Electrocatalytic dehalogenation in the applications of organic synthesis and environmental degradation

Zhefei Zhao , Xuyao Yao , Linlin Zhang , Ruopeng Yu , Yinghua Xu , Youqun Chu , Xinbiao Mao , Huajun Zheng

EcoEnergy ›› 2024, Vol. 2 ›› Issue (1) : 83 -113.

PDF
EcoEnergy ›› 2024, Vol. 2 ›› Issue (1) : 83 -113. DOI: 10.1002/ece2.28
REVIEW

Electrocatalytic dehalogenation in the applications of organic synthesis and environmental degradation

Author information +
History +
PDF

Abstract

Electrocatalytic dehalogenation technology is a promising approach for the synthesis of chemicals (such as pesticides and pharmaceutical intermediates) and the disposal of halogenated organic pollutants. Compared with the traditional chemical reduction technology, the electrocatalytic reduction dehalogenation method has the advantages of high efficiency, controllable operation, and reduced secondary pollution. This review systematically consolidates the recent advances in the electrocatalytic dehalogenation in the application of organic synthesis and environmental degradation, focusing on the involved mechanisms, and influences factors (e.g., electrocatalysts, solution environment, and reaction conditions) on the performance of electrocatalytic dehalogenation. Furthermore, the latest characterization and analytical methods and the industrial application of electrocatalytic dehalogenation technology are summarized. Lastly, the existing challenges and perspectives are proposed for efficient electrocatalytic dehalogenation.

Keywords

dehalogenation / electrocatalysis / environmental degradation / organic synthesis

Cite this article

Download citation ▾
Zhefei Zhao, Xuyao Yao, Linlin Zhang, Ruopeng Yu, Yinghua Xu, Youqun Chu, Xinbiao Mao, Huajun Zheng. Electrocatalytic dehalogenation in the applications of organic synthesis and environmental degradation. EcoEnergy, 2024, 2(1): 83-113 DOI:10.1002/ece2.28

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang H, Shi W, Ma D, Shang Y, Wang Y, Gao B. Formation of DBPs during chlorination of antibiotics and control with permanganate/bisulfite pretreatment. Chem Eng J. 2020;392:123701.

[2]

Sowaileh MF, Alshammari MD, Colby DA. Synthesis of difluorinated halohydrins by the chemoselective addition of difluoroenolates to α-Haloketones. Org Lett. 2021;23(13):5098-5101.

[3]

Martyniuk CJ, Mehinto AC, Denslow ND. Organochlorine pesticides: agrochemicals with potent endocrine-disrupting properties in fish. Mol Cell Endocrinol. 2020;507:110764.

[4]

Hajalilou A, Parvini E, Pereira JM, et al. Digitally printable magnetic liquid metal composite for recyclable soft-matter electronics. Adv Mater Technol. 2023;8(10):2201621.

[5]

Lau WC, Gurbel PA, Watkins PB, et al. Contribution of hepatic cytochrome P450 3A4 metabolic activity to the phenomenon of clopidogrel resistance. Clinical. 2004;109(2):166-171.

[6]

Zani F, Blagih J, Gruber T, et al. The dietary sweetener sucralose is a negative modulator of T cell-mediated responses. Nature. 2023;165(7953):705-711.

[7]

Karypidis M, Karanikas E, Papadaki A, Andriotis EG. A mini-review of synthetic organic and nanoparticle antimicrobial agents for coatings in textile applications. Coatings. 2023;13(4):693.

[8]

Fielmanl VT, Woodin SA, Walla MD, Lincoln DE. Widespread occurrence of natural halogenated organics among temperate marine infauna. Mar Ecol Prog Ser. 1999;181:1-12.

[9]

Jiang J, Zhang X. A smart strategy for controlling disinfection byproducts by reversing the sequence of activated carbon adsorption and chlorine disinfection. Sci Bull. 2018;63(18):1167-1169.

[10]

Bulman DM, Milstead RP, Remucal CK. Formation of targeted and novel disinfection byproducts during chlorine photolysis in the presence of bromide. Environ Sci Technol. 2023;57(47):18877-18887.

[11]

Alonso F, Beletskaya IP, Yus M. Metal-mediated reductive hydrodehalogenation of organic halides. Chem Rev. 2002;102(11):4009-4091.

[12]

Neilson AH, Allard AS, Hynning , Remberger M. Distribution, fate and persistence of organochlorine compounds formed during production of bleached pulp. Toxicol Environ Chem. 1991;30(1-2):1-41.

[13]

Saktrakulkla P, Tuo L, Jason H, Marek RF, Thorne PS, Hornbuckle KC. Polychlorinated biphenyls in food. Environ Sci Technol. 2020;54(18):11443-11452.

[14]

Amii H, Uneyama K. C-F bond activation in organic synthesis. Chem Rev. 2009;109(5):2119-2183.

[15]

Franco AR, Ferreira AC, Castro PL. Co-metabolic degradation of mono-fluorophenols by the ectomycorrhizal fungi Pisolithus tinctorius. Chemosphere. 2014;111:260-265.

[16]

Sadowsky D, McNeill K, Cramer CJ. Dehalogenation of aromatics by nucleophilic aromatic substitution. Environ Sci Technol. 2014;48(18):10904-10911.

[17]

Whittlesey MK, Peris E. Catalytic hydrodefluorination with late transition metal complexes. ACS Catal. 2014;4(9):3152-3159.

[18]

Wang F, Lu X, Li X, Shih K. Effectiveness and mechanisms of defluorination of perfluorinated alkyl substances by calcium compounds during waste thermal treatment. Environ Sci Technol. 2015;49(9):5672-5680.

[19]

Möller A, Xie Z, Sturm R, Ebinghaus R. Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants in air and seawater of the European arctic. Environ Pollut. 2011;159(6):1577-1583.

[20]

Ma Y, Romanak KA, Capozzi SL, et al. Socio-economic factors impact US dietary exposure to halogenated flame retardants. Environ Sci Technol Lett. 2023;10(6):478-484.

