Utilization of sulfonated cellulose membrane for Zn ion hybrid capacitors

Ziyauddin Khan , Divyaratan Kumar , Sanna Lander , Jaywant Phopase , Reverant Crispin

EcoEnergy ›› 2024, Vol. 2 ›› Issue (3) : 456 -465.

PDF (2495KB)
EcoEnergy ›› 2024, Vol. 2 ›› Issue (3) : 456 -465. DOI: 10.1002/ece2.48
RESEARCH ARTICLE

Utilization of sulfonated cellulose membrane for Zn ion hybrid capacitors

Author information +
History +
PDF (2495KB)

Abstract

Zinc ion hybrid capacitors (ZHCs) are regarded as sustainable energy storage devices, largely due to the abundance of zinc and its compatibility with aqueous electrolytes. Thick glass microfiber separators are commonly employed in ZHCs because they resist penetration by Zn dendrites, a prevalent issue in these devices. However, glass fiber separators not only reduce the volumetric energy but also raise environmental concerns due to their production processes, which generate significant amounts of greenhouse gases. In this study, we propose using a sulfonated cellulose membrane (SCM) derived from softwood cellulose nanofibrils as an eco-friendly and sustainable separator for ZHCs. Utilizing this sulfonated cellulose membrane, we achieved 2000 h of continuous plating/stripping of Zn and more than 95% coulombic efficiency. Additionally, the efficacy of SCM as a separator was validated through the successful deployment of a Zn ion hybrid capacitor, which exhibited specific energies of 42 Wh/kg. The ZHC demonstrated remarkable cyclic stability, enduring over 10 000 cycles with minimal self-discharge behavior. This study highlights the use of a cost-effective, thin, mechanically robust, and highly cross-linked cellulose nanofibrils membrane for ZHCs, showcasing its potential for broader utilization in various energy storage devices.

Keywords

aqueous / cellulose / sustainable / zinc / Zn ion hybrid capacitor

Cite this article

Download citation ▾
Ziyauddin Khan, Divyaratan Kumar, Sanna Lander, Jaywant Phopase, Reverant Crispin. Utilization of sulfonated cellulose membrane for Zn ion hybrid capacitors. EcoEnergy, 2024, 2(3): 456-465 DOI:10.1002/ece2.48

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brundtland GH. Report of the World Commission on Environment and Development: Our Common Future (General Assembly Resolution 42/187, United Nations).1987.

[2]

Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19-29

[3]

Titirici M.-M. Sustainable batteries—quo vadis? Adv Energy Mater. 2021;11(10):2003700.

[4]

Senthilkumar B, Khan Z, Park S, Kim K, Ko H, Kim Y. Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor. J Mater Chem A. 2015;3(43):21553-21561.

[5]

Zhang K, Lee TH, Noh H, et al. Realization of lithium-ion capacitors with enhanced energy density via the use of gadolinium hexacyanocobaltate as a cathode material. ACS Appl Mater Interfaces. 2019;11(35):31799-31805.

[6]

Khan Z, Martinelli A, Franco LR, et al. Mass transport in “water-in-polymer salt”electrolytes. Chem Mater. 2023;35(16):6382-6395.

[7]

Mudd GM, Jowitt SM, Werner TT. The world’s lead-zinc mineral resources: scarcity, data, issues and opportunities. Ore Geol Rev. 2017;80:1160-1190.

[8]

Ye Z, Cao Z, Lam Chee MO, et al. Advances in Zn-ion batteries via regulating liquid electrolyte. Energy Storage Mater. 2020;32:290-305.

[9]

Zhang S, Yu N, Zeng S, et al. An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. J Mater Chem A. 2018;6(26):12237-12243.

[10]

Khan Z, Kumar D, Crispin X. Does water-in-salt electrolyte subdue issues of Zn batteries? Adv Mater. 2023;35(36):2300369.

[11]

Sun P, Ma L, Zhou W, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew Chem Int Ed. 2021;60(33):18247-18255.

[12]

Wang F, Borodin O, Gao T, et al. Highly reversible zinc metal anode for aqueous batteries. Nat Mater. 2018;17(6):543-549.

[13]

Kumar D, Ail U, Wu Z, et al. Zinc salt in “water-in-polymer salt electrolyte”for zinc-lignin batteries: electroactivity of the lignin cathode. Adv Sustain Syst. 2023;7(4):2200433.

[14]

Liu X, Han Q, Ma Q, Wang Y, Liu C. Cellulose-acetate coating by integrating ester group with zinc salt for dendrite-free Zn metal anodes. Small. 2022;18(39):2203327.

[15]

Kang L, Cui M, Jiang F, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv Energy Mater. 2018;8(25):1801090.

