PDF
Abstract
Metal suboxides have emerged as a class of promising candidates for many electrocatalytic applications owing to their enhanced electrical conductivity and chemical activities. In this review, we have summarized the recent progress of metal suboxides. We have firstly introduced the discovery of metal suboxides, and their categories according to element tables. Then various metal suboxides synthetic methods have been systematically illustrated involving solid-state synthesis, high-temperature synthesis, low-temperature synthesis and plasma-driven synthetic methods, etc. In addition, their applications have been demonstrated in the field of water, carbon and nitrogen cycle-based energy catalysis technologies involving electrochemical hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, carbon dioxide reduction, urea oxidation reaction, methanol oxidation reaction, nitrogen reduction reaction and nitrate reduction reaction, etc. Finally, we make a brief conclusion about the developments of metal suboxides, giving an outlook for future research challenges. These insights are expected to hold promise for developing metal suboxide catalysts toward practical applications.
Keywords
carbon-neutral energy applications
/
defect engineering
/
electrocatalysts
/
metal suboxides
Cite this article
Download citation ▾
Shan Ding, Jingjing Duan, Sheng Chen.
Recent advances of metal suboxide catalysts for carbonneutral energy applications.
EcoEnergy, 2024, 2(1): 45-82 DOI:10.1002/ece2.26
| [1] |
Portehault D, Maneeratana V, Candolfi C, et al. Facile general route toward tunable Magnéli nanostructures and their use as thermoelectric metal oxide/carbon nanocomposities. ACS Nano. 2011;5(11):9052-9061.
|
| [2] |
Li X, Zhu AL, Qu W, et al. Magnéli phase Ti4O7 electrode for oxygen reduction reaction and its implication for zinc-air rechargeable batteries. Electrochim Acta. 2010;55(20):5891-5898.
|
| [3] |
Kitada A, Hasegawa G, Kobayashi Y, Kanamori K, Nakanishi K, Kageyama H. Selective preparation of macroporous monoliths of conductive titanium oxides TinO2n-1 (n=2, 3, 4, 6). J Am Chem Soc. 2012;134(26):10894-10898.
|
| [4] |
Alipour Moghadam Esfahani R, Ebralidze II, Specchia S, Easton EB.Afuel cell catalyst support based on doped titanium suboxides with enhanced conductivity, durability and fuel cell performance. J Mater Chem A. 2018;6(30):14805-14815.
|
| [5] |
Geng P, Su J, Miles C, Comninellis C, Chen G. Highly-ordered Magnéli Ti4O7 nanotube arrays as effective anodic material for electro-oxidation. Electrochim Acta. 2015;153:316-324.
|
| [6] |
He C, Chang S, Huang X, Wang Q, Mei A, Shen PK. Direct synthesis of pure single-crystalline Magnéli phase Ti8O15 nanowires as conductive carbon-free materials for electrocatalysis. Nanoscale. 2015;7:2856-2861.
|
| [7] |
Nagao M, Misu S, Hirayama J, Otomo R, Kamiya Y. Magnéliphase titanium suboxide nanocrystals as highly active catalysts for selective acetalization of furfural. ACS Appl Mater Interfaces. 2020;12(2):2539-2547.
|
| [8] |
Sinhamahapatra A, Lee HY, Shen S, Mao SS, Yu JS. H-doped TiO2-x prepared with MgH2 for highly efficient solar-driven hydrogen production. Appl Catal B Environ. 2018;237:613-621.
|
| [9] |
Kuroda Y, Igarashi H, Nagai T, et al. Templated synthesis of carbon-free mesoporous Magnéli-phase titanium suboxide. Electrocatalysis. 2019;10(5):459-465.
|
| [10] |
Wang Y, Li H, Zhou W, Zhang X, Zhang B, Yu Y. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angew Chem Int Ed. 2022;61(19):e202202604.
|
| [11] |
Wei X, Chen C, Fu XZ, Wang S. Oxygen vacancies-rich metal oxide for electrocatalytic nitrogen cycle. Adv Energy Mater. 2023;14(1):2303027.
|
| [12] |
Wang Y, Yang R, Ding Y, et al. Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation. Nat Commun. 2023;14(1):1412.