[21]

Gopan GV, Susan KK, Jayadevan ER, Joseph R. Organic compound with potential for X-ray imaging applications. ACS Omega. 2021;6(38):24826-24833.

[22]

Agarwal V, Miles ZD, Winter JM, Eustáquio AS, Gamal AE, Moore BS. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem Rev. 2017;117(8):5619-5674.

[23]

Palani V, Perea MA, Sarpong R. Site-selective cross-coupling of polyhalogenated arenes and heteroarenes with identical halogen groups. Chem Rev. 2022;122(11):10126-10169.

[24]

Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent progress in cyclic aryliodonium chemistry: syntheses and applications. Chem Rev. 2023;123(4):1364-1416.

[25]

Chen J, Lin J, Xiao J. Halogenation through deoxygenation of alcohols and aldehydes. Org Lett. 2018;20(10):3061-3064.

[26]

Paloma MV, Juan HG, Alejandro VM, Judit OM, Antonio LP. Zeolites catalyze the halogen exchange reaction of alkyl halides. Catal Sci Technol. 2023;13(8):2308-2316.

[27]

Feng Y, Luo H, Zheng W, Matsunaga S, Lin L. Light-promoted nickel-catalyzed aromatic halogen exchange. ACS Catal. 2022;12(18):11089-11096.

[28]

Ortega N, Andrés FV, Martin VS, Martin T, Martín T. Iron (III)-catalyzed halogenations by substitution of sulfonate esters. Adv Synth Catal. 2011;353(6):963-972.

[29]

Kleinberg J. Reactions of the halogens with the silver salts of carboxylic acids. Chem Rev. 1947;40(3):381-390.

[30]

Mo F, Qiu D, Zhang Y, Wang J. Renaissance of sandmeyer-type reactions: conversion of aromatic C-N bonds into C–X bonds (X=B, Sn, P, or CF3). Acc Chem Res. 2018;51(2):496-506.

[31]

Mohite AR, Phatake RS, Dubey P, et al. Thiourea-mediated halogenation of alcohols. J Org Chem. 2020;85(20):12901-12911.

[32]

Dai J, Fang C, Xiao B, et al. Copper-promoted sandmeyer trifluoromethylation reaction. J Am Chem Soc. 2013;135(23):8436-8439.

[33]

Cebular K, Boži’c , Stavber S. Esterification of aryl/alkyl acids catalysed by N-bromosuccinimide under mild reaction conditions. Molecules. 2018;23(9):2235.

[34]

Nishii Y, Ikeda M, Hayashi Y, Kawauchi S, Miura M. Triptycenyl sulfide: a practical and active catalyst for electrophilic aromatic halogenation using N-halosuccinimides. J Am Chem Soc. 2020;142(3):1621-1629.

[35]

Paunović V, Javier PR. Catalytic halogenation of methane: a dream reaction with practical scope? Catal Sci Technol. 2019;9(17):4455-4772.

[36]

Zhan B, Liu Y, Hu F, Shi B. Nickel-catalyzed orthohalogenation of unactivated (hetero)aryl C–H bonds with lithium halides using a removable auxiliary. Chem Commun. 2016;52(27):4934-4937.

[37]

Wu J, Wang Y, Wang J, et al. Indium mediated barbier-type allylation: synthesis of highly functionalized homoallylic difluorohydrins. Tetrahedron. 2023;140:133385.

[38]

Rai V, Sorabad GS, Maddani MR. Transition metal free, green and facile halogenation of ketene dithioacetals using a KXoxidant system. New J Chem. 2021;45(2):1109-1113.

[39]

Herron AN, Liu D, Xia G, Yu JQ. δ-C-H mono- and dihalogenation of alcohols. J Am Chem Soc. 2020;142(6):2766-2770.

[40]

Wallbaum J, Garve LB, Jones PG, Werz DB. Ring-opening 1, 3-halochalcogenation of cyclopropane dicarboxylates. Org Lett. 2017;19(1):98-101.

[41]

Xu Y, Ding X, Ma H, Chu Y, Ma C. Selective hydrodechlorination of 3, 5, 6-trichloropicolinic acid at an activated silver cathode: synthesis of 3, 5-dichloropicolinic acid. Electrochimica Acta. 2015;151:284-288.

[42]

Cagnetta G, Robertson J, Huang J, Zhang K, Yu G. Mechanochemical destruction of halogenated organic pollutants: a critical review. J Hazard Mater. 2016;313:85-102.

[43]

Pop CL, Dontu SI, Carstea EM, et al. Organochlorine pesticides and dissolved organic matter within a system of urban exorheic lakes. Environ Monit Assess. 2020;192(59):1-15.

[44]

Beristain E, Villalobos R, Nuñez VA, Arias GE, Hernanez IY, Amador OM. Polybrominated diphenyl ethers and organochloride pesticides in the organic matter of air suspended particles in Mexico valley: a diagnostic to evaluate public policies. Environ Pollut. 2020;267:115637.

[45]

Kang S, Ahn K. The influence of organic matter origin on the chlorine bulk decay coefficient in reclaimed water. Water. 2022;14(5):765.

[46]

Teglas T, Torices S, Taylor M, Coker D, Toborek M. Exposure to polychlorinated biphenyls selectively dysregulates endothelial circadian clock and endothelial toxicity. J Hazard Mater. 2023;454:131499.

[47]

Li Y, Zhan F, Chubashini S, Lei YD, Hung H, Wania F. Unbiased passive sampling of all polychlorinated biphenyls congeners from air. Environ Sci Technol Lett. 2023;10(7):565-572.

[48]

Gong H, Hu J, Rui X, Luo J, Zhu N. Unveiling the occurrence, distribution, removal, and environmental impacts of 65 emerging contaminants in neglected fresh leachate from municipal solid waste incineration plants. J Hazard Mater. 2023;460:132355.