[16]

Zhang Q, Luan J, Fu L, et al. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew Chem Int Ed. 2019;58(44):15841-15847.

[17]

Xue P, Guo C, Li L, et al. A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv Mater. 2022;34(14):2110047.

[18]

Sun Y.-Y, Yan L, Zhang Q, et al. Mixed cellulose ester membrane as an ion redistributor to stabilize zinc anode in aqueous zinc ion batteries. J Colloid Interface Sci. 2023;641:610-618.

[19]

Qin Y, Liu P, Zhang Q, et al. Advanced filter membrane separator for aqueous zinc-ion batteries. Small. 2020;16(39):2003106

[20]

Wang Z, Dong L, Huang W, et al. Simultaneously regulating uniform Zn2+ flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes. Nano-Micro Lett. 2021;13(1):73.

[21]

Chen J, Chen M, Ma H, Zhou W, Xu X. Advances and perspectives on separators of aqueous zinc ion batteries. Energy Rev. 2022;1(1):100005.

[22]

Li Y, Peng X, Li X, et al. Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv Mater. 2023;35(18):2300019.

[23]

Zhang L, Li X, Yang M, Chen W. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Mater. 2021;41:522-545.

[24]

Joshi SV, Drzal LT, Mohanty AK, Arora S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf. 2004;35(3):371-376.

[25]

Iturrondobeitia M, Akizu-Gardoki O, Amondarain O, Minguez R, Lizundia E. Environmental impacts of aqueous zinc ion batteries based on life cycle assessment. Adv Sustain Syst. 2022;6(1):2100308.

[26]

Lee B.-S, Cui S, Xing X, et al. Dendrite suppression membranes for rechargeable zinc batteries. ACS Appl Mater Interfaces. 2018;10(45):38928-38935.

[27]

Fang Y, Xie X, Zhang B, et al. Regulating zinc deposition behaviors by the conditioner of PAN separator for zinc-ion batteries. Adv Funct Mater. 2022;32(14):2109671.

[28]

Wu B, Wu Y, Lu Z, et al. A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. J Mater Chem A. 2021;9(8):4734-4743.

[29]

Ghosh M, Vijayakumar V, Kurungot S. Dendrite growth suppression by Zn2+-integrated nafion ionomer membranes: beyond porous separators toward aqueous Zn/V2O5 batteries with extended cycle life. Energy Tech. 2019;7(9):1900442.

[30]

Yuan D, Manalastas JW, Zhang L, et al. Lignin@Nafion membranes forming Zn solid–electrolyte interfaces enhance the cycle life for rechargeable zinc-ion batteries. ChemSusChem. 2019;12(21):4889-4900.

[31]

Cao J, Zhang D, Gu C, et al. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv Energy Mater. 2021;11(29):2101299.

[32]

Cao J, Zhang D, Gu C, et al. Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode. Nano Energy. 2021;89:106322.

[33]

Zhang Y, Li X, Fan L, Shuai Y, Zhang N. Ultrathin and super-tough membrane for anti-dendrite separator in aqueous zinc-ion batteries. Cell Rep Phy Sci. 2022;3(4):100824.

[34]

de Amorim JDP, de Souza KC, Duarte CR, et al. Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ Chem Lett. 2020;18(3):851-869.

[35]

Lander S, Erlandsson J, Vagin M, et al. Sulfonated cellulose membranes: physicochemical properties and ionic transport versus degree of sulfonation. Adv Sustain Sys. 2022;6(11):2200275.

[36]

Lander S, Vagin M, Gueskine V, et al. Sulfonated cellulose membranes improve the stability of aqueous organic redox flow batteries. Adv Energy Sustain Res. 2022;3(9):2200016.

[37]

Pan R, Sun R, Wang Z, et al. Double-sided conductive separators for lithium-metal batteries. Energy Storage Mater. 2019;21:464-473.

[38]

Cui Y, Zhao Q, Wu X, et al. Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode. Energy Storage Mater. 2020;27:1-8.

[39]

Zhou W, Chen M, Tian Q, Chen J, Xu X, Wong C.-P. Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater. 2022;44:57-65.

[40]

Yang Y, Chen T, Yu B, et al. Manipulating Zn-ion flux by two-dimensional porous g-C3N4 nanosheets for dendrite-free zinc metal anode. Chem Eng J. 2022;433:134077.

[41]

Zhang Y, Zeng Z, Yang S, Zhang Y, Ma Y, Wang Z. A nanocellulose-mediated, multiscale ion-sieving separator with selective ZNn2+ channels for durable aqueous zinc-based batteries. Energy Storage Mater. 2023;57:557-567.