|
| [13] |
Geng Z, Kong X, Chen W, et al. Oxygen vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO. Angew Chem Int Ed. 2018;57(21):6054-6059.
|
| [14] |
Wei X, Wen X, Liu Y, et al. Oxygen vacancy-mediated selective C-N coupling toward electrocatalytic urea synthesis. J Am Chem Soc. 2022;144(26):11530-11535.
|
| [15] |
Simon A. Alkali metal suboxides: intermediates between salts and metals. J Solid State Chem. 1979;27(1):87-97.
|
| [16] |
Cvelbar U, Chen Z, Levchenko I, et al. Sub-oxide-to-metallic, uniformly-nanoporous crystalline nanowires by plasma oxidation and electron reduction. Chem Commun. 2012;48(90):11070-11072.
|
| [17] |
Ding S, Sun Y, Lou F, et al. Plasma-regulated two-dimensional high entropy oxide arrays for synergistic hydrogen evolution: from theoretical prediction to electrocatalytic applications. J Power Sources. 2022;520:230873.
|
| [18] |
Vogt P, Bierwagen O. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy. Appl Phys Lett. 2015;106(8):081910.
|
| [19] |
Gao S, Lin Y, Jiao X, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature. 2016;529(7584):68-71.
|
| [20] |
van Hattum ED, Palmero A, Arnoldbik WM, Habraken FHPM. Experimental characterization of the deposition of silicon suboxide films in a radiofrequency magnetron reactive sputtering system. Surf Coat Technol. 2004;188:399-403.
|
| [21] |
Vogt P, Bierwagen O. Comparison of the growth kinetics of In2O3 and Ga2O3 and their suboxide desorption during plasmaassisted molecular beam epitaxy. Appl Phys Lett. 2016;109(6):062103.
|
| [22] |
Du H, Guo H, Wang K, et al. Durable electrocatalytic reduction of nitrate to ammonia over defective pseudobrookite Fe2TiO5 nanofibers with abundant oxygen vacancies. Angew Chem Int Ed. 2023;62(5):e202215782.
|
| [23] |
Ding S, Zhang Y, Lou F, et al. Oxygen-vacancy-type Mars-van Krevelen mechanism drives ultrafast dioxygen electroreduction to hydrogen peroxide. Mater Today Energy. 2023;38:101430.
|
| [24] |
Li Y, Wang W, Cheng M, et al. Arming Ru with oxygenvacancy- enriched RuO2 sub-nanometer skin activates superior bifunctionality for pH-universal overall water splitting. Adv Mater. 2023;35(24):2206351.
|
| [25] |
Ou Y, Tian W, Liu L, Zhang Y, Xiao P. Bimetallic Co2Mo3O8 suboxides coupled with conductive cobalt nanowires for efficient and durable hydrogen evolution in alkaline electrolyte. J Mater Chem A. 2018;6(12):5217-5228.
|
| [26] |
Zhang L, Jang H, Liu H, et al. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pHuniversal oxygen evolution electrocatalyst. Angew Chem Int Ed. 2021;60(34):18821-18829.
|
| [27] |
Ham K, Hong S, Kang S, Cho K, Lee J. Extensive active-site formation in trirutile CoSb2O6 by oxygen vacancy for oxygen evolution reaction in anion exchange membrane water splitting. ACS Energy Lett. 2021;6(2):364-370.
|
| [28] |
Wang Z, Xu W, Chen X, et al. Defect-rich nitrogen doped Co3O4/C porous nanocubes enable high-efficiency bifunctional oxygen electrocatalysis. Adv Funct Mater. 2019;29(33):1902875.
|
| [29] |
Chu K, Luo Y, Shen P, Li X, Li Q, Guo Y. Unveiling the synergy of O-vacancy and heterostructure over MoO3-x/Mxene for N2 electroreduction to NH3. Adv Energy Mater. 2021;12(3):2103022.
|
| [30] |
Fang Y, Liu Z, Han J, et al. High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx Mxene. Adv Energy Mater. 2019;9(16):1803406.
|
| [31] |
Yang X, Tian Y, Mukherjee S, et al. Constructing oxygen vacancies via engineering heterostructured Fe3C/Fe3O4 catalysts for electrochemical ammonia synthesis. Angew Chem Int Ed. 2023;62(34):e202304797.
