Aluminum vacancy-rich MOF-derived carbon nanosheets for high-capacity and long-life aqueous aluminum-ion battery

Jiuzeng Jin , Ruiying Zhang , Xiaodong Zhi , Dongxin Liu , Yun Wang , Zhongmin Feng , Ting Sun

EcoEnergy ›› 2024, Vol. 2 ›› Issue (3) : 466 -477.

PDF (4516KB)
EcoEnergy ›› 2024, Vol. 2 ›› Issue (3) : 466 -477. DOI: 10.1002/ece2.49
RESEARCH ARTICLE

Aluminum vacancy-rich MOF-derived carbon nanosheets for high-capacity and long-life aqueous aluminum-ion battery

Author information +
History +
PDF (4516KB)

Abstract

Eco-friendly and safe aqueous aluminum-ion batteries as energy storage devices with low economic burden, high stability and fast ion transport have been lucubrated deeply in response to the call for sustainable development. However, the poor cycle performance caused by difficult (de-)intercalation hinders the development prospect. In this work, the aluminum vacancy-rich MOF-derived carbon is constructed to achieve reversible aluminum storage during the charge-discharge cycles. The MOF-derived carbon with antistacking waxberry-like structure exhibits high capacity (282.1 mAh g−1 at 50 mA g−1) and long cycle performance (84.4% capacity retention rate at 1 A g−1 after 5000 cycles). Further investigations demonstrate that (de-) intercalation occurs among the vacancies of carbon nanosheets in the form of hydrated aluminum ions. Meanwhile, the introduced nitrogen as energy storage sites contributes part of the capacity. The proposed aluminum vacancy engineering improves the current situation of the capacitive energy storage mode for 2D carbon materials, which may exploit an advanced theoretical model for the design of aqueous batteries.

Keywords

aluminum vacancies / aqueous aluminum-ion battery / long-cycle life / MOF-derived carbon / vacancy engineering

Cite this article

Download citation ▾
Jiuzeng Jin, Ruiying Zhang, Xiaodong Zhi, Dongxin Liu, Yun Wang, Zhongmin Feng, Ting Sun. Aluminum vacancy-rich MOF-derived carbon nanosheets for high-capacity and long-life aqueous aluminum-ion battery. EcoEnergy, 2024, 2(3): 466-477 DOI:10.1002/ece2.49

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Z, Song Y, Wang J, et al. Vanadium oxides with amorphous-crystalline heterointerface network for aqueous zinc-ion batteries. Angew Chem Int Ed. 2023;62(12):e202216290.

[2]

Zhang Y, Liu J, Li SL, Su ZM, Lan YQ. Polyoxometalate-based materials for sustainable and clean energy conversion and storage. EnergyChem. 2019;1(3):100021.

[3]

Jia B.-E, Thang A.-Q, Yan C, et al. Rechargeable aqueous aluminum-ion battery: progress and outlook. Small. 2022;18(43):e2107773.

[4]

Studer G, Schmidt A, Büttner J, et al. On a high-capacity aluminium battery with a two-electron phenothiazine redox polymer as a positive electrode. Energy Environ Sci. 2023;16(9):3760-3769.

[5]

Shi H.-Y, Ye Y.-J, Liu K, Song Y, Sun X. A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew Chem Int Ed. 2018;57(50):16359-16363.

[6]

Wang F, Fan X, Gao T, et al. High-voltage aqueous magnesium ion batteries. ACS Cent Sci. 2017;3(10):1121-1128.

[7]

Zhang R, Wang S, Chou S, Jin H. Research development on aqueous ammonium-ion batteries. Adv Funct Mater. 2022;32(25):2112179.

[8]

Han X, Bai Y, Zhao R, Li Y, Wu F, Wu C. Electrolytes for rechargeable aluminum batteries. Prog Mater Sci. 2022;128:100960.

[9]

Wu F, Yang H, Bai Y, Wu C. Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv Mater. 2019;31(16):e1806510.

[10]

Bautista Quisbert E, Fauth F, Abakumov AM, Blangero M, Guignard M, Delmas C. Understanding the high voltage behavior of LiNiO2 through the electrochemical properties of the surface layer. Small. 2023;19(30):e2300616.

[11]

Wu C, Gu S, Zhang Q, et al. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat Commun. 2019;10(1):73.

[12]

Lahan H, Das SK. Al3+ion intercalation in MoO3 for aqueous aluminum-ion battery. J Power Sources. 2019;413:134-138.

[13]

Liu S, Pan GL, Li GR, Gao XP. Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. J Mater Chem A. 2015;3(3):959-962.

[14]

Yan L, Zeng X, Zhao S, et al. 9, 10-Anthraquinone/K2CuFe(CN)6: a highly compatible aqueous aluminum-ion full-battery configuration. ACS Appl Mater Interfaces. 2021;13(7):8353-8360.

[15]

Smajic J, Hasanov BE, Alazmi A, et al. Aqueous aluminum-carbon rechargeable batteries. Adv Mater Interfaces. 2021;9(4):1733.

[16]

Zhou Z, Li N, Wang P, et al. All-carbon positive electrodes for stable aluminium batteries. J Energy Chem. 2020;42:17-26.

[17]

Pan W, Mao J, Wang Y, et al. High-performance MnO2/Al battery with in situ electrochemically reformed AlxMnO2 nanosphere cathode. Small Methods. 2021;5(9):e2100491.

[18]

Zheng J, Li D, Feng Z, Wang Y, Sun T. Preintercalated copper hexacyanoferrate as a long-time cycle cathode material for aqueous aluminum-ion batteries. ACS Sustainable Chem Eng. 2023;11(16):6280-6291.