[49]

Zhang X, Xiong W, Wu Q, et al. Bioaccumulation, trophic transfer, and biotransformation of polychlorinated diphenyl ethers in a simulated aquatic food chain. Environ Sci Technol. 2023;57(14):5751-5760.

[50]

Jegadeesan C, Somanathan A, Jeyakumar RB. Sanitary landfill leachate treatment by aerated electrochemical Fenton process. J Environ Manag. 2023;337:117698.

[51]

Sohn H, Celik G, Gunduz S, et al. Effect of high-temperature on the swellable organically-modified silica (SOMS) and its application to gas-phase hydrodechlorination of trichloroethylene. Appl Catal B Environ Energy. 2017;209:80-90.

[52]

Yan C, Tian Y, Cheng Z, Wei Z, Zhang X, Quan X. Simultaneous desalination and removal of recalcitrant organics from reverse osmosis leachate concentrate by electrochemical oxidation. ACS Omega. 2021;6(24):16049-16057.

[53]

Dorner M, Lokesh S, Yang Y, Behrens S. Biochar-mediated abiotic and biotic degradation of halogenated organic contaminants –a review. Sci Total Environ. 2022;852:158381.

[54]

Blotevogela J, Giraudb RJ, Borch T. Reductive defluorination of perfluorooctanoic acid by zero-valent iron and zinc: a DFT-based kinetic model. Chem Eng J. 2018;335:248-254.

[55]

Luo YH, Long M, Zhou Y, Zhou C, Zheng X, Rittmann BE. Hydrodehalogenation of trichlorofluoromethane over biogenic palladium nanoparticles in ambient conditions. Environ Sci Technol. 2022;56(18):13357-13367.

[56]

Zhang C, Li Y, Xie Y, et al. High-loading single-atom Ru catalysts anchored on N-doped graphdiyne/γ-graphyne quantum dots for selective hydrodehalogenation and hydrodearomatization. ACS Catal. 2023;13(18):12425-12435.

[57]

Lou Z, Wen X, Song L, et al. Oxygen vacancy engineered molecular imprinted TiO2 for preferential florfenicol remediation by electro-reductive approach: enhanced dehalogenation performance and elimination of antibiotic resistance genes. Appl Catal B Environ Energy. 2023;336(122923):1-11.

[58]

Chen H, Li H, Chen S, et al. Atomic Pd dispersion in triangular Cu nanosheets with dominant (111) plane as a tandem catalyst for highly efficient and selective electrodehalogenation. Appl Catal B Environ Energy. 2023;328:122480.

[59]

Guo Y, Li Y, Wang Z. Electrocatalytic hydro-dehalogenation of halogenated organic pollutants from wastewater: a critical review. Water Res. 2023;234:119810.

[60]

Mazzucato M, Isse AA, Durante C. Dissociative electron transfer mechanism and application in the electrocatalytic activation of organic halides. Curr Opin Electrochem. 2023;39:101254.

[61]

Huang D, Kim DJ, Rigby K, et al. Elucidating the role of single-atom Pd for electrocatalytic hydrodechlorination. Environ Sci Technol. 2021;55:13306-13316.

[62]

Gan G, Li X, Wang L, et al. Active sites in single-atom Fe-Nx- C nanosheets for selective electrochemical dechlorination of 1, 2-dichloroethane to ethylene. ACS Nano. 2020;14(8):9929-9937.

[63]

Peng Y, Cui M, Zhang Z, et al. Bimetallic compositionpromoted electrocatalytic hydrodechlorination reaction on silver-palladium alloy nanoparticles. ACS Catal. 2019;9(12):10803-10811.

[64]

He Z, Sun J, Wei J, et al. Effect of silver or copper middle layer on the performance of palladium modified nickel foam electrodes in the 2-chlorobiphenyl dechlorination. J Hazard Mater. 2013;250-251:181-189.

[65]

Li A, Zhao X, Hou Y, Liu H, Wu L, Qu J. The electrocatalytic dechlorination of chloroacetic acids at electrodeposited Pd/Fe-modified carbon paper electrode. Appl Catal B Environ Energy. 2012;111-112:628-635.

[66]

Zhu W, Zhang R, Qu F, Asiri AM, Sun X. Design and application of foams for electrocatalysis. ChemCatChem. 2017;9(10):1721-1743.

[67]

Wang Y, Zheng X, Wang D. Design concept for electrocatalysts. Nano Res. 2022;15(3):1730-1752.

[68]

Wu H, Huang Q, Shi Y, Chang J, Lu S. Electrocatalytic water splitting: mechanism and electrocatalyst design. Nano Res. 2023;16(7):9142-9157.

[69]

Chen Z, Liu Y, Wei W, Ni B. Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environ Sci Nano. 2019;6(8):2332-2366.

[70]

Lou Y, Fontmorin JM, Amrane A, Fourcade F, Geneste F. Metallic nanoparticles for electrocatalytic reduction of halogenated organic compounds: a review. Electrochimica Acta. 2021;377:138039.

[71]

Li J, Zhang C, Li Y, Pan Y, Liu Y. Rational design and structural regulation of robust catalysts for electrocatalytic hydrodechlorination: from nanostructures to single atoms. ACS Catal. 2023;13(14):9633-9655.

[72]

Jiang G, Wang K, Li J, et al. Electrocatalytic hydrodechlorination of 2, 4-dichlorophenol over palladium nanoparticles and its pH-mediated tug-of-war with hydrogen evolution. Chem Eng J. 2018;348:26-34.

[73]

Fan Z, Zhao H, Wang K, et al. Enhancing electrocatalytic hydrodechlorination through interfacial microenvironment modulation. Environ Sci Technol. 2023;57(3):1499-1509.

[74]

Gan G, Li X, Wang L, et al. Identification of catalytic active sites in nitrogen-doped carbon for electrocatalytic dechlorination of 1, 2-dichloroethane. ACS Catal. 2019;9(12):10931-10939.

[75]

Parker VD, Lawrence K. Electrolytic Reduction of Halogenated Pyridines. The Dow Chemical Company, America patent;1972.

