Lattice battery solar cells: Exceeding Shockley–Queisser limit

Mehri Ghasemi , Baohua Jia , Xiaoming Wen

EcoEnergy ›› 2024, Vol. 2 ›› Issue (3) : 448 -455.

PDF (1076KB)
EcoEnergy ›› 2024, Vol. 2 ›› Issue (3) : 448 -455. DOI: 10.1002/ece2.47
RESEARCH ARTICLE

Lattice battery solar cells: Exceeding Shockley–Queisser limit

Author information +
History +
PDF (1076KB)

Abstract

A revolutionary concept of lattice battery solar cell (LBSC) is proposed to leap the conversion efficiency by inherently eliminating two major energy losses of conventional solar cells, namely hot carriers and non‐absorption of the substantial near infrared (NIR) emission. In an LBSC, hot phonon emission will be saved into lattice energy reservoir (LER) through electron–lattice coupling; NIR solar emission is harvested by an NIR‐perovskite composition. The NIRgenerated carriers are upconverted to the conduction band of perovskites driven by LER. The theoretical efficiency of LBSCs is estimated to be over 70%, significantly exceeding the Shockley–Queisser limit. In addition, LBSCs have lower operational temperature, resulting in much improved stability due to the elimination of heating sources from hot carriers. Different from the existing multijunction solar cells, LBSCs will keep the single layer structure with low-cost fabrication. Therefore, LBSCs could perfectly satisfy the golden triangle of solar cell performance, which prospects great competitive advantage for further commercialization.

Keywords

gold triangle of solar cells / lattice battery solar cells / lattice energy reservoir / Shockley–Queisser limit

Cite this article

Download citation ▾
Mehri Ghasemi, Baohua Jia, Xiaoming Wen. Lattice battery solar cells: Exceeding Shockley–Queisser limit. EcoEnergy, 2024, 2(3): 448-455 DOI:10.1002/ece2.47

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Shockley W, Queisser HJ. Detailed balance limit of efficiency of P-N junction solar cells. J Appl Phys. 1961;32(3):510-519.

[2]

Ameri T, Dennler G, Lungenschmied C, Brabec CJ. Organic tandem solar cells: a review. Energy Environ Sci. 2009;2(4):347-363.

[3]

König D, Casalenuovo K, Takeda Y, et al. Hot carrier solar cells: principles, materials and design. Phys E Low-dimens Syst Nanostruct. 2010;42(10):2862-2866.

[4]

Einzinger M, Wu T, Kompalla JF, et al. Sensitization of silicon by singlet exciton fission in tetracene. Nature. 2019;571(7763):90-94.

[5]

Nozik AJ. Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett. 2008;457(1-3):3-11.

[6]

VanOrman ZA, Bieber AS, Wieghold S, Nienhaus L. A perspective on triplet fusion upconversion: triplet sensitizers beyond quantum dots. MRS Communications. 2019;9(3):924-935.

[7]

Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html

[8]

Torabi N, Behjat A, Zhou Y, et al. Progress and challenges in perovskite photovoltaics from single-to multi-junction cells. Mater Today Energy. 2019;12:70-94.

[9]

Kim G-W, Petrozza A. Defect tolerance and intolerance in metal-halide perovskites. Adv Energy Mater. 2020;10(37):2001959.

[10]

Chen W, Gan Z, Green MA, Jia B, Wen X. Revealing dynamic effects of mobile ions in halide perovskite solar cells using time-resolved microspectroscopy. Small Methods. 2021;5(1):2000731.

[11]

Chu W, Zheng Q, Prezhdo OV, Zhao J, Saidi WA. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. Sci Adv. 2020;6(7):eaaw7453.

[12]

Chen S, Wen XM, Sheng R, et al. Mobile ion induced slow carrier dynamics in organic-inorganic perovskite CH3NH3PbBr3. ACS Appl Mater Interfaces. 2016;8(8):5351-5357.

[13]

Wen XM, Ho-Baillie A, Huang SJ, et al. Mobile charge-induced fluorescence intermittency in methylammonium lead bromide perovskite. Nano Lett. 2015;15(7):4644-4649.

[14]

Qian Q, Wan Z, Takenaka H, et al. Photocarrier-induced persistent structural polarization in soft-lattice lead halide perovskites. Nat Nanotechnol. 2023;18(4):1-8.

[15]

Chen S, Wen X, Huang S, et al. Light illumination induced photoluminescence enhancement and quenching in lead halide perovskite. Sol RRL. 2017;1(1):1600001.

[16]

Andaji-Garmaroudi Z, Anaya M, Pearson AJ, Stranks SD. Photobrightening in lead halide perovskites: observations, mechanisms, and future potential. Adv Energy Mater. 2020;10(13):1903109.

[17]

Ghosh S, Shi Q, Pradhan B, et al. Light-induced defect healing and strong many-body interactions in formamidinium lead bromide perovskite nanocrystals. J Phys Chem Lett. 2020;11(4):1239-1246.

[18]

Gu C, Lee J-S. Flexible hybrid organic-inorganic perovskite memory. ACS Nano. 2016;10(5):5413-5418.

[19]

Berruet M, Pérez-Martínez JC, Romero B, et al. Physical model for the current-voltage hysteresis and impedance of halide perovskite memristors. ACS Energy Lett. 2022;7(3):1214-1222.

[20]

Zhao X, Xu H, Wang Z, Lin Y, Liu Y. Memristors with organic-inorganic halide perovskites. InfoMat. 2019;1(2):183-210.

[21]

Di J, Du J, Lin Z, Liu S, Ouyang J, Chang J. Recent advances in resistive random access memory based on lead halide perovskite. InfoMat. 2021;3(3):293-315.