[19]

You Y, Wu XL, Yin YX, Guo YG. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ Sci. 2014;7(5):1643-1647.

[20]

Chen J, Zhu Q, Jiang L, et al. Rechargeable aqueous aluminum organic batteries. Angew Chem Int Ed. 2021;60(11):5794-5799.

[21]

Wu L, Dong Y. Recent progress of carbon nanomaterials for high-performance cathodes and anodes in aqueous zinc ion batteries. Energy Storage Mater. 2021;41:715-737.

[22]

Yan L, Liu T, Zeng X, et al. Multifunctional porous carbon strategy assisting high-performance aqueous zinc-iodine battery. Carbon. 2022;187:145-152.

[23]

Wang Y, Bin D, Wang C, Cao Y, Xia Y. Carbon-coated NaVPO4F as a high-capacity cathode for aqueous sodium-ion battery. Batteries Supercaps. 2023;6(10):e202300275.

[24]

Abraham J, Vasu KS, Williams CD, et al. Tunable sieving of ions using graphene oxide membranes. Nat Nanotechnol. 2017;12(6):546-550.

[25]

Chao D, Zhou W, Xie F, et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci Adv. 2020;6(21):eaba4098.

[26]

Elia GA, Hasa I, Greco G, et al. Insights into the reversibility of aluminum graphite batteries. J Mater Chem A. 2017;5(20):9682-9690.

[27]

Li Z, Gadipelli S, Li H, et al. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat Energy. 2020;5(2):160-168.

[28]

Ma W, Li W, Li M, et al. Unzipped carbon nanotube/graphene hybrid fiber with less “dead volume”for ultrahigh volumetric energy density supercapacitors. Adv Funct Mater. 2021;31(19):2100195.

[29]

Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev. 2016;45(21):5925-5950.

[30]

Zhang YM, Zhang JH, Ding ZH, et al. Cationic defect-modulated Li-ion migration in high-voltage Li-metal batteries. ACS Nano. 2023;17(24):25519-25531.

[31]

Zong Y, Chen HC, Wang JS, et al. Cation defect-engineered boost fast kinetics of two-dimensional topological Bi2Se3 cathode for high-performance aqueous Zn-ion batteries. Adv Mater. 2023;35(51):2306269.

[32]

Xu S, Dong A, Hu Y, Yang Z, Huang S, Qian J. Multidimensional MOF-derived carbon nanomaterials for multifunctional applications. J Mater Chem A. 2023;11(18):9721-9747.

[33]

Yang J, Ju Z, Jiang Y, et al. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater. 2018;30(4):1700104.

[34]

Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science. 2005;309(5743):2040-2042.

[35]

Alvin S, Yoon D, Chandra C, et al. Revealing sodium ion storage mechanism in hard carbon. Carbon. 2019;145:67-81.

[36]

Liu S, Zhou J, Cai Z, et al. Nb2O5 quantum dots embedded in MOF derived nitrogen-doped porous carbon for advanced hybrid supercapacitor applications. J Mater Chem A. 2016;4(45):17838-17847.

[37]

Tan H, Liu J, Huang G, Qian Y, Deng Y, Chen G. Understanding the roles of sulfur doping for enhancing of hydrophilicity and electrochemical performance of N, S-codoped hierarchically porous carbon. ACS Appl Energy Mater. 2018;1(10):5599-5608.

[38]

Qiu C, Jiang L, Gao Y, Sheng L. Effects of oxygen-containing functional groups on carbon materials in supercapacitors: a review. Mater Des. 2023;230:111952.

[39]

Jeong JH, Lee GW, Kim YH, Choi YJ, Roh KC, Kim KB. A holey graphene-based hybrid supercapacitor. Chem Eng J. 2019;378:122126.

[40]

Wang F, Yu F, Wang X, et al. Aqueous rechargeable zinc/aluminum ion battery with good cycling performance. ACS Appl Mater Interfaces. 2016;8(14):9022-9029.

[41]

Krishnamoorthy M, Jha N. Oxygen-rich hierarchical porous graphene as an excellent electrode for supercapacitors, aqueous Al-ion battery, and capacitive deionization. ACS Sustainable Chem Eng. 2019;7(9):8475-8489.

[42]

Wang Y, Pan W, Leong KW, et al. Paper-based aqueous Al ion battery with water-in-salt electrolyte. Green Energy Environ. 2023;8(5):1380-1388.

[43]

Pan W, Wang Y, Zhang Y, et al. A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. J Mater Chem A. 2019;7(29):17420-17425.

[44]

Zhao J J, Zhao C, Zou C, et al. Reversible insertion of [AlCl4]-superhalides in graphite. ChemSusChem. 2023;17(5):e202301109.

[45]

Brezesinski T, Wang J, Polleux J, Dunn B, Tolbert SH. Emplated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J Am Chem Soc. 2009;131(5):1802-1809.

[46]

Zhang J, Ai Y, Wu J, et al. Nickel-catalyzed synthesis of 3D edge-curled graphene for high-performance lithium-ion batteries. Adv Funct Mater. 2019;30(9):1904645.

[47]

Zhang W, Zhang P, Li F, et al. From MOF to Al/N-doped porous carbon: creating multiple capture sites for efficient capacitive deionization defluorination. Desalination. 2022;543:116090.

[48]

Zheng F, Yang Y, Chen Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun. 2014;5(1):5261.

[49]

Lindström H, Södergren S, Solbrand A, et al. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J Phys Chem. 1997;101(39):7717-7722.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF (4516KB)

379

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/