Construction of imide-linked covalent organic frameworks with palladium nanoparticles for oxygen reduction reaction

Zhuangyan Guo , Shuai Yang , Minghao Liu , Qing Xu , Gaofeng Zeng

EcoEnergy ›› 2024, Vol. 2 ›› Issue (1) : 192 -201.

PDF
EcoEnergy ›› 2024, Vol. 2 ›› Issue (1) : 192 -201. DOI: 10.1002/ece2.32
RESEARCH ARTICLE

Construction of imide-linked covalent organic frameworks with palladium nanoparticles for oxygen reduction reaction

Author information +
History +
PDF

Abstract

Covalent organic frameworks (COFs) have been widely employed as electrocatalysts for oxygen reduction reaction (ORR) due to their diverse and tunable skeletons and pores. However, their electrocatalytic activity was limited due to the lack of highly active catalytic sites. In this work, we have first immobilized palladium nanoparticles (NPs) into the crystal, porous, and stable imidelinked COF for ORR. The newly designed COF had pyridine linkers with imide-linkages in the frameworks serving as the binding sites to anchor Pd sites, and the high surface area and open pore channels provide fast mass transport pathway to the active Pd sites, which contributed highly active performance in ORR. And the designed catalyst delivered onset potential and the half-wave potential of COF-Pd of 0.97 and 0.83 V, with a limited current density of 6.1 mA cm-2, respectively. This work provides us insights into developing high crystalline COFs with metal NPs in electrocatalytic systems.

Keywords

covalent organic frameworks / imide linkage / oxygen reduction reaction / palladium nanoparticles / porous polymer

Cite this article

Download citation ▾
Zhuangyan Guo, Shuai Yang, Minghao Liu, Qing Xu, Gaofeng Zeng. Construction of imide-linked covalent organic frameworks with palladium nanoparticles for oxygen reduction reaction. EcoEnergy, 2024, 2(1): 192-201 DOI:10.1002/ece2.32

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma T, Kapustin EA, Yin SX, et al. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science. 2018;361(6397):48-52.

[2]

Jin E, Asada M, Xu Q, et al. Two-dimensional sp2 carbon–conjugated covalent organic frameworks. Science. 2017;357(6352):673-676.

[3]

Diercks CS, Yaghi OM. The atom, the molecule, and the covalent organic framework. Science. 2017;355(6328):eaal1585.

[4]

Li J, Jing X, Li Q, et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem Soc Rev. 2020;49(11):3565-3604.

[5]

Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science. 2005;310(5751):1166-1170.

[6]

Li H, Li L, Lin R-B, et al. Porous metal-organic frameworks for gas storage and separation: status and challenges. Inside Energy. 2019;1(1):100006.

[7]

Fan H, Mundstock A, Feldhoff A, et al. Covalent organic framework–covalent organic framework bilayer membranes for highly selective gas separation. J Am Chem Soc. 2018;140(32):10094-10098.

[8]

Nguyen HL, Hanikel N, Lyle SJ, Zhu C, Proserpio DM, Yaghi OM. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J Am Chem Soc. 2020;142(5):2218-2221.

[9]

Nguyen HL. Covalent organic frameworks for atmospheric water harvesting. Adv Mater. 2023;35(17):2300018.

[10]

Song Y, Sun Q, Aguila B, Ma S. Opportunities of covalent organic frameworks for advanced applications. Adv Sci. 2019;6(2):1801410.

[11]

Yuan H, Li N, Linghu J, et al. Chip-level integration of covalent organic frameworks for trace benzene sensing. ACS Sens. 2020;5(5):1474-1481.

[12]

Liu L, Yin L, Cheng D, et al. Surface-mediated construction of an ultrathin free-standing covalent organic framework membrane for efficient proton conduction. Angew Chem Int Ed. 2021;60(27):14875-14880.

[13]

Zhang C, Xie J, Zhao C, et al. Regulating the lithium ions’ local coordination environment through designing a COF with single atomic Co site to achieve dendrite-free lithium-metal batteries. Adv Mater. 2023;35(40):2304511.

[14]

Chen R, Shi J, Ma Y, Lin G, Lang X, Wang C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew Chem Int Ed. 2019;58(19):6430-6434.

[15]

Shi J, Chen R, Hao H, Wang C, Lang X. 2D sp2 carbonconjugated porphyrin covalent organic framework for cooperative photocatalysis with TEMPO. Angew Chem Int Ed. 2020;59(23):9088-9093.

[16]

Liu M, Yang S, Yang X, et al. Post-synthetic modification of covalent organic frameworks for CO2 electroreduction. Nat Commun. 2023;14(1):3800.

[17]

Liu M, Liu S, Cui C-X, et al. Construction of catalytic covalent organic frameworks with redox-active sites for the oxygen reduction and the oxygen evolution reaction. Angew Chem Int Ed. 2022;61(49):e202213522.