[76]

Kyriacou D, Clayton, Edamura FY, Love J, Creek W. Electrolytic Production of Certain Trichloropicolinic Acids and/or 3, 6-Dichloropicilinic Acid. The Dow Chemical Company, America patent;1980.

[77]

Kyriacou D, Clayton. Highly Active Silver Cathode, Preparation of Same and Use to Make 2, 3, 5-Trichloropyridine. The Dow Chemical Company, America patent;1980.

[78]

Domning WE, Creek W. Expanded Metal as More Efficient Form of Silver Cathode for Electrolytic Reduction of Polychloropicolinate Anions. The Dow Chemical Company, America patent;1984.

[79]

Isse AA, Huang B, Durante C, Gennaro A. Electrocatalytic dechlorination of volatile organic compounds at a copper cathode. Part I: polychloromethanes. Appl Catal B Environ Energy. 2012;126:347-354.

[80]

Shu X, Yang Q, Yao F, et al. Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multiwalled carbon nanotubes particle electrodes. Chem Eng J. 2019;358:903-911.

[81]

Hu S, Wang D, Fan M, Yang B, Chen H. Highly efficient atomic hydrogen-mediated electrochemical hydrodehalogenation of trichloroacetic acid on 3D hierarchical multi-transition metal selenides. J Hazard Mater. 2023;459:132282.

[82]

Yu W, Jiang H, Fang J, Song S. Designing an electrondeficient Pd/NiCo2O4 bifunctional electrocatalyst with an enhanced hydrodechlorination activity to reduce the consumption of Pd. Environ Sci Technol. 2021;55:10087-10096.

[83]

Gan G, Fan S, Li X, et al. Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1, 2-dichloroethane to ethylene. ACS Catal. 2021;11:14284-14292.

[84]

Zhang Y, Yu S, Luo P, et al. Fixation of CO2 along with bromopyridines on a silver electrode. R Soc Open Sci. 2018;5:180897.

[85]

Sheng J, Cheng X. Electrochemical monodeuterodefluorination of trifluoromethyl aromatic compounds with deuterium oxide. CCS Chem. 2023:1-11.

[86]

Durante C, Isse AA, Sandona G, Gennaro A. Electrochemical hydrodehalogenation of polychloromethanes at silver and carbon electrodes. Appl Catal B Environ Energy. 2008;88(3):479-489.

[87]

Zhang M, Shi Q, Song X, Wang H, Bian Z. Recent electrochemical methods in electrochemical degradation of halogenated organics: a review. Environ Sci Pollut Res. 2019;26:10457-10486.

[88]

Zhu X, Wang X, Li N, Wang Q, Liao C. Bioelectrochemical system for dehalogenation: a review. Environ Pollut. 2022;293:118519.

[89]

Li LX, Zhang GC, Sun WJ, et al. Construction of ultra-small Pt nanoparticles @Ti3C2Tx MXene electrocatalyst for efficient and stable electrochemical hydrodechlorination of chloramphenicol. Chem Eng J. 2022;433:134415.

[90]

Zhou J, Lou Z, Xu J, et al. Enhanced electrocatalytic dechlorination by dispersed and moveable activated carbon supported palladium catalyst. Chem Eng J. 2019;325:1176-1185.

[91]

Chen C, Jin L, Dong H, et al. Modulating adsorption of active hydrogen atoms on palladium nanoparticles: doping ruthenium into metal-organic frameworks for efficient electrocatalytic hydrodechlorination. Sep Purif Technol. 2023;324:124527.

[92]

Chen Y, Feng C, Wang W, et al. Electronic structure engineering of bimetallic Pd-Au alloy nanocatalysts for improving electrocatalytic hydrodechlorination performance. Sep Purif Technol. 2022;289:120731.

[93]

Zhao Z, Yan H, Liu F, Yao J, You S, Liu Y. Electrocatalytic hydrodechlorination using supported atomically precise gold nanoclusters under flow-through configuration. Catalysts. 2023;13:1045.

[94]

Wang K, Shu S, Chen M, et al. Pd-TiO2 Schottky heterojunction catalyst boost the electrocatalytic hydrodechlorination reaction. Chem Eng J. 2020;381:122673.

[95]

Zhang Z, Cheng R, Nan J, et al. Effective electrocatalytic hydrodechlorination of 2, 4, 6-trichlorophenol by a novel Pd/MnO2/Ni foam cathode. Chin Chem Lett. 2022;33:3823-3828.

[96]

Costentin C, Robert M, Savéant J.-M. Electron transfer and bond breaking: recent advances. Chem Phys. 2006;324(1):40-56.

[97]

Romanczyk PP, Rotko G, Kurek SS. Dissociative electron transfer in polychlorinated aromatics. Reduction potentials from convolution analysis and quantum chemical calculations. Chem Phys. 2016;18(32):22573-22582.

[98]

Huang B, Zhu Y, Li J, Zeng G, Lei C. Uncovering the intrinsic relationship of electrocatalysis and molecular electrochemistry for dissociative electron transfer to polychloroethanes at silver cathode. Electrochimica Acta. 2017;231:590-600.

[99]

Min Y, Zhou X, Chen JJ, et al. Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nat Commun. 2021;12(1):303.

[100]

Jiang G, Lan M, Zhang Z, et al. Identification of active hydrogen species on palladium nanoparticles for an enhanced electrocatalytic hydrodechlorination of 2, 4- dichlorophenol in Water. Environ Sci Technol. 2017;51(13):7599-7605.

[101]

Qin S, Lei C, Wang X, Chen W, Huang B. Electrocatalytic activation of organic chlorides via direct and indirect electron transfer using atomic vacancy control of palladium-based catalyst. Cell Rep Phys Sci. 2022;3(1):100713.

[102]

Xu Y, Cai Q, Ma H, He Y, Zhang H, Ma C. Optimisation of electrocatalytic dechlorination of 2, 4-dichlorophenoxyacetic acid on a roughened silver–palladium cathode. Electrochimica Acta. 2013;96:90-96.