|
| [32] |
Cheng Q, Huang M, Xiao L, et al. Unraveling the influence of oxygen vacancy concentration on electrocatalytic CO2 reduction to formate over indium oxide catalysts. ACS Catal. 2023;13(6):4021-4029.
|
| [33] |
Ye F, Zhang S, Cheng Q, et al. The role of oxygen-vacancy in bifunctional indium oxyhydroxide catalysts for electrochemical coupling of biomass valorization with CO2 conversion. Nat Commun. 2023;14(1):2040.
|
| [34] |
Xie C, Yan D, Chen W, et al. Insight into the design of defect electrocatalysts: from electronic structure to adsorption energy. Mater Today. 2019;31:47-68.
|
| [35] |
Xiao L, Wang Z, Guan J. 2D MOFs and their derivatives for electrocatalytic applications: recent advances and new challenges. Coord Chem Rev. 2022;472:214777.
|
| [36] |
Adegoke KA, Maxakato NW. Porous metal oxide electrocatalytic nanomaterials for energy conversion: oxygen defects and selection techniques. Coord Chem Rev. 2022;457:214389.
|
| [37] |
Wang H, Yang T, Wang J, Zhou Z, Pei Z, Zhao S. Coordination engineering in single-site catalysts: general principles, characterizations, and recent advances. Chem. 2024;10:1-38.
|
| [38] |
Liu Y, Li C, Tan C, et al. Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts. Nat Commun. 2023;14(1):2475.
|
| [39] |
Wang Q, Lei Y, Wang D, Li Y. Defect engineering in earthabundant electrocatalysts for CO2 and N2 reduction. Energy Environ Sci. 2019;12(6):1730-1750.
|
| [40] |
Dou S, Tao L, Wang R, El Hankari S, Chen R, Wang S. Plasmaassisted synthesis and surface modification of electrode materials for renewable energy. Adv Mater. 2018;30(21):e1705850.
|
| [41] |
Xu L, Jiang Q, Xiao Z, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew Chem Int Ed. 2016;55(17):5277-5281.
|
| [42] |
Gusev AA, Avvakumov EG, Vinokurova OB. Synthesis of Ti4O7 Magnéli phase using mechanical activation. Sci Sinter. 2003;35(3):141-145.
|
| [43] |
Han WQ, Zhang Y. Magnéli phases TinO2n-1 nanowires: formation, optical, and transport properties. Appl Phys Lett. 2008;92(20):203117.
|
| [44] |
Hasegawa G, Sato T, Kanamori K, et al. Hierarchically porous monoliths based on N-doped reduced titanium oxides and their electric and electrochemical properties. Chem Mater. 2013;25(17):3504-3512.
|
| [45] |
Kundu D, Black R, Berg EJ, Nazar LF. A highly active nanostructured metallic oxide cathode for aprotic Li-O2 batteries. Energy Environ Sci. 2015;8(4):1292-1298.
|
| [46] |
Siracusano S, Baglio V, D'Urso C, Antonucci V, Aricò AS. Preparation and characterization of titanium suboxides as conductive supports of IrO2 electrocatalysts for application in SPE electrolysers. Electrochim Acta. 2009;54(26):6292-6299.
|
| [47] |
Toyoda M, Yano T, Tryba B, Mozia S, Tsumura T, Inagaki M. Preparation of carbon-coated Magnéli phases TinO2n-1 and their photocatalytic activity under visible light. Appl Catal B Environ. 2009;88(1-2):160-164.
|
| [48] |
Wang G, Ling Y, Wang H, et al. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ Sci. 2012;5(3):6180-6187.
|
| [49] |
Zhang T, Wu MY, Yan DY, et al. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy. 2018;43:103-109.
|
| [50] |
Daiyan R, Tran-Phu T, Kumar P, et al. Nitrate reduction to ammonium: from CuO defect engineering to waste NOx-to-NH3 economic feasibility. Energy Environ Sci. 2021;14(6):3588-3598.
|
| [51] |
Tominaka S, Tsujimoto Y, Matsushita Y, Yamaura K. Synthesis of nanostructured reduced titanium oxide: crystal structure transformation maintaining nanomorphology. Angew Chem Int Ed. 2011;50(32):7418-7421.