[18]

Guo Z, Yang S, Liu M, Xu Q, Zeng G. Construction of coreshelled covalent/metal–organic frameworks for oxygen evolution reaction. Small. 2023:2308598.

[19]

Liu M, Fu Y, Bi S, et al. Dimensionally-controlled interlayer spaces of covalent organic frameworks for the oxygen evolution reaction. Chem Eng J. 2023;479:147682.

[20]

Mei Z, Zhao G, Xia C, et al. Regulated high-spin state and constrained charge behavior of active cobalt sites in covalent organic frameworks for promoting electrocatalytic oxygen reduction. Angew Chem Int Ed. 2023;62(27):e202303871.

[21]

Li X, Yang S, Liu M, et al. Catalytic linkage engineering of covalent organic frameworks for the oxygen reduction reaction. Angew Chem Int Ed. 2023;62(30):e202304356.

[22]

Wang Q, Wang C, Zheng K, et al. Positional thiophene isomerization: a geometric strategy for precisely regulating the electronic state of covalent organic frameworks to boost oxygen reduction. Angew Chem Int Ed. 2024:e202320037.

[23]

Yang X, Li X, Liu M, et al. Modulating electrochemical CO2 reduction performance via sulfur-containing linkages engineering in metallophthalocyanine based covalent organic frameworks. ACS Mater Lett. 2023;5(6):1611-1618.

[24]

Wu Q, Si D, Wu Q, Dong Y, Cao R, Huang Y. Boosting electroreduction of CO2 over cationic covalent organic frameworks: hydrogen bonding effects of halogen ions. Angew Chem Int Ed. 2023;62(7):e202215687.

[25]

Guo H, Si D, Zhu H, Chen Z, Cao R, Huang Y. Boosting CO2 electroreduction over a covalent organic framework in the presence of oxygen. Angew Chem Int Ed. 2024;63(14):e202319472.

[26]

Jiang M, Han L, Peng P, et al. Quasi-phthalocyanine conjugated covalent organic frameworks with nitrogen-coordinated transition metal centers for high-efficiency electrocatalytic ammonia synthesis. Nano Lett. 2022;22(1):372-379.

[27]

Ranjeesh KC, Kaur S, Mohammed AK, et al. An in situ proton filter covalent organic framework catalyst for highly efficient aqueous electrochemical ammonia production. Adv Energy Mater. 2023;14(5):2303068.

[28]

Zhai L, Yang S, Yang X, et al. Conjugated covalent organic frameworks as platinum nanoparticle supports for catalyzing the oxygen reduction reaction. Chem Mater. 2020;32(22):9747-9752.

[29]

Yu P, Wang L, Sun F, et al. Co nanoislands rooted on Co–N–C nanosheets as efficient oxygen electrocatalyst for Zn–air batteries. Adv Mater. 2019;31(30):1901666.

[30]

Montoro C, Rodríguez-San-Miguel D, Polo E, et al. Ionic conductivity and potential application for fuel cell of a modified imine-based covalent organic framework. J Am Chem Soc. 2017;139(29):10079-10086.

[31]

Wang Z, Yang Y, Zhao Z, et al. Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications. Nat Commun. 2021;12(1):1982.

[32]

Yang Y, He X, Zhang P, et al. Combined intrinsic and extrinsic proton conduction in robust covalent organic frameworks for hydrogen fuel cell applications. Angew Chem Int Ed. 2020;59(9):3678-3684.

[33]

Liu J, Hu Y, Cao J. Covalent triazine-based frameworks as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. Catal Commun. 2015;66:91-94.

[34]

Yan X, Wang B, Ren J, Long X, Yang D. An unsaturated bond strategy to regulate active centers of metal-free covalent organic frameworks for efficient oxygen reduction. Angew Chem Int Ed. 2022;61(46):e202209583.

[35]

You Z, Wang B, Zhao Z, et al. Metal-free carbon-based covalent organic frameworks with heteroatom-free units boost efficient oxygen reduction. Adv Mater. 2023;35(7):2209129.

[36]

Li D, Li C, Zhang L, et al. Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J Am Chem Soc. 2020;142(18):8104-8108.

[37]

Li J, Jia J, Suo J, et al. Metal-free covalent organic frameworks containing precise heteroatoms for electrocatalytic oxygen reduction reaction. J Mater Chem A. 2023;11(34):18349-18355.

[38]

Bhunia S, Peña-Duarte A, Li H, et al. [2, 1, 3]-benzothiadiazole- spaced Co-porphyrin-based covalent organic frameworks for O2 reduction. ACS Nano. 2023;17(4):3492-3505.

[39]

Du Y-X, Yang Q, Lu W-T, Guan Q-Y, Cao F-F, Zhang G. Carbon black-supported single-atom Co–N–C as an efficient oxygen reduction electrocatalyst for H2O2 production in acidic media and microbial fuel cell in neutral media. Adv Funct Mater. 2023;33(27):2300895.

RIGHTS & PERMISSIONS

2024 The Authors. EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

255

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/