[22]

Shahrokhi S, Gao W, Wang Y, et al. Emergence of ferroelectricity in halide perovskites. Small Methods. 2020;4(8):2000149.

[23]

Shao Y, Fang Y, Li T, et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy Environ Sci. 2016;9(5):1752-1759.

[24]

Tress W. Metal halide perovskites as mixed electronic–ionic conductors: challenges and opportunities-from hysteresis to memristivity. J Phys Chem Lett. 2017;8(13):3106-3114.

[25]

Richardson G, O’Kane SE, Niemann RG, et al. Can slow-moving ions explain hysteresis in the current–voltage curves of perovskite solar cells? Energy Environ Sci. 2016;9(4):1476-1485.

[26]

Hu L, Guan X, Chen W, et al. Linking phase segregation and photovoltaic performance of mixed-halide perovskite films through grain size engineering. ACS Energy Lett. 2021;6(4):1649-1658.

[27]

Wang Y, Guan X, Chen W, et al. Illumination-induced phase segregation and suppressed solubility limit in Br-rich mixed-halide inorganic perovskites. ACS Appl Mater Interfaces. 2020;12(34):38376-38385.

[28]

Chen W, Mao W, Bach U, Jia B, Wen X. Tracking dynamic phase segregation in mixed-halide perovskite single crystals under two-photon scanning laser illumination. Small Methods. 2019;3(11):1900273.

[29]

Mosconi E, De Angelis F. Mobile ions in organohalide perovskites: interplay of electronic structure and dynamics. ACS Energy Lett. 2016;1(1):182-188.

[30]

Lee W, Li H, Wong AB, et al. Ultralow thermal conductivity in all-inorganic halide perovskites. Proc Natl Acad Sci USA. 2017;114(33):8693-8697.

[31]

Yang J, Wen X, Xia H, et al. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat Commun. 2017;8(1):14120.

[32]

Zhao D, Hu H, Haselsberger R, et al. Monitoring electron–phonon interactions in lead halide perovskites using time-resolved thz spectroscopy. ACS Nano. 2019;13(8):8826-8835.

[33]

Wu X, Tan LZ, Shen X, et al. Light-induced picosecond rotational disordering of the inorganic sublattice in hybrid perovskites. Sci Adv. 2017;3(7):e1602388.

[34]

Guzelturk B, Belisle RA, Smith MD, et al. Terahertz emission from hybrid perovskites driven by ultrafast charge separation and strong electron–phonon coupling. Adv Mater. 2018;30(11):1704737.

[35]

Li C, Guerrero A, Zhong Y, et al. Real-time observation of iodide ion migration in methylammonium lead halide perovskites. Small. 2017;13(42):1701711.

[36]

Yue S-Y, Zhang X, Qin G, Yang J, Hu M. Insight into the collective vibrational modes driving ultralow thermal conductivity of perovskite solar cells. Phys Rev B. 2016;94(11):115427.

[37]

Wang Y, Xiong Y, Sha J, et al. Inverse photoconductivity effect in triple cation organic–inorganic hybrid perovskite memristors with various iodine concentrations, electrodes, and modified layers. J Mater Chem C. 2022;10(4):1414-1420.

[38]

Zhao X, Wang Z, Li W, et al. Photoassisted electroforming method for reliable low-power organic–inorganic perovskite memristors. Adv Funct Mater. 2020;30(17):1910151.

[39]

Zheng F, Wang L-w. Large polaron formation and its effect on electron transport in hybrid perovskites. Energy Environ Sci. 2019;12(4):1219-1230.

[40]

Bretschneider SA, Ivanov I, Wang HI, Miyata K, Zhu X, Bonn M. Quantifying polaron formation and charge carrier cooling in lead-iodide perovskites. Adv Mater. 2018;30(29):1707312.

[41]

Yue X, Wang C, Zhang B, et al. Real-time observation of the buildup of polaron in Α-FAPbI3. Nat Commun. 2023;14(1):917.

[42]

Richards BS, Hudry D, Busko D, Turshatov A, Howard IA. Photon upconversion for photovoltaics and photocatalysis: a critical review: focus review. Chem Rev. 2021;121(15):9165-9195.

[43]

Wen X, Yu P, Toh Y-R, Ma X, Tang J. On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem Commun. 2014;50(36):4703-4706.

[44]

Beard MC, Luther JM, Semonin OE, Nozik AJ. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Acc Chem Res. 2013;46(6):1252-1260.

[45]

Wen X, Yu P, Toh Y-R, et al. Ultrafast electron transfer in the nanocomposite of the graphene oxide–Au nanocluster with graphene oxide as a donor. J Mater Chem C. 2014;2(19):3826-3834.

[46]

Anderson NA, Lian T. Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. Annu Rev Phys Chem. 2005;56(1):491-519.

[47]

Wen X, Zhang P, Smith TA, et al. Tunability limit of photoluminescence in colloidal silicon nanocrystals. Sci Rep. 2015;5(1):12469.

[48]

Wei Q, Ghasemi M, Wang R, et al. Metal halide perovskite alloy: fundamental, optoelectronic properties and applications. Adv Photon Res. 2023;4(2):2200236.

[49]

Wu B, Wang A, Fu J, et al. Uncovering the mechanisms of efficient upconversion in two-dimensional perovskites with anti-Stokes shift up to 220 meV. Sci Adv. 2023;9(39):eadi9347.

[50]

Granados del Águila A, Do TTH, Xing J, Jee WJ, Khurgin JB, Xiong Q. Efficient up-conversion photoluminescence in all-inorganic lead halide perovskite nanocrystals. Nano Res. 2020;13(7):1962-1969.

RIGHTS & PERMISSIONS

2024 The Author(s). EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF (1076KB)

274

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/