[103]

Liu B, Zhang H, Lu Q, Li G, Zhang F. A CuNi bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE). Sci Total Environ. 2018;635:1417-1425.

[104]

Lou Z, Wang Z, Zhou J, Zhou C, Xu J, Xu X. Pd/TiC/Ti electrode with enhanced atomic H* generation, atomic H* adsorption and 2, 4-DCBA adsorption for facilitating electrocatalytic hydrodechlorination. Environ Sci Nano. 2020;7(5):1566-1581.

[105]

Deng J, Gao E, Wu F, et al. Generation of atomic hydrogen by Ni-Fe hydroxides: mechanism and activity for hydrodechlorination of trichloroethylene. Water Res. 2021;207:117802.

[106]

Xu Y, Yao Z, Mao Z, et al. Single-Ni-atom catalyzes aqueous phase electrochemical reductive dechlorination reaction. Appl Catal B Environ Energy. 2020;277:120367.

[107]

Wagoner ER, Karty JA, Peters DG. Catalytic reduction of 4, 4′- (2, 2, 2-trichloroethane-1, 1-diyl)bis(chlorobenzene) (DDT) with nickel(I) salen electrogenerated at vitreous carbon cathodes in dimethylformamide. J Electroanal Chem. 2013;706:55-63.

[108]

He WY, Fontmorin JM, Hapiot P, et al. A new bipyridyl cobalt complex for reductive dechlorination of pesticides. Electrochimica Acta. 2016;207:313-320.

[109]

Liang X, Huang T, Li M, et al. Highly efficient C-Cl bond cleavage and unprecedented C-C bond cleavage of environmentally toxic DDT through molecular electrochemical catalysis. Appl Catal Gen. 2017;545:44-53.

[110]

Pillai KC, Muthuraman G, Moon IS. Electrochemically mediated reduction of epichlorohydrin pollutant by Ni(I) (hexamethylcyclam) in aqueous media. Electrochimica Acta. 2017;232:570-580.

[111]

Muthuraman G, Chandrasekara Pillai K. Dechlorination of beta-methylallyl chloride by electrogenerated [Co(I) (bipyridine)3]+: an electrochemical study in the presence of cationic surfactants. J Colloid Interface Sci. 2006;297(2):687-695.

[112]

Medeiros MJ, Neves CS, Pereira AR, Duñach E. Electroreductive intramolecular cyclisation of bromoalkoxylated derivatives catalysed by nickel(I) tetramethylcyclam in “green”media. Electrochimica Acta. 2011;56(12):4498-4503.

[113]

Farrell J, Melitas N, Kason M, Li T. Electrochemical and column investigation of iron-mediated reductive dechlorination of trichloroethylene and perchloroethylene. Environ Sci Technol. 2000;34(12):2549-2556.

[114]

Zewei C, Yinghua X, Chunan M, et al. Zinc catalyzed electroreduction dechlorination of 2, 3, 5, 6-tetrachloropyridine: reaction mechanism and process optimization. J Chem Eng. 2016;67(6):2332-2339.

[115]

Jalil AA, Triwahyono S, Razali NA, et al. Complete electrochemical dechlorination of chlorobenzenes in the presence of various arene mediators. J Hazard Mater. 2010;174(1-3):581-585.

[116]

Medvedev JJ, Medvedeva XV, Engelhardt H, Klinkova A. Relative activity of metal cathodes towards electroorganic coupling of CO2 with benzylic halides. Electrochimica Acta. 2021;387:138528.

[117]

Liu Z, Arnold RG, Betterton EA, Festa KD. Electrolytic reduction of CCl4-effects of cathode material and potential on kinetics, selectivity, and product stoichiometry. Environ Eng Sci. 1999;16(1):1-13.

[118]

Huang B, Isse AA, Durante C, Wei C, Gennaro A. Electrocatalytic properties of transition metals toward reductive dechlorination of polychloroethanes. Electrochimica Acta. 2012;70:50-61.

[119]

Zhou Y, Zhang G, Ji Q, Zhang W, Qu J, Liu H. Enhanced stabilization and effective utilization of atomic hydrogen on Pd-In nanoparticles in a flow-through electrode. Environ Sci Technol. 2019;53(19):11383-11390.

[120]

Tang H, Bian Z, Peng Y, Li S, Wang H. Stepwise dechlorination of chlorinated alkenes on an Fe-Ni/rGO/Ni foam cathode: product control by one-electron-transfer reactions. J Hazard Mater. 2022;433:128744.

[121]

Zhou Y, Jiang C, Yu Z, Wang Y, Zheng J, Zhou X. In situ Raman monitoring of electroreductive dehalogenation of aryl halides at an Ag/aqueous solution interface. Anal Methods. 2023;15(6):771-777.

[122]

Gennaro A, Isse AA, Giussani E, Mussini PR, Primerano I, Rossi M. Relationship between supporting electrolyte bulkiness and dissociative electron transfer at catalytic and noncatalytic electrodes. Electrochimica Acta. 2013;89:52-62.

[123]

Li J, Wang H, Qi Z, et al. Kinetics and mechanisms of electrocatalytic hydrodechlorination of diclofenac on Pd-Ni/PPyrGO/Ni electrodes. Appl Catal B Environ Energy. 2020;268:118696.

[124]

Durante C, Isse AA, Gennaro A. Electrocatalytic dechlorination of polychloroethylenes at silver cathode. J Appl Electrochem. 2012;43(2):227-235.

[125]

Couto AG, Thapa B, Karty JA, Raghavachari K, Baker LA, Peters DG. Direct electrochemical reduction of acetochlor at carbon and silver cathodes in dimethylformamide. J Electrochem Soc. 2020;167(15):155517.

[126]

Ma H, Xu Y, Ding X, Liu Q, Ma C. Electrocatalytic dechlorination of chloropicolinic acid mixtures by using palladium-modified metal cathodes in aqueous solutions. Electrochimica Acta. 2016;210:762-772.