[42]

Patil N, de la Cruz C, Ciurduc D, Mavrandonakis A, Palma J, Marcilla R. An ultrahigh performance zinc-organic battery using poly(catechol) cathode in Zn(TFSI)2-based concentrated aqueous electrolytes. Adv Energy Mater. 2021;11(26):2100939.

[43]

Fong KD, Self J, Diederichsen KM, Wood BM, McCloskey BD, Persson KA. Ion transport and the true transference number in nonaqueous polyelectrolyte solutions for lithium ion batteries. ACS Central Sci. 2019;5(7):1250-1260.

[44]

Cui Y, Zhao Q, Wu X, et al. An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew Chem Int Ed. 2020;59(38):16594-16601.

[45]

Plata M, Olvera S, Ramírez-Rodríguez C, Dorantes-Rosales H, Arce-Estrada EM. Electrochemical nucleation of zinc onto glassy carbon. ECS Trans. 2007;3(21):25-33.

[46]

Pise MT, Srinivas S, Chatterjee A, Kashyap BP, Singh RN, Tatiparti SSV. Influence of surface condition on the current densities rendering nucleation loop during cyclic voltammetry for electrodeposition of Pd thin films. Surfaces Interfac. 2020;20:100525.

[47]

Danaee I. Kinetics and mechanism of palladium electrodeposition on graphite electrode by impedance and noise measurements. J Electroanal Chem. 2011;662(2):415-420.

[48]

Jabbari V, Foroozan T, Shahbazian-Yassar R. Dendritic Zn deposition in zinc-metal batteries and mitigation strategies. Adv Energy Sustain Res. 2021;2(4):2000082.

[49]

Shaigan N, Qu W, Takeda T. Morphology control of electrodeposited zinc from alkaline zincate solutions for rechargeable zinc air batteries. ECS Trans. 2010;28(32):35-44.

[50]

Khor A, Leung P, Mohamed MR, et al. Review of zinc-based hybrid flow batteries: from fundamentals to applications. Mater Today Energy. 2018;8:80-108.

[51]

Di S, Nie X, Ma G, et al. Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase. Energy Storage Mater. 2021;43:375-382.

[52]

Xie D, Wang Z.-W, Gu Z.-Y, et al. Polymeric molecular design towards horizontal Zn electrodeposits at constrained 2D Zn2+ diffusion: dendrite-free Zn anode for long-life and high-rate aqueous zinc metal battery. Adv Funct Mater. 2022;32(32):2204066.

[53]

Zhang H, Guo R, Li S, et al. Graphene quantum dots enable dendrite-free zinc ion battery. Nano Energy. 2022;92:106752.

[54]

Zuo Y, Wang K, Pei P, et al. Zinc dendrite growth and inhibition strategies. Mater Today Energy. 2021;20:100692.

[55]

Zhou S, Wang Y, Lu H, et al. Anti-corrosive and Zn-Ion-Regulating composite interlayer enabling long-life Zn metal anodes. Adv Funct Mater. 2021;31(46):2104361.

[56]

Khan Z, Ail U, Nadia Ajjan F, et al. Water-in-Polymer salt electrolyte for slow self-discharge in organic batteries. Adv Energy Sustain Res. 2022;3(1):2100165.

[57]

Kumar D, Khan Z, Ail U, et al. Self-discharge in batteries based on lignin and water-in-polymer salt electrolyte. Adv Energy Sustain Res. 2022;3(10):2200073.

[58]

Yang J, Bissett MA, Dryfe RAW. Investigation of voltage range and self-discharge in aqueous zinc-ion hybrid supercapacitors. ChemSusChem. 2021;14(7):1700-1709.

[59]

Yang Q, Huang Z, Li X, et al. A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano. 2019;13(7):8275-8283.

[60]

Li Y, Yang W, Yang W, et al. Towards high-energy and anti-self-discharge Zn-ion hybrid supercapacitors with new understanding of the electrochemistry. Nano-Micro Lett. 2021;13(1):95.

[61]

Huang Z, Wang T, Song H, et al. Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors. Angew Chem Int Ed. 2021;60(2):1011-1021.

[62]

Jin Y, Ao H, Qi K, et al. A high-rate, long life, and anti-self-discharge aqueous N-doped Ti3C2/Zn hybrid capacitor. Mater Today Energy. 2021;19:100598.

[63]

Huang Z, Chen A, Mo F, et al. Phosphorene as cathode material for high-voltage, anti-self-discharge zinc ion hybrid capacitors. Adv Energy Mater. 2020;10(24):2001024.

[64]

Li X, Li M, Yang Q, et al. Vertically aligned SN4+ preintercalated Ti2CTX MXene sphere with enhanced Zn ion transportation and superior cycle lifespan. Adv Energy Mater. 2020;10(35):2001394.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF (2495KB)

276

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/