|
| [52] |
Ioroi T, Kageyama H, Akita T, Yasuda K. Formation of electroconductive titanium oxide fine particles by pulsed UV laser irradiation. Phys Chem Chem Phys. 2020;12(27):7529-7535.
|
| [53] |
Xiao Z, Wang Y, Huang YC, et al. Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting. Energy Environ Sci. 2017;10(12):2563-2569.
|
| [54] |
Liu X, Zhu G, Wang X, Yuan X, Lin T, Huang F. Progress in black titania: a new material for advanced photocatalysis. Adv Energy Mater. 2016;6(17):1600452.
|
| [55] |
Perera S, Zelenski N, Gillan EG. Synthesis of nanocrystalline TiO2 and reduced titanium oxides via rapid and exothermic metathesis reaction. Chem Mater. 2006;18(9):2381-2388.
|
| [56] |
Luo Z, Miao R, Huan TD, et al. Mesoporous MoO3-x material as an efficient electrocatalyst for hydrogen evolution reactions. Adv Energy Mater. 2016;6(16):1600528.
|
| [57] |
Kim HS, Cook JB, Lin H, et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater. 2017;16(4):454-460.
|
| [58] |
Ni J, Zhao Y, Li L, Mai L. Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy. 2015;11:129-135.
|
| [59] |
Hashem AM, Abbas SM, Abdel-Ghany AE, et al. Blend formed by oxygen deficient MoO3-δ oxides as lithiuminsertion compounds. J Alloys Compd. 2016;686:744-752.
|
| [60] |
Zhang Q, Li X, Ma Q, et al. A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat Commun. 2017;8(1):14903.
|
| [61] |
Wang BB, Qu XL, Zhu MK, et al. Plasma produced photoluminescent molybdenum sub-oxide nanophase materials. J Alloys Compd. 2018;765:1167-1173.
|
| [62] |
Li Y, Cheng J, Liu Y, et al. Manipulation of surface plasmon resonance in sub-stoichiometry molybdenum oxide nanodots through charge carrier control technique. J Phys Chem C. 2017;121(9):5208-5214.
|
| [63] |
Wu Q, van de Krol R. Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO2 photocatalysts: role of oxygen vacancies and iron dopant. J Am Chem Soc. 2012;134(22):9369-9375.
|
| [64] |
Lee JH, Black R, Popov G, et al. The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium-oxygen batteries. Energy Environ Sci. 2012;5(11):9558-9565.
|
| [65] |
Wang J, Wang Z, Huang B, et al. Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl Mater Interfaces. 2012;4(8):4024-4030.
|
| [66] |
Di Valentin C, Pacchioni G. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations. Acc Chem Res. 2014;47(11):3233-3241.
|
| [67] |
Liu B, Kuo CH, Chen J, et al. Ligand-assisted co-assembly approach toward mesoporous hybrid catalysts of transitionmetal oxides and noble metals: photochemical water splitting. Angew Chem Int Ed. 2015;54(31):9061-9065.
|
| [68] |
Rosen J, Hutchings GS, Jiao F. Ordered mesoporous cobalt oxide as highly efficient oxygen evolution catalyst. J Am Chem Soc. 2013;135(11):4516-4521.
|
| [69] |
Zhou W, Li W, Wang JQ, et al. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J Am Chem Soc. 2014;136(26):9280-9283.
|
| [70] |
Miao R, Luo Z, Zhong W, et al. Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst. Appl Catal B Environ. 2016;189:26-38.
|
| [71] |
Wu R, Zhang J, Shi Y, Liu D, Zhang B. Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J Am Chem Soc. 2015;137(22):6983-6986.
|
| [72] |
Walsh FC, Wills RGA. The continuing development of Magnéli phase titanium sub-oxides and Ebonex® electrodes. Electrochim Acta. 2010;55(22):6342-6351.
|
| [73] |
Niu M, Tan H, Cheng D, Sun Z, Cao D. Bandgap engineering of Magnéli phase TinO2n-1: electron-hole self-compensation. J Chem Phys. 2015;143(5):054701.
