara H. Cation conduction in zircon-type solid solution based on YPO4. Solid State Ionics. 1989;34(4):287-291.

[261]

Finch RJ, Hanchar JM. Structure and chemistry of zircon and zircon-group minerals. Rev Mineral Geochem. 2003;53:1-25.

[262]

Sahama TG, Hytönen K. Kirschsteinite, a natural analogue to synthetic iron monticellite, from the Belgian Congo. Mineral Mag J Mineral Soc. 1957;31(239):698-699.

[263]

Tsusue A. Magnesian kutnahorite from Ryujima mine, Japan. Am Min J Earth Planet Mater. 1967;52:1751-1761.

[264]

Gustafson WI. The stability of andradite, hedenbergite, and related minerals in the system Ca–Fe–Si–O–H. J Petrol. 1974;15(3):455-496.

[265]

Ross NL, Reeder RJ. High-pressure structural study of dolomite and ankerite. Am Mineral. 1992;77:412-421.

[266]

Freed R, Peacor RD. Refinement of the crystal structure of johannsenite. Am Min J Earth Planet Mater. 1967;52:709-720.

[267]

Yamanaka T, Uchida A, Nakamoto Y. Structural transition of post-spinel phases CaMN2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPa. Am Mineral. 2008;93(11-12):1874-1881.

[268]

Adamo I, Gatta GD, Rotiroti N, Diella V, Pavese A. Green andradite stones: gemmological and mineralogical characterisation. Eur J Mineral. 2011;23(1):91-100.

[269]

Mills SJ, Kampf AR, Kolitsch U, Housley RM, Raudsepp M. The crystal chemistry and crystal structure of kuksite, Pb3ZN3Te6+P2O14, and a note on the crystal structure of yafsoanite, (Ca, Pb)3Zn(TeO6)2. Am Mineral. 2010;95(7):933-938.

[270]

Kim A, Zayakina N, Lavrent’yev YG. Yafsoanite, (ZN1.38Ca1.36Pb0.26)3 TeO6, a new tellurium mineral. Int Geol Rev. 1982;24(11):1295-1298.

[271]

Futrzyński J, Juroszek R, Skrzyńska K, Vapnik Y, Galuskin E. Uvarovite from reduced native Fe-bearing paralava, hatrurim complex, Israel. Lithosphere. 2023;2023(1). lithosphere_2023_214.

[272]

Moench RH, Meyrowitz R. Goldmanite, a vanadium garnet from Laguna, New Mexico. Am Min J Earth Planet Mater. 1964;49:644-655.

[273]

Leavens PB, Dunn PJ, Burt DM. Glaucochroite (olivine, CaMnSiO4) from Franklin, New Jersey;its composition, occurence, and formation. Am Mineral. 1987;72:423-428.

[274]

Hawthorne FC, Oberti R, Harlow GE, et al. Nomenclature of the amphibole supergroup. Am Mineral. 2012;97(11-12):2031-2048.

[275]

Leake BE. Nomenclature of amphiboles. Am Mineral. 1978;63:1023-1052.

[276]

Nyfeler D, Hoffmann C, Armbruster T, Kunz M, Libowitzky E. Orthorhombic Jahn-Teller distortion and Si-OH in mozartite, CaMN3+O[SiO3OH]; a single-crystal X-ray, FTIR, and structure modeling study. Am Mineral. 1997;82(9-10):841-848.

[277]

Dunn PJ, Peacor DR, Criddle AJ, Stanley CJ. Ingersonite; a new calcium-manganese antimonate related to pyrochlore from Langban, Sweden. Am Mineral. 1988;73:405-412.

[278]

De Villiers JP, Dobson SM, Buseck PR. Refinement of the crystal structure of neltnerite, a member of the bixbyite-braunite group of minerals. Eur J Mineral. 1991;3:567-573.

[279]

Mandarino J, Witt NV. Weddellite from Biggs, Oregon, USA. Can Mineral. 1983;21:503-508.

[280]

Garavelli CG, Vurro F, Fioravanti GC. Minrecordite, a new mineral from Tsumeb. Mineral Rec. 1982;13:131-136.

