Boosting I-/I3- liquid state thermocells through solubilitydriven biphasic system optimization

Xiangyu Liu , Taiyu Wang , Haobin Ye , Wenjing Nan , Mingyu Chen , Jiale Fang , Feng Ru Fan

EcoEnergy ›› 2024, Vol. 2 ›› Issue (3) : 478 -488.

PDF (2607KB)
EcoEnergy ›› 2024, Vol. 2 ›› Issue (3) : 478 -488. DOI: 10.1002/ece2.52
RESEARCH ARTICLE

Boosting I-/I3- liquid state thermocells through solubilitydriven biphasic system optimization

Author information +
History +
PDF (2607KB)

Abstract

Liquid state thermocells (LTCs) offer a promising approach for harvesting lowgrade heat. In exploring the impact of concentration difference (ΔCr) on the Seebeck coefficient (Se) in LTCs, previous studies mainly focused on two strategies: host–guest complexation and thermosensitive crystallization, which involved adding polymers or cation additives for targeted interaction with the redox couple. However, these methods face challenges in scalability and longterm application due to the selection and costs of additives, along with the stability of recognition. This study pioneers a unique strategy that utilizes solubility differences in an organic-aqueous biphasic system. We investigated an electrolyte consisting of an I-/I3- redox couple, an organic-aqueous solvent, and ammonium sulfate. This biphasic system enables an enriched concentration of I3- in the upper phase, thereby enhancing the reduction reaction on the hot side. Our approach achieves a Se of 1.8 mV K-1 and a maximum output of 120 µW m-2 K-2, representing a substantial improvement, over threefold compared to traditional single-phase systems. Therefore, this costeffective strategy using a biphasic system establishes a novel pathway for advancing performance of LTCs and presents a promising approach toward achieving carbon neutrality.

Keywords

biphasic system / liquid state thermocells / low-grade heat harvesting / solubility-driven

Cite this article

Download citation ▾
Xiangyu Liu, Taiyu Wang, Haobin Ye, Wenjing Nan, Mingyu Chen, Jiale Fang, Feng Ru Fan. Boosting I-/I3- liquid state thermocells through solubilitydriven biphasic system optimization. EcoEnergy, 2024, 2(3): 478-488 DOI:10.1002/ece2.52

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Park YW, Heeger AJ, Druy MA, Macdiarmid AG. Electrical transport in doped polyacetylene. J Chem Phys. 1980;73(2):946-957.

[2]

Su WP, Schrieffer JR, Heeger AJ. Soliton excitations in polyacetylene. Phys Rev B. 1980;22(4):2099-2111.

[3]

Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR. Poly(3, 4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater. 2000;12(7):481-494.

[4]

Günes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev. 2007;107(4):1324-1338.

[5]

Hiroshige Y, Ookawa M, Toshima N. Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene. Synth Met. 2007;157(10-12):467-474.

[6]

Sekitani T, Nakajima H, Maeda H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater. 2009;8(6):494-499.

[7]

Zhu C, Wu M, Liu C, et al. Highly integrated triboelectric-electromagnetic wave energy harvester toward self-powered marine Buoy. Adv Energy Mater. 2023;13(37):2301665.

[8]

Abraham TJ, MacFarlane DR, Pringle JM. Seebeck coefficients in ionic liquids –prospects for thermo-electrochemical cells. Chem Commun. 2011;47(22):6260.

[9]

Das S, Sudhagar P, Verma V, et al. Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells. Adv Funct Mater. 2011;21(19):3729-3736.

[10]

Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294-303.

[11]

Zhao H, Xu M, Shu M, et al. Underwater wireless communication via TENG-generated Maxwell’s displacement current. Nat Commun. 2022;13(1):3325.

[12]

Yu H, Xi Z, Du H, et al. High performance and stackable trampoline like-triboelectric vibration energy harvester for in-situ powering sensor node with data wirelessly transmitted over 1000-m. Adv Energy Mater. 2024;14(24):2400585.

[13]

Abraham TJ, MacFarlane DR, Baughman RH, Jin LY, Li N, Pringle JM. Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy. Electrochim Acta. 2013;113:87-93.

[14]

Xu P, Liu J, Liu X, et al. A bio-inspired and self-powered triboelectric tactile sensor for underwater vehicle perception. npj Flex Electron. 2022;6(1):25.

[15]

Song X, Zhang X-G, Deng Y-L, et al. Improving the hydrogen oxidation reaction rate of Ru by active hydrogen in the ultrathin Pd interlayer. J Am Chem Soc. 2023;145(23):12717-12725.

[16]

Zhao H, Shu M, Ai Z, et al. A highly sensitive triboelectric vibration sensor for machinery condition monitoring. Adv Energy Mater. 2022;12(37):2201132.

[17]

Xu P, Zheng J, Liu J, et al. Deep-learning-assisted underwater 3D tactile tensegrity. Research. 2023;6:0062.

[18]

Han CG, Qian X, Li Q, et al. Giant thermopower of ionic gelatin near room temperature. Science. 2020;368(6495):1091-1098.

[19]

He X, Sun H, Li Z, et al. Redox-induced thermocells for low-grade heat harvesting: mechanism, progress, and their applications. J Mater Chem A. 2022;10(39):20730-20755.

[20]

Li M, Hong M, Dargusch M, Zou J, Chen Z-G. High-efficiency thermocells driven by thermo-electrochemical processes. Trends Chem. 2021;3(7):561-574.

[21]

Liu R, Wang ZL, Fukuda K, Someya T. Flexible self-charging power sources. Nat Rev Mater. 2022;7(11):870-886.

[22]

Wang Y, Zhang Y, Xin X, et al. In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Science. 2023;381(6655):291-296.

[23]

Park T, Park C, Kim B, Shin H, Kim E. Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips. Energy Environ Sci. 2013;6(3):788.

[24]

Anari EHB, Romano M, Teh WX, et al. Substituted ferrocenes and iodine as synergistic thermoelectrochemical heat harvesting redox couples in ionic liquids. Chem Commun. 2016;52(4):745-748.

[25]

Laux E, Uhl S, Journot T, Brossard J, Jeandupeux L, Keppner H. Aspects of protonic ionic liquid as electrolyte in thermoelectric generators. J Electron Mater. 2016;45(7):3383-3389.

[26]

Peng X, Liu HL, Yin Q, et al. A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat Commun. 2016;7(1):11782.

[27]

Sun YH, Qiu L, Tang LP, et al. Flexible n-type high-performance thermoelectric thin films of poly(nickel-ethylenetetrathiolate) prepared by an electrochemical method. Adv Mater. 2016;28(17):3351-3358.

[28]

Chen YN, He MH, Liu B, Bazan GC, Zhou J, Liang ZQ. Bendable n-type metallic nanocomposites with large thermoelectric power factor. Adv Mater. 2017;29(4):1604752.

[29]

Yu B, Duan J, Cong H, et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science. 2020;370(6514):342-346.

[30]

Li W, Ma J, Qiu JJ, Wang SR. Thermocells-enabled low-grade heat harvesting: challenge, progress, and prospects. Mater Today Energy. 2022;27:101032.

[31]

Murmu PP, Chong SV, Storey J, Rubanov S, Kennedy J. Secondary phase induced electrical conductivity and improvement in thermoelectric power factor of zinc antimonide films. Mater Today Energy. 2019;13:249-255.

[32]

Zhou H, Yamada T, Kimizuka N. Supramolecular thermo-electrochemical cells: enhanced thermoelectric performance by host-guest complexation and salt-induced crystallization. J Am Chem Soc. 2016;138(33):10502-10507.

[33]

Han Y, Zhang J, Hu R, Xu D. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Sci Adv. 2022;8(7):eabl5318.

[34]

Wang H, Zhuang XY, Xie WK, et al. Thermosensitive-Csi3-crystal-driven high-power I/i3 thermocells. Cell Rep Phys Sci. 2022;3(3):100737.

[35]

Yang CY, Ding YF, Huang DZ, et al. A thermally activated and highly miscible dopant for n-type organic thermoelectrics. Nat Commun. 2020;11(1):3292.

[36]

An J, Trujillo-Rodriguez MJ, Pino V, Anderson JL. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems. J Chromatogr A. 2017;1500:1-23.

[37]

Li R, Zheng Y, Zhao X, et al. Recent advances in biomass pretreatment using biphasic solvent systems. Green Chem. 2023;25(7):2505-2523.

[38]

Romo JE, Bollar NV, Zimmermann CJ, Wettstein SG. Conversion of sugars and biomass to furans using heterogeneous catalysts in biphasic solvent systems. ChemCatChem. 2018;10(21):4805-4816.

[39]

Li W, Sun J, Wang M, et al. Contact-electro-catalysis for direct oxidation of methane under ambient conditions. Angew Chem Int Ed. 2024;63(20):e202403114.

[40]

Xiang Y, Guo X, Zhu H, Zhang Q, Zhu S. Aqueous biphase-boosted liquid-state thermocell for continuous low-grade heat harvesting. Chem Eng J. 2023;461:142018.

[41]

Liu X, Wang T, Fang J, Fan FR. Self-reaction effect-boosted liquid thermocell based on ethanol-aqueous biphasic system. Adv Mater Technol. 2023;8(22):2300988.

[42]

Huskinson B, Marshak MP, Suh C, et al. A metal-free organic-inorganic aqueous flow battery. Nature. 2014;505(7482):195-198.

[43]

Zhang L, Feng R, Wang W, Yip G. Emerging chemistries and molecular designs for flow batteries. Nat Rev Chem. 2022;6(8):524-543.

[44]

Park H, Kwon G, Lee H, et al. In operando visualization of redox flow battery in membrane-free microfluidic platform. Proc Natl Acad Sci USA. 2022;119(9):e2114947119.

[45]

Yan Y, Robinson SG, Sigman MS, Sanford MS. Mechanism-based design of a high-potential catholyte enables a 3.2 V all-organic nonaqueous redox flow battery. J Am Chem Soc. 2019;141(38):15301-15306.

[46]

Navalpotro P, Palma J, Anderson M, Marcilla R. Corrigendum: a membrane-free redox flow battery with two immiscible redox electrolytes. Angew Chem Int Ed. 2018;57(15):3853.

[47]

Xu P, Xie C, Wang C, et al. A membrane-free interfacial battery with high energy density. Chem Commun. 2018;54(82):11626-11629.

[48]

Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004;104(10):4303-4418.

[49]

Zhou H, Yamada T, Kimizuka N. Thermo-electrochemical cells empowered by selective inclusion of redox-active ions by polysaccharides. Sustain Energy Fuels. 2018;2(2):472-478.

[50]

Liang Y, Hui JK-H, Morikawa M-A, Inoue H, Yamada T, Kimizuka N. High positive Seebeck coefficient of aqueous I-/i3-thermocells based on host-guest interactions and LCST behavior of PEGylated α-cyclodextrin. ACS Appl Energy Mater. 2021;4(5):5326-5331.

[51]

Bengtsson LA, Stegemann H, Holmberg B, Füllbier H. The structure of room temperature molten polyiodides. Mol Phys. 1991;73(2):283-296.

[52]

Liang YM, Yamada T, Zhou HY, Kimizuka N. Hexakis(2, 3, 6-tri-O-methyl)-α-cyclodextrin-i5 complex in aqueous I/i3 thermocells and enhancement in the Seebeck coefficient. Chem Sci. 2019;10(3):773-780.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF (2607KB)

233

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/