|
| [74] |
Ioroi T, Senoh H, Yamazaki SI, Siroma Z, Fujiwara N, Yasuda K. Stability of corrosion-resistant Magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials. J Electrochem Soc. 2008;155(4):321-326.
|
| [75] |
Gusev AA, Avvakumov EG, Medvedev AZ, Masliy AI. Ceramic electrodes based on Magnéli phases of titanium oxides. Sci Sinter. 2007;39(1):51-57.
|
| [76] |
Tang C, Zhou D, Zhang Q. Synthesis and characterization of Magnéli phases: reduction of TiO2 in a decomposed NH3 atmosphere. Mater Lett. 2012;79:42-44.
|
| [77] |
Luo Z, Sang S, Wu Q, Liu S. A conductive additive for Zn electrodes in secondary Ni/Zn batteries: the Magnéli phase titanium sub-oxides conductive ceramic TinO2n-1. ECS Electrochem Lett. 2013;2:A21-A24.
|
| [78] |
Ioroi T, Akita T, Yamazaki SI, Siroma Z, Fujiwara N, Yasuda K. Corrosion-resistant PEMFC cathode catalysts based on a Magnéli phase titanium oxide support synthesized by pulsed UV laser irradiation. J Electrochem Soc. 2011;158(10):C329-C334.
|
| [79] |
Ioroi T, Akita T, Asahi M, et al. Platinum-titanium alloy catalysts on a Magnéli-phase titanium oxide support for improved durability in polymer electrolyte fuel cells. J Power Sources. 2013;223:183-189.
|
| [80] |
Krishnan P, Advani SG, Prasad AK. Magnéli phase TinO2n-1 as corrosion-resistant PEM fuel cell catalyst support. J Solid State Electrochem. 2012;16(7):2515-2521.
|
| [81] |
Bejan D, Guinea E, Bunce NJ. On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex® anodes. Electrochim Acta. 2012;69:275-281.
|
| [82] |
Wei Z, Wang W, Li W, et al. Steering electron-hole migration pathways using oxygen vacancies in tungsten oxides to enhance their photocatalytic oxygen evolution performance. Angew Chem Int Ed. 2021;60(15):8236-8242.
|
| [83] |
Harada S, Tanaka K, Inui H. Thermoelectric properties and crystallographic shear structures in titanium oxides of the Magnéli phases. J Appl Phys. 2010;108(8):083703.
|
| [84] |
Bartholomew RF, Frankl DR. Electrical properties of some titanium oxides. Phys Rev. 1969;187(3):828-833.
|
| [85] |
Gusev AA, Avvakumov EG, Vinokurova OB. Synthesis of Ti4O7 Magnéli phases using mechanical activation. Sci Sinter. 2003;35(3):141-145.
|
| [86] |
Li D, Ding S, Zhang Y, Duan J, Chen S. Acid-stable Ebonex for continuous-flow nitrogen electrofixation. Energy Fuels. 2023;37(23):18216-18225.
|
| [87] |
Li Z, Liang J, Liu Q, et al. High-efficiency ammonia electrosynthesis via selective reduction of nitrate on ZnCo2O4 nanosheet array. Mater Today Phys. 2022;23:100619.
|
| [88] |
Niu Z, Fan S, Li X, et al. Bifunctional copper-cobalt spinel electrocatalysts for efficient tandem-like nitrate reduction to ammonia. Chem Eng J. 2022;450:138343.
|
| [89] |
Xie L, Liu Q, Sun S, et al. High-efficiency electrosynthesis of ammonia with selective reduction of nitrate in neutral media enabled by self-supported Mn2CoO4 nanoarray. ACS Appl Mater Interfaces. 2022;14(29):33242-33247.
|
| [90] |
Jia R, Wang Y, Wang C, Ling Y, Yu Y, Zhang B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020;10(6):3533-3540.
|
| [91] |
Zhang X, Wang C, Guo Y, Zhang B, Yu Y, et al. Cu clusters/TiO2-x with abundant oxygen vacancies for enhanced electrocatalytic nitrate reduction to ammonia. J Mater Chem A. 2022;10(12):6448-6453.