[281]

Levien L, Prewitt CT. High-pressure structural study of diopside. Am Mineral. 1981;66:315-323.

[282]

Pankova YA, Krivovichev SV, Pekov IV, Grew ES, Yapaskurt VO. Kurchatovite and clinokurchatovite, ideally CaMgB2O5: an example of modular polymorphism. Minerals. 2018;8:332.

[283]

Heuer M, Huber AL, Bromiley GD, Fehr KT, Bente K. Characterization of synthetic hedenbergite (CaFeSi2O6)-petedunnite (CaZnSi2O6) solid solution series by X-ray single crystal diffraction. Phys Chem Miner. 2005;32(8-9):552-563.

[284]

Grundler PV, Brugger J, Meisser N, et al. Xocolatlite, Ca2MN24+Te2O12.H2O, a new tellurate related to kuranakhite: description and measurement of Te oxidation state by XANES spectroscopy. Am Mineral. 2008;93(11-12):1911-1920.

[285]

Sharp Z, Hazen R, Finger L. High-pressure crystal chemistry of monticellite, CaMgSiO4. Am Mineral. 1987;72:748-755.

[286]

Yamanaka T, Mori H. The structure and polytypes of α-CaSiO3 (pseudowollastonite). Acta Crystallogr B Struct Crystallogr Cryst Chem. 1981;37(5):1010-1017.

[287]

Moore PB, Araki T. Atomic arrangement of merwinite, Ca3Mg[SiO4]2, an unusual dense-packed structure of geophysical interest. Am Min J Earth Planet Mater. 1972;57:1355-1374.

[288]

Passaglia E, Rinaldi R. Katoite, a new member of the Ca3Al2(SiO4)3-Ca3Al2(OH)12 series and a new nomenclature for the hydrogrossular group of minerals. Bull Mineral. 1984;107(5):605-618.

[289]

Mazurak Z, Czaja M. Optical properties of tsavorite Ca3Al2(SiO4)3:Cr3+, V3+ from Kenya. J Lumin. 1995;65(6):335-340.

[290]

Galuskina I, Galuskin E, Lazic B, et al. Eringaite, Ca3SC2(SiO4)3, a new mineral of the garnet group. Mineral Mag. 2010;74(2):365-373.

[291]

Armbruster T, Kohler T, Libowitzky E, et al. Structure, compressibility, hydrogen bonding, and dehydration of the tetragonal Mn3+hydrogarnet, henritermierite. Am Mineral. 2001;86(1-2):147-158.

[292]

Henmi C, Kusachi I, Henmi K. Morimotoite, Ca3TiFe2+Si3O12, a new titanian garnet from fuka, okayama prefecture, Japan. Mineral Mag. 1995;59(394):115-120.

[293]

Ma C, Yoshizaki T, Krot AN, et al. Discovery of rubinite, Ca3Ti3+2Si3O12, a new garnet mineral in refractory inclusions from carbonaceous chondrites. 80th Annu Meet Meteorit Soc. 2017:6023.

[294]

Essene E. The stability of bredigite and other Ca-Mg silicates. J Am Ceram Soc. 1980;63(7-8):464-466.

[295]

Moseley D, Glasser F. Properties and composition of bredigite-structured phases. J Mater Sci. 1982;17(9):2736-2740.

[296]

Frondel C, Ito J. Zincian aegirine-augite and jeffersonite from Franklin, New Jersey. Am Min J Earth Planet Mater. 1966;51:1406-1413.

[297]

Halenius U, Haussermann U, Harryson H. Holtstamite, Ca3(Al, MN3+)2(SiO4)3-x(H4O4)x, a new tetragonal hydrogarnet from Wessels Mine, South Africa. Eur J Mineral. 2005;17(2):375-382.

[298]

Kimura M, Mikouchi T, Suzuki A, Miyahara M, Ohtani E, Goresy AE. Kushiroite, CaAlAlSiO6: a new mineral of the pyroxene group from the ALH 85085 CH chondrite, and its genetic significance in refractory inclusions. Am Mineral. 2009;94(10):1479-1482.

[299]

Essene EJ, Peacor DR. Petedunnite (CaZnSi2O6), a new zinc clinopyroxene from Franklin, New Jersey, and phase equilibria for zincian pyroxenes. Am Mineral. 1987;72:157-166.