[127]

Schmidt C. First deuterated drug approved. Nat Biotechnol. 2017;35(6):493-494.

[128]

Ke J, Wang H, Zhou L, et al. Hydrodehalogenation of aryl halides through direct electrolysis. Chemistry. 2019;25(28):6911-6914.

[129]

Yan M, Kawamata Y, Baran PS. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem Rev. 2017;117(21):13230-13319.

[130]

Mitsudo K, Okada T, Shimohara S, Mandai H, Suga S. Electro-reductive halogen-deuterium exchange and methylation of aryl halides in acetonitrile. Electrochemistry. 2013;81(5):362-364.

[131]

Lu L, Li H, Zheng Y, Bu F, Lei A. Facile and economical electrochemical dehalogenative deuteration of (hetero)aryl halides. CCS Chem. 2021;3(11):2669-2675.

[132]

Li P, Guo C, Wang S, et al. Facile and general electrochemical deuteration of unactivated alkyl halides. Nat Commun. 2022;13(1):3774.

[133]

Liu C, Han S, Li M, Chong X, Zhang B. Electrocatalytic deuteration of halides with D2O as the deuterium source over a copper nanowire arrays cathode. Angew Chem Int Ed. 2020;59(42):18527-18531.

[134]

Chantarojsiri T, Soisuwan T, Kongkiatkrai P. Toward green syntheses of carboxylates: considerations of mechanisms and reactions at the electrodes for electrocarboxylation of organohalides and alkenes. Chinese J Catal. 2022;43(12):3046-3061.

[135]

Mena S, Sanchez J, Guirado G. Electrocarboxylation of 1- chloro-(4-isobutylphenyl)ethane with a silver cathode in ionic liquids: an environmentally benign and efficient way to synthesize ibuprofen. RSC Adv. 2019;9(26):15115-15123.

[136]

Gennaro A, Isse AA, Maran F. Nickel(I)(salen)-electrocatalyzed reduction of benzyl chlorides in the presence of carbon dioxide. J Electroanal Chem. 2001;507(1-2):124-134.

[137]

Isse AA, Gennaro A. Electrochemical synthesis of cyanoacetic acid from chloroacetonitrile and carbon dioxide. J Electrochem Soc. 2002;149(8):493-503.

[138]

Dai Y, Niu L, Liu H, Zou J, Yu L, Feng Q. Cu-Ni Alloy catalyzed electrochemical carboxylation of benzyl bromide with carbon dioxide in ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. Int J Electrochem Sci. 2018;13(1):1084-1095.

[139]

Sui G, Sun Q, Wu D, Meng W, Wang H, Lu J. Electrocatalytic reduction of PhCH2Cl on Ag-ZSM-5 zeolite modified electrode. RSC Adv. 2016;6(68):63493-63496.

[140]

Shan S, Jiang C, Liu Y, Zhang J, Wang H, Lu J. Electrocatalytic carboxylation of halogenated compounds with mesoporous silver electrode materials. RSC Adv. 2021;11(36):21986-21990.

[141]

Reche I, Mena S, Gallardo I, Guirado G. Electrocarboxylation of halobenzonitriles: an environmentally friendly synthesis of phthalate derivatives. Electrochimica Acta. 2019;320:134576.

[142]

Wu L, Zhao Y, Guan Y, et al. Silver encapsulated copper salen complex: efficient catalyst for electrocarboxylation of cinnamyl chloride with CO2. RSC Adv. 2019;9(56):32628-32633.

[143]

Cao Y, Li D, Ding C, et al. CO2 fixation with aryl bromide toward carboxylic acid enabled by bifunctional CuAg electrocatalysts. ACS Catal. 2023;13(18):11902-11909.

[144]

Liu R, Zhao H, Zhao X, et al. Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads. Environ Sci Technol. 2018;52(17):9992-10002.

[145]

Lan S, Feng J, Xiong Y, Tian S, Liu S, Kong L. Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: finding of effective piezo-dechlorination. Environ Sci Technol. 2017;51(11):6560-6569.

[146]

Li J, Chen Y, Bai R, et al. Construction of Pd/Ni2P-Ni foam nanosheet array electrode by in-situ phosphatizationelectrodeposition strategy for synergistic electrocatalytic hydrodechlorination. Chem Eng J. 2022;435:134932.

[147]

Lokteva ES, Shishova VV, Tolkachev NN, et al. Hydrodehalogenation of 4-chlorophenol and 4-bromophenol over Pd–Fe/Al2O3: influence of catalyst reduction conditions. Mendeleev Commun. 2022;32(2):249-252.

[148]

Mao M, Wu J, Wang Y, Long Y, Fan G. Active site and adsorption behavior engineering of subsize PdNi nanoparticles for boosting electrocatalytic hydrodechlorination of 4-chlorophenol. Appl Surf Sci. 2022;600:153988.

[149]

Ji L, Wang C, Ji S, Kepp KP, Paneth P. Mechanism of cobalamin-mediated reductive dehalogenation of chloroethylenes. ACS Catal. 2017;7(8):5294-5307.

[150]

Ball MR, Rivera-Dones KR, Stangland E, Mavrikakis M, Dumesic JA. Hydrodechlorination of 1, 2-dichloroethane on supported AgPd catalysts. J Catal. 2019;370:241-250.

[151]

Choi C, Wang X, Kwon S, et al. Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene. Nat Nanotechnol. 2022;18(2):160-167.

[152]

Gan G, Xu F, Li X, et al. Cubic CuFe2O4 spinel with octahedral Fe active sites for electrochemical dechlorination of 1, 2-dichloroethane. ACS Appl Mater Interfaces. 2023;15(5):6631-6638.

[153]

Xu F, Li X, Gan G, et al. Manganese-based spinel core–shell nanostructures for efficient electrocatalysis of 1, 2-dichloroethane. ACS Appl Nano Mater. 2020;3(11):10778-10786.