|
| [92] |
Sun WJ, Li LX, Zhang HY, He JH, Lu JM. A bioinspired ironcentered electrocatalyst for selective catalytic reduction of nitrate to ammonia. ACS Sustain Chem Eng. 2022;10(18):5958-5965.
|
| [93] |
Song Q, Li M, Hou X, et al. Anchored Fe atoms for N=O bond activation to boost electrocatalytic nitrate reduction at low concentrations. Appl Catal B Environ. 2022;317:121721.
|
| [94] |
Wei J, Han D, Bi J, Gong J. Fe-doped ilmenite CoTiO3 for antibiotic removal: electronic modulation and enhanced activation of peroxymonosulfate. Chem Eng J. 2021;423:130165.
|
| [95] |
Fan X, Liang J, Zhang L, et al. Enhanced electrocatalytic nitrate reduction to ammonia using plasma-induced oxygen vacancies in CoTiO3-x nanofiber. Carbon Neutralization. 2022;1:6-13.
|
| [96] |
Kitchamsetti N, Choudhary RJ, Phase DM, Devan RS. Structural correlation of a nanoparticle-embedded mesoporous CoTiO3 perovskite for an efficient electrochemical supercapacitor. RSC Adv. 2020;10(39):23446-23456.
|
| [97] |
Zhuang L, Ge L, Yang Y, et al. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv Mater. 2017;29(17):1606793.
|
| [98] |
Xu Y, Mo J, Liu Q, Wang X, Ding S. Self-assembled CoTiO3 nanorods with controllable oxygen vacancies for the efficient photochemical reduction of CO2 to CO. Catal Sci Technol. 2020;10(7):2040-2046.
|
| [99] |
Liu YR, Shang X, Gao WK, et al. In situ sulfurized CoMo-S/CoMoO4 shell-core nanorods supported on N-doped reduced graphene oxide (NRGO) as efficient electrocatalyst for hydrogen evolution reaction. J Mater Chem A. 2017;5(6):2885-2896.
|
| [100] |
Li JJ, Weng B, Cai SC, Chen J, Jia HP, Xu YJ. Efficient promotion of charge transfer and separation in hydrogenated TiO2/WO3 with rich surface-oxygen-vacancies for photodecomposition of gaseous toluene. J Hazard Mater. 2018;342:661-669.
|
| [101] |
Lu X, Zhai T, Zhang X, et al. WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors. Adv Mater. 2012;24(7):938-944.
|
| [102] |
Ma M, Zhang K, Li P, Jung MS, Jeong MJ, Park JH. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew Chem Int Ed. 2016;55(39):11819-11823.
|
| [103] |
Kang E, An S, Yoon S, Kim JK, Lee J. Ordered mesoporous WO3-x possessing electronically conductive framework comparable to carbon framework toward long-term stable cathode supports for fuel cells. J Mater Chem. 2010;20(35):7416-7421.
|
| [104] |
Sachs M, Park JS, Pastor E, et al. Effect of oxygen deficiency on the excited state kinetics of WO3 and implications for photocatalysis. Chem Sci. 2019;10(22):5667-5677.
|
| [105] |
Santato C, Odziemkowski M, Ulmann M, Augustynski J. Crystallographically oriented mesoporous WO3 films: synthesis characterization and applications. J Am Chem Soc. 2001;123(43):10639-10649.
|
| [106] |
Tong Y, Chen P, Zhang M, et al. Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catal. 2017;8:1-7.
|
| [107] |
Xie C, Yan D, Li H, et al. Defect chemistry in heterogeneous catalysis: recognition, understanding, and utilization. ACS Catal. 2020;10(19):11082-11098.
|
| [108] |
Zhou D, Li F, Zhao Y, et al. Mechanistic regulation by oxygen vacancies in structural evolution promoting electrocatalytic water oxidation. ACS Catal. 2023;13(7):4398-4408.
|
| [109] |
Li CW, Kanan MW. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J Am Chem Soc. 2012;134(17):7231-7234.
|
| [110] |
Zhang S, Kang P, Meyer TJ. Nanostructured TiN catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc. 2014;136(5):1734-1737.
|
| [111] |
Li CW, Ciston J, Kanan MW. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature. 2014;508(7497):504-507.
|
| [112] |
Gao S, Sun Z, Liu W, et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat Commun. 2017;8(1):14503.