[300]

Bindi L, Czank M, Rothlisberger F, Bonazzi P. Hardystonite from Franklin Furnace: a natural modulated melilite. Am Mineral. 2001;86(5-6):747-751.

[301]

Simonov M, Egorov-Tismenko YK, Belov N. The crystal structures of clinohedrite Ca[ZnSiO4]H2O and herstmannite (Mn, Mg)Mg(OH)2[ZnSiO4]. Sov Phys Dokl. 1978:113.

[302]

Galuskina IO, Vapnik Y, Lazic B, Armbruster T, Murashko M, Galuskin EV. Harmunite CaFe2O4: a new mineral from the jabel harmun, west bank, Palestinian autonomy, Israel. Am Mineral. 2014;99(5-6):965-975.

[303]

Deans T, McConnell J, Pickup R. Isokite, CaMgPO4F, a new mineral from Northern Rhodesia. Mineral Mag J Mineral Soc. 1955;30(230):681-690.

[304]

Koshlyakova NN, Pekov IV, Vigasina MF, et al. Reznitskyite, CaMg(VO4)F, a new mineral from the Tolbachik volcano, Kamchatka, Russia and the first vanadate with a titanite-type structure. Mineral Mag. 2022;86(2):307-313.

[305]

Ivanyuk GY, Yakovenchuk VN, Pakhomovsky YA, et al. Goryainovite, Ca2PO4Cl, a new mineral from the Stora Sahavaara iron ore deposit (Norrbotten, Sweden). GFF. 2017;139(1):75-82.

[306]

Mackay A. The unit cell and space-group of chlor-spodiosite (Ca2PO4Cl). Mineral Mag J Mineral Soc. 1953;30:166-168.

[307]

Dompablo MEA-d, Krich C, Nava-Avendaño J, Biskup N, Palacin MR, Bardé F. A joint computational and experimental evaluation of CaMN2O4 polymorphs as cathode materials for Ca ion batteries. Chem Mater. 2016;28(19):6886-6893.

[308]

Arroyo-de Dompablo ME, Krich C, Nava-Avendaño J, Palacín MR, Bardé F. In quest of cathode materials for Ca ion batteries: the CaMO3 perovskites (M =Mo, Cr, Mn, Fe, Co, and Ni). Phys Chem Chem Phys. 2016;18(29):19966-19972.

[309]

Hassanpour A, Farhami N, Derakhshande M, Nezhad PDK, Ebadi A, Ebrahimiasl S. Magnesium and calcium ion batteries based on the hexa-peri-hexabenzocoronene nanographene anode materials. Inorg Chem Commun. 2021;129:108656.

[310]

Kadhim MM, Shadhar MH, Nathir I, et al. Exploring the application of AlN graphyne in calcium ion batteries. Int J Hydrogen Energy. 2022;47(74):31665-31672.

[311]

Lu Z, Ciucci F. Metal borohydrides as electrolytes for solid-state Li, Na, Mg, and Ca batteries: a first-principles study. Chem Mater. 2017;29(21):9308-9319.

[312]

Cao Y, Sharma K, Rajhi AA, et al. Boron-carbide nanosheets: promising anodes for Ca-ion batteries. J Electroanal Chem. 2022;910:115929.

[313]

Das T, Tosoni S, Pacchioni G. Layered oxides as cathode materials for beyond-Li batteries: a computational study of Ca and Al intercalation in bulk V2O5 and MoO3. Comput Mater Sci. 2021;191:110324.

[314]

Hadi MA, Kadhim MM, Al-Azawi IIK, et al. Evaluation of the role perfect and defect boron nitride monolayer in calcium ion batteries as a anode. Comput Theor Chem. 2023;1219:113940.

[315]

Kuganathan N, Chroneos A. Defects and dopants in CaFeSi2O6: classical and DFT simulations. Energies. 2020;13(5):1285.

[316]

Maltsev AP, Chepkasov IV, Oganov AR. New promising class of anode materials for Ca-ion battery: polyaromatic hydrocarbons. Mater Today Energy. 2024;39:101467.