[154]

Yang J, Fan S, Li X, Tao Y, Wang J, Chen G. Highly efficient electrocatalysis dechlorination of dichloromethane over single-atom Cu/Co3O4-βspinel nanofibers. Chem Eng J. 2023;470:144040.

[155]

Liu Y, Mao R, Tong Y, et al. Reductive dechlorination of trichloroacetic acid (TCAA) by electrochemical process over Pd-In/Al2O3 catalyst. Electrochimica Acta. 2017;232:13-21.

[156]

Min Y, Mei S, Pan X, Chen J, Yu H, Xiong Y. Mimicking reductive dehalogenases for efficient electrocatalytic water dechlorination. Nat Commun. 2023;14(1):5134.

[157]

Wang F, Li Y, Xie H, et al. Pd nanoparticles supported on microflower NiMOF modified roughed nickel foam with the enhanced active site for electrochemical dechlorination of trichloroacetic acid. Sep Purif Technol. 2023;325:124598.

[158]

Zheng C, Li M, Liu H, Xu Z. Complete dehalogenation of bromochloroacetic acid by liquid phase catalytic hydrogenation over Pd/CeO2 catalysts. Chemosphere. 2020;239:124740.

[159]

Jiang C, Li X, Fan J, et al. Electrochemically activated carbon–halogen bond cleavage and C–C coupling monitored by in situ shell-isolated nanoparticle-enhanced Raman spectroscopy. Analyst. 2022;147(7):1341-1347.

[160]

Li C, Zhang H, Liu M, Lang F, Pang J, Bu X. Recent progress in metal–organic frameworks (MOFs) for electrocatalysis. Ind Eng Chem Res. 2023;1(1):9-38.

[161]

Liu X, Zhang L, Wang J. Design strategies for MOF-derived porous functional materials: preserving surfaces and nurturing pores. J Materiomics. 2021;7(3):440-459.

[162]

Lou Z, Zhou J, Sun M, et al. MnO2 enhances electrocatalytic hydrodechlorination by Pd/Ni foam electrodes and reduces Pd needs. Chem Eng J. 2018;352:549-557.

[163]

Xu G, Liu Q, Yan H. Recent advances of single-atom catalysts for electro-catalysis. Chem Res Chin Univ. 2022;38(5):1146-1150.

[164]

Wang Q, Zhou L, Chen Q, et al. Oxygenated functional group-driven spontaneous fabrication of Pd nanoparticles decorated porous carbon nanosheets for electrocatalytic hydrodechlorination of 4-chlorophenol. J Hazard Mater. 2021;408:124456.

[165]

Zhao Z, Yu L, Zheng L, et al. TiO2@PDA inorganic-organic core-shell skeleton supported Pd nanodots for enhanced electrocatalytic hydrodechlorination. J Hazard Mater. 2022;435:128998.

[166]

Li N, Song X, Wang L, et al. Single-atom cobalt catalysts for electrocatalytic hydrodechlorination and oxygen reduction reaction for the degradation of chlorinated organic compounds. ACS Appl Mater Interfaces. 2020;12(21):24019-24029.

[167]

Wang Y, Cui C, Zhang G, Xin Y, Wang S. Electrocatalytic hydrodechlorination of pentachlorophenol on Pd-supported magnetic biochar particle electrodes. Sep Purif Technol. 2021;258:118017.

[168]

Gu Z, Ni N, He G, et al. Enhanced hydrosaturation selectivity and electron transfer for electrocatalytic chlorophenols hydrogenation on Ru sites. Environ Sci Technol. 2023;57(43):16695-16706.

[169]

Sun Z, Ma X, Hu X. Electrocatalytic dechlorination of 2, 3, 5- trichlorophenol on palladium/carbon nanotubes-nafion film/titanium mesh electrode. Environ Sci Pollut Res Int. 2017;24(16):14355-14364.

[170]

Jiang G, Li X, Shen Y, et al. Mechanistic insight into the electrocatalytic hydrodechlorination reaction on palladium by a facet effect study. J Catal. 2020;391:414-423.

[171]

Wu T, Zuo Y, Chen H, Xu Z, Zheng S. Electrocatalytic hydrodechlorination of 2, 4-dichlorophenol on Pd catalysts supported on n-doped mesoporous carbons: impact of electronic effects. Appl Catal Gen. 2023;666:119407.

[172]

Wang J, Wei X, Wang P, et al. Insights into the enhanced performance of NiCo-LDH modified Pd/NF cathode for electrocatalytic hydrodechlorination. Fuel. 2023;341:127689.

[173]

Wu H, Mao Z, Liu B, et al. Ultra-low-loading Pd nanocrystals modified Ni foam electrode for efficient electrochemical hydrodechlorination. Appl Catal B Environ Energy. 2023;337:122978.

[174]

Wei X, Wang J, Miao J, et al. Enhanced performance of an insitu synthesized Pd/N-TiO2/Ti cathode for electrocatalytic hydrodechlorination. Colloids Surf A Physicochem Eng Asp. 2022;648:129320.

[175]

Peverly AA, Karty JA, Peters DG. Electrochemical reduction of (1R, 2r, 3S, 4R, 5r, 6S)-hexachlorocyclohexane (Lindane) at silver cathodes in organic and aqueous–organic media. J Electroanal Chem. 2013;692:66-71.

[176]

Wu Y, Gan L, Zhang S, et al. Carbon-nanotube-doped Pd-Ni bimetallic three-dimensional electrode for electrocatalytic hydrodechlorination of 4-chlorophenol: enhanced activity and stability. J Hazard Mater. 2018;356:17-25.

[177]

Ma X, Sun Z, Hu X. Electrocatalytic dechlorination of chlorophenols on palladium/graphene-nafion/titanium mesh electrode. J Water Process Eng. 2018;26:72-82.

[178]

Chen M, Shu S, Li J, Lv X, Dong F, Jiang G. Activating palladium nanoparticles via a mott-Schottky heterojunction in electrocatalytic hydrodechlorination reaction. J Hazard Mater. 2020;389:121876.