|
| [113] |
Huang Y, Li M, Pan F, et al. Plasma-induced Mo-doped Co3O4 with enriched oxygen vacancies for electrocatalytic oxygen evolution in water splitting. Carbon Energy. 2022;5(3): e279.
|
| [114] |
Li L, Wang P, Shao Q, Huang X. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem Soc Rev. 2020;49(10):3072-3106.
|
| [115] |
Zeb Z, Huang Y, Chen L, et al. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord Chem Rev. 2023;482:215058.
|
| [116] |
Xiao P, Chen W, Wang X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv Energy Mater. 2015;5(24):1500985.
|
| [117] |
Wu Z, Yang P, Li Q, et al. Microwave synthesis of Pt clusters on black TiO2 with abundant oxygen vacancies for efficient acidic electrocatalytic hydrogen evolution. Angew Chem Int Ed. 2023;62(14):e202300406.
|
| [118] |
Wu C, Sun Y, Wen X, et al. Adjusting oxygen vacancies in perovskite LaCoO3 by electrochemical activation to enhance the hydrogen evolution reaction activity in alkaline condition. J Energy Chem. 2023;76:226-232.
|
| [119] |
Qin C, Chen S, Gomaa H, et al. Regulating HER and OER performances of 2D materials by the external physical fields. Acta Phys - Chim Sin. 2024;40:2307059.
|
| [120] |
Wei T, Meng G, Zhou Y, et al. Amorphous Fe-Co oxide as an active and durable bifunctional catalyst for the urea-assisted H2 evolution reaction in seawater. Chem Commun. 2023;59(66):9992-9995.
|
| [121] |
Li W, Liu K, Feng S, et al. Well-defined Ni3N nanoparticles armored in hollow carbon nanotube shell for high-efficiency bifunctional hydrogen electrocatalysis. J Colloid Interface Sci. 2024;655:726-735.
|
| [122] |
Li YH, Liu PF, Pan LF, et al. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat Commun. 2015;6(1):8064.
|
| [123] |
Li Y, Yu ZG, Wang L, et al. Electronic-reconstructionenhanced hydrogen evolution catalysis in oxide polymorphs. Nat Commun. 2019;10(1):3149.
|
| [124] |
Zhang B, Xue Y, Jiang A, Xue Z, Li Z, Hao J. Ionic liquid as reaction medium for synthesis of hierarchically structured one-dimensional MoO2 for efficient hydrogen evolution. ACS Appl Mater Interfaces. 2017;9(8):7217-7223.
|
| [125] |
Datta RS, Haque F, Mohiuddin M, et al. Highly active two dimensional α-MoO3-x for the electrocatalytic hydrogen evolution reaction. J Mater Chem A. 2017;5(46):24223-24231.
|
| [126] |
Yu X, Yu ZY, Zhang XL, et al. Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. Nano Energy. 2020;71:104652.
|
| [127] |
Zhao Y, Chang C, Teng F, et al. Defect-engineered ultrathin δ- MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting. Adv Energy Mater. 2017;7(18):1700005.
|
| [128] |
Zeng Z, Gan LY, Yang H, et al. Orbital coupling of heterodiatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat Commun. 2021;12(1):4088.
|
| [129] |
An L, Wei C, Lu M, et al. Recent development of oxygen evolution electrocatalysts in acidic environment. Adv Mater. 2021;33(20):2006328.
|
| [130] |
Wang K, Wang Y, Yang B, et al. Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. Energy Environ Sci. 2022;15(6):2356-2365.
|
| [131] |
Qin Q, Jang H, Wang Y, et al. Gettering la effect from La3IrO7 as a highly efficient electrocatalyst for oxygen evolution reaction in acid media. Adv Energy Mater. 2020;11(5):2003561.
|
| [132] |
Cao L, Luo Q, Chen J, et al. Dynamic oxygen adsorption on single-atomic ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat Commun. 2019;10(1):4849.
|
| [133] |
Xu J, Li J, Lian Z, et al. Atomic-step enriched rutheniumiridium nanocrystals anchored homogeneously on MOFderived support for efficient and stable oxygen evolution in acidic and neutral media. ACS Catal. 2021;11(6):3402-3413.