[317]

Putungan D, Llemit CL, Santos-Putungan A, Sarmago RV, Gebauer R. Biaxial compressive strain enhances calcium binding and mobility on two-dimensional SC2C: a density functional theory investigation. Phys Chem Chem Phys. 2024;26(5):4298-4305.

[318]

Kuganathan N, Ganeshalingam S, Chroneos A. Defect, transport, and dopant properties of andradite garnet Ca3Fe2Si3O12. AIP Adv. 2020;10(7):1-8.

[319]

Ouserigha CE, Benjamin AK. Doping FePSe3 with Mg and Ca ions: a density functional theory study. IOP Conf Ser Earth Environ Sci. 2023;1178(1):012016.

[320]

Park H, Zapol P. Thermodynamic and kinetic properties of layered-CaCO2O4 for the Ca-ion batteries: a systematic first-principles study. J Mater Chem A. 2020;8(41):21700-21710.

[321]

Lee S, Ko M, Jung SC, Han Y-K. Silicon as the anode material for multivalent-ion batteries: a first-principles dynamics study. ACS Appl Mater Interfaces. 2020;12(50):55746-55755.

[322]

Woodcox M, Smeu M. Ab initio investigation of the elastic properties of CaxSN1−x alloys for use as battery anodes. J Electrochem Energy Convers Storage. 2021;18(4):040903.

[323]

Das P, Ball B, Sarkar P. Theoretical investigation of a tetrazine based covalent organic framework as a promising anode material for sodium/calcium ion batteries. Phys Chem Chem Phys. 2022;24(36):21729-21739.

[324]

Yamijala SS, Kwon H, Guo J, Wong BM. Stability of calcium ion battery electrolytes: predictions from AB initio molecular dynamics simulations. ACS Appl Mater Interfaces. 2021;13(11):13114-13122.

[325]

Sharma A, Thomas A, Gupta P. Two layers of computational screening on silaborane-based clusters filter Ca(SiB11H11CH3)2 as the promising electrolyte for calcium-ion batteries. Batt Supercaps. 2023;6(8):e202300073.

[326]

Suthaharan S, Iyngaran P, Kuganathan N, Chroneos A. Defects, diffusion and dopants in the ceramic mineral “Lime-Feldspar”. J Asian Ceram Soc. 2021;9(2):570-577.

[327]

Niaei AHF, Hussain T, Hankel M, Searles DJ. Hydrogenated defective graphene as an anode material for sodium and calcium ion batteries: a density functional theory study. Carbon. 2018;136:73-84.

[328]

Chowdhury C, Gain P, Datta A. Evolutionary structure prediction-assisted design of anode materials for Ca-ion battery based on phosphorene. Phys Chem Chem Phys. 2021;23(15):9466-9475.

[329]

Gao Y, Li Z, Wang P, et al. Highly pseudocapacitive storage design principles of heteroatom-doped graphene anode in calcium-ion batteries. Adv Funct Mater. 2023;33(50):2305610.

[330]

Farokh Niaei AH, Roman T, Hussain T, Searles DJ. Computational study on the adsorption of sodium and calcium on edge-functionalized graphene nanoribbons. J Phys Chem C. 2019;123(24):14895-14908.

[331]

Wang D, Liu H, Elliott JD, Liu L-M, Lau W-M. Robust vanadium pentoxide electrodes for sodium and calcium ion batteries: thermodynamic and diffusion mechanical insights. J Mater Chem A. 2016;4(32):12516-12525.

[332]

Wu L, Zhang H, Zhou J. A simulation on the graphyne and its inorganic BN-like nanosheets as anode materials for Ca-ion batteries. Mol Simulat. 2021;47(4):326-333.

[333]

Jaber NA, Abed ZT, Kadhim MM, et al. BC2N nanotube as a promising anode for rechargeable calcium ion batteries. Mater Chem Phys. 2023;294:126926.

[334]

Kanyolo GM, Masese T, Matsubara N, et al. Honeycomb layered oxides: structure, energy storage, transport, topology and relevant insights. Chem Soc Rev. 2021;50(6):3990-4030.