[179]

Wang P, Shi X, Fu C, et al. Strong pyrrolic-N–Pd interactions boost the electrocatalytic hydrodechlorination reaction on palladium nanoparticles. Nanoscale. 2020;12(2):843-850.

[180]

Shu S, Wang P, Zhang W, et al. Pd nanoparticles on defective polymer carbon nitride: enhanced activity and origin for electrocatalytic hydrodechlorination reaction. Chin Chem Lett. 2020;31(10):2762-2768.

[181]

Xie W, Yuan S, Mao X, et al. Electrocatalytic activity of Pdloaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater. Water Res. 2013;47(11):3573-3582.

[182]

Li J, Peng Y, Zhang W, et al. Hierarchical Pd/MnO2 nanosheet array supported on Ni foam: an advanced electrode for electrocatalytic hydrodechlorination reaction. Appl Surf Sci. 2020;509:145369.

[183]

Fu W, Shu S, Li J, et al. Identifying the rate-determining step of the electrocatalytic hydrodechlorination reaction on palladium nanoparticles. Nanoscale. 2019;11(34):15892-15899.

[184]

Lou Z, Yu C, Wen X, Xu Y, Yu J, Xu X. Construction of Pd nanoparticles/two-dimensional Co-MOF nanosheets heterojunction for enhanced electrocatalytic hydrodechlorination. Appl Catal B Environ Energy. 2022;317:121730.

[185]

Jiang G, Shi X, Cui M, et al. Surface ligand environment boosts the electrocatalytic hydrodechlorination reaction on palladium nanoparticles. ACS Appl Mater Interfaces. 2021;13(3):4072-4083.

[186]

Li J, Li M, Li J, Wang S, Li G, Liu X. Hydrodechlorination and deep hydrogenation on single-palladium-atom-based heterogeneous catalysts. Appl Catal B Environ Energy. 2021;282:119518.

[187]

Guo W, Wang Z, Wang X, Wu Y. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv Mater. 2021;33(34):2004287.

[188]

Gómez-Sainero LM, Palomar J, Omar S, et al. Valorization of chloromethanes by hydrodechlorination with metallic catalysts. Catal Today. 2018;310:75-85.

[189]

Wang J, Fan S, Li X, et al. Rod-like nanostructured Cu–Co spinel with rich oxygen vacancies for efficient electrocatalytic dechlorination. ACS Appl Mater Interfaces. 2023;15(10):12915-12923.

[190]

Yang J, Fan S, Li X, et al. Carbon-encapsulated NCO4–β/C hierarchical nano-microflowers for electrocatalytic dechlorination of dichloromethane. ACS Appl Nano Mater. 2022;5(10):14862-14870.

[191]

Gan G, Zhang X, Bu S, et al. Metal-nitrogen-carbon singleatom aerogels as self-supporting electrodes for dechlorination of 1, 2-dichloroethane. Adv Funct Mater. 2022;32(48):2206263.

[192]

Tian M, Guo X, Dong R, et al. Insight into the boosted catalytic performance and chlorine resistance of nanospherelike meso-macroporous CrOx/MnCo3Ox for 1, 2-dichloroethane destruction. Appl Catal, B. 2019;259:118018.

[193]

Zhang Y, Fan S, Li X, et al. Sea-urchin-like carbon nanospheres for electrocatalytic dechlorination of 1, 2-dichloroethane. ACS Appl Nano Mater. 2021;4(12):13090-13098.

[194]

Liu T, Luo J, Meng X, et al. Electrocatalytic dechlorination of halogenated antibiotics via synergistic effect of chlorinecobalt bond and atomic H. J Hazard Mater. 2018;358:294-301.

[195]

Yang B, Li H, Zhang Z, et al. Nickel dual-atom catalysts for the selective electrocatalytic debromination of tribromoacetic acid as a green chemistry process. Chem Eng J. 2022;427:131719.

[196]

Espinós JP, Rico VJ, González J, et al. In situ monitoring of the phenomenon of electrochemical promotion of catalysis. J Catal. 2018;358:27-34.

[197]

Salverda A, Abner S, Mena-Morcillo E, Zimmer A, Elsayed A, Chen A. Electrochemical scanning electrochemical microscopic, and in situ electrochemical Fourier transform infrared studies of CO2 reduction at porous copper surfaces. J Phys Chem C. 2023;127(15):7151-7161.

[198]

Wen B, Chen Q, Radjenovic P, Dong J, Tian Z, Li J. In situ surface-enhanced Raman spectroscopy characterization of electrocatalysis with different nanostructures. Annu Rev Phys Chem. 2021;72(1):331-351.

[199]

Deng Y, Yeo B. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy. ACS Catal. 2017;7(11):7873-7889.

[200]

Yang Y, Wang J, Shu Y, Ji Y, Dong H, Li Y. Significance of density functional theory (DFT) calculations for electrocatalysis of N2 and CO2 reduction reactions. Phys Chem Chem Phys. 2022;24(15):8591-8603.

[201]

Arellano-González , González I, Texier AC. Mineralization of 2-chlorophenol by sequential electrochemical reductive dechlorination and biological processes. J Hazard Mater. 2016;314:181-187.

[202]

He Z, Lin K, Sun J, et al. Kinetics of electrochemical dechlorination of 2-chlorobiphenyl on a palladium-modified nickel foam cathode in a basic medium: from batch to continuous reactor operation. Electrochim Acta. 2013;109:502-511.

[203]

Xu Y, Mao Z, Qu R, et al. Electrochemical hydrogenation of oxidized contaminants for water purification without supporting electrolyte. Nat Water. 2023;1(1):95-103.

[204]

Zhang N, Wu Y, Ganzoury MA, de Lannoy CF. Electrically conductive Ni-P nanoporous membrane reactors for electrochemical reductive dechlorination of organic pollutants. ACS Appl Nano Mater. 2023;6(11):9426-9435.

RIGHTS & PERMISSIONS

2024 The Authors. EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

407

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/