|
| [134] |
Ding S, Zhang Y, Lou F, et al. “Uncapped” metal-organic framework (MOF) dispersions driven by O2 plasma towards superior oxygen evolution electrocatalysis. J Mater Chem A. 2022;10(39):20813-20818.
|
| [135] |
Zhang H, Meng G, Wei T, et al. Co doping promotes the alkaline overall seawater electrolysis performance over MnPSe3 nanosheets. Chem Commun. 2023;59(81):12144-12147.
|
| [136] |
Wang X, Wan X, Qin X, et al. Electronic structure modulation of RuO2 by TiO2 enriched with oxygen vacancies to boost acidic O2 evolution. ACS Catal. 2022;12(15):9437-9445.
|
| [137] |
Wang X, Jang H, Liu S, et al. Enhancing the catalytic kinetics and stability of Ru sites for acidic water oxidation by forming brønsted acid sites in tungsten oxide matrix. Adv Energy Mater. 2023;13(36):2301673.
|
| [138] |
Zaman WQ, Sun W, Tariq M, et al. Iridium substitution in nickel cobaltite renders high mass specific OER activity and durability in acidic media. Appl Catal B Environ. 2019;244:295-302.
|
| [139] |
Hu W, Zhong H, Liang W, Chen S. Ir-surface enriched porous Ir-Co oxide hierarchical architecture for high performance water oxidation in acidic media. ACS Appl Mater Interfaces. 2014;6(15):12729-12736.
|
| [140] |
Spöri C, Briois P, Nong HN, et al. Experimental activity descriptors for iridium-based catalysts for the electrochemical oxygen evolution reaction (OER). ACS Catal. 2019;9(8):6653-6663.
|
| [141] |
Tariq M, Zaman WQ, Sun W, et al. Unraveling the beneficial electrochemistry of IrO2/MoO3 hybrid as a highly stable and efficient oxygen evolution reaction catalyst. ACS Sustain Chem Eng. 2018;6(4):4854-4862.
|
| [142] |
Diaz-Morales O, Raaijman S, Kortlever R, et al. Iridiumbased double perovskites for efficient water oxidation in acid media. Nat Commun. 2016;7(1):12363.
|
| [143] |
Shan J, Ye C, Chen S, et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation. J Am Chem Soc. 2021;143(13):5201-5211.
|
| [144] |
Ding S, Xia B, Li M, et al. An abnormal size effect enables ampere-level O2 electroreduction to hydrogen peroxide in neutral electrolytes. Energy Environ Sci. 2023;16(8):3363-3372.
|
| [145] |
Dan M, Zhong R, Hu S, Wu H, Zhou Y, Liu ZQ. Strategies and challenges on selective electrochemical hydrogen peroxide production: catalyst and reaction medium design. Chem Catal. 2022;2(8):1919-1960.
|
| [146] |
Tang C, Chen L, Li H, et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J Am Chem Soc. 2021;143(20):7819-7827.
|
| [147] |
Kim C, Park SO, Kwak SK, Xia Z, Kim G, Dai L. Concurrent oxygen reduction and water oxidation at high ionic strength for scalable electrosynthesis of hydrogen peroxide. Nat Commun. 2023;14(1):5822.
|
| [148] |
Zhang C, Lu R, Liu C, Yuan L, Wang J, Zhao Y. High yield electrosynthesis of hydrogen peroxide from water using electrospun CaSnO3@carbon fiber membrane catalysts with abundant oxygen vacancy. Adv Funct Mater. 2021;31(26):2100099.
|
| [149] |
Fu J, Liang R, Liu G, et al. Recent progress in electrically rechargeable zinc-air batteries. Adv Mater. 2019;31:e1805230.
|
| [150] |
Zhang Y, Wang M, Zhu W, et al. Metastable hexagonal phase SnO2 nanoribbons with active edge sites for efficient hydrogen peroxide electrosynthesis in neutral media. Angew Chem Int Ed. 2023;62(20):e202218924.
|
| [151] |
Wu J, Han Y, Bai Y, et al. The electron transport regulation in carbon dots/In2O3 electrocatalyst enable 100%selectivity for oxygen reduction to hydrogen peroxide. Adv Funct Mater. 2022;32