[335]

Masese T, Kanyolo GM, Miyazaki Y, et al. Exploring Mg2+ and Ca2+ Conductors Via Solid-State Metathesis Reactions. 2024.

[336]

Parkin I. Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: ionic or elemental pathways. Chem Soc Rev. 1996;25(3):199-207.

[337]

Mandal TK, Gopalakrishnan J. From rocksalt to perovskite: a metathesis route for the synthesis of perovskite oxides of current interest. J Mater Chem. 2004;14(8):1273-1280.

[338]

Haraguchi Y, Michioka C, Matsuo A, Kindo K, Ueda H, Yoshimura K. Magnetic ordering with an XY-like anisotropy in the honeycomb lattice iridates ZnIrO3 and MgIrO3 synthesized via a metathesis reaction. Phys Rev Mater. 2018;2(5):054411.

[339]

Haraguchi Y, Nawa K, Michioka C, et al. Frustrated magnetism in the J1–J2 honeycomb lattice compounds MgMnO3 and ZnMnO3 synthesized via a metathesis reaction. Phys Rev Mater. 2019;3(12):124406.

[340]

Miura A, Ito H, Bartel CJ, et al. Selective metathesis synthesis of MgCr2S4 by control of thermodynamic driving forces. Mater Horiz. 2020;7(5):1310-1316.

[341]

Treece RE, Conklin JA, Kaner RB. Metathetical synthesis of binary and ternary antiferromagnetic gadolinium pnictides (P, as, and Sb). Inorg Chem. 1994;33(25):5701-5707.

[342]

Nartowski AM, Parkin IP, Craven AJ, MacKenzie M. Rapid, solid-state metathesis routes to metal carbides. Adv Mater. 1998;10:805-808.

[343]

Ugemuge N, Tajne D, Dhopte S, Muthal P, Moharil S. Preparation of CaF2 based phosphors by solid state metathesis. Phys B Condens Matter. 2011;406(1):45-47.

[344]

Gillan EG, Kaner RB. Rapid solid-state synthesis of refractory nitrides. Inorg Chem. 1994;33(25):5693-5700.

[345]

Jarvis RF, Jacubinas RM, Kaner RB. Self-propagating metathesis routes to metastable group 4 phosphides. Inorg Chem. 2000;39(15):3243-3246.

[346]

Bonneau PR, Jarvis RF, Jr, Kaner RB. Solid-state metathesis as a quick route to transition-metal mixed dichalcogenides. Inorg Chem. 1992;31(11):2127-2132.

[347]

Martinolich AJ, Kurzman JA, Neilson JR. Circumventing diffusion in kinetically controlled solid-state metathesis reactions. J Am Chem Soc. 2016;138(34):11031-11037.

[348]

Mandal TK, Gopalakrishnan J. New route to ordered double Perovskites: synthesis of rock salt oxides, Li4MWO6, and their transformation to Sr2MWO6 (M =Mg, Mn, Fe, Ni) via metathesis. Chem Mater. 2005;17(9):2310-2316.

[349]

Gopalakrishnan J, Sivakumar T, Ramesha K, Thangadurai V, Subbanna G. Transformations of Ruddlesden–Popper oxides to new layered perovskite oxides by metathesis reactions. J Am Chem Soc. 2000;122(26):6237-6241.

[350]

Sivakumar T, Ramesha K, Lofland S, Ramanujachary K, Subbanna G, Gopalakrishnan J. 2D–3D transformation of layered perovskites through Metathesis: synthesis of new quadruple perovskites A2La2CuTi3O12 (A =Sr, Ca). Inorg Chem. 2004;43(6):1857-1864.

[351]

Parhi P, Karthik T, Manivannan V. Synthesis and characterization of metal tungstates by novel solid-state metathetic approach. J Alloys Compd. 2008;465(1-2):380-386.

[352]

Parhi P, Manivannan V. Novel microwave initiated synthesis of ZN2SiO4 and MCrO4 (M=Ca, Sr, Ba, Pb). J Alloys Compd. 2009;469(1-2):558-564.

[353]

Xiong X, Ma B, Zhao D, et al. Investigation of the thermal behavior of Ca(NO3)2·4H2O and its application for the regeneration of HNO3 and CaO. J Anal Appl Pyrol. 2023;173:106101.

[354]

Dugas R, Forero-Saboya JD, Ponrouch A. Methods and protocols for reliable electrochemical testing in post-Li batteries (Na, K, Mg, and Ca). Chem Mater. 2019;31(21):8613-8628.

[355]

Iyo A, Fujihisa H, Gotoh Y, et al. Na-catalyzed rapid synthesis and characterization of intercalated graphite CaC6. Carbon. 2023;215:118381.

[356]

Iyo A, Ogino H, Ishida S, Eisaki H. Dramatically accelerated formation of graphite intercalation compounds catalyzed by sodium. Adv Mater. 2023;35:2209964.

[357]

Datta D, Li J, Shenoy VB. Defective graphene as a high-capacity anode material for Na-and Ca-ion batteries. ACS Appl Mater Interfaces. 2014;6(3):1788-1795.

[358]

Yang T, Ma T-C, Ye X-J, et al. Two-dimensional graphene+as an anode material for calcium-ion batteries with ultra-high capacity: a first-principles study. Phys Chem Chem Phys. 2024;26(5):4589-4596.

[359]

Palenzona A, Manfrinetti P, Fornasini M. Phase diagram of the Ca-Sn system. J Alloys Compd. 2000;312(1-2):165-171.

[360]

Okamoto H. Ca-Zn (Calcium-Zinc). J Phase Equilibria Diffus. 2013;34(2):171.

[361]

Franke P, Neuschütz D. Bin Syst Part 5: Bin Syst Suppl: Phase Diagrams, Phase Transit Data, Integr Part Quantities Alloys. 2007:1-3. http://www.sgte.org

[362]

Gheytani S, Liang Y, Wu F, et al. An aqueous Ca-ion battery. Adv Sci. 2017;4(12):1700465.

[363]

Han C, Li H, Li Y, Zhu J, Zhi C. Proton-assisted calcium-ion storage in aromatic organic molecular crystal with coplanar stacked structure. Nat Commun. 2021;12(1):2400.

[364]

Li R, Yu J, Chen F, Su Y, Chan KC, Xu Z-L. High-Power and ultrastable aqueous calcium-ion batteries enabled by small organic molecular crystal anodes. Adv Funct Mater. 2023;33(30):2214304.

[365]

Wang C, Li R, Zhu Y, et al. A pyrazine-pyridinamine covalent organic framework as a low potential anode for highly durable aqueous calcium-ion batteries. Adv Energy Mater. 2024;14(1):2302495.

[366]

Li L, Zhang G, Deng X, et al. A covalent organic framework for high-rate aqueous calcium-ion batteries. J Mater Chem A. 2022;10(39):20827-20836.

[367]

Xiong Y, Ma N, Wang Y, Wang T, Luo S, Fan J. B5N3as a potential high-capacity electrode material for calcium ion batteries. Phys Chem Chem Phys. 2023;25(18):12854-12862.

[368]

Shakerzadeh E, Azizinia L. Can C24N24 cavernous nitride fullerene be a potential anode material for Li-, Na-, K-, Mg-, Ca-ion batteries? Chem Phys Lett. 2021;764:138241.

[369]

Er D, Li J, Naguib M, Gogotsi Y, Shenoy VB. Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl Mater Interfaces. 2014;6(14):11173-11179.

[370]

Fu T, Feng Y, Gao W, Li X. First-principles calculations of bulk XTe2 (X=Mo, W) as anode materials for Ca ion battery J Mol Model. 2024;30:1-7.

[371]

Hosein ID. The promise of calcium batteries: open perspectives and fair comparisons. ACS Energy Lett. 2021;6(4):1560-1565.

[372]

Adil M, Sarkar A, Roy A, Panda MR, Nagendra A, Mitra S. Practical aqueous calcium-ion battery full-cells for future stationary storage. ACS Appl Mater Interfaces. 2020;12(10):11489-11503.

[373]

Wang P, Wang H, Chen Z, Wu J, Luo J, Huang Y. Flexible aqueous Ca-ion full battery with super-flat discharge voltage plateau. Nano Res. 2022;15(1):701-708.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF (9039KB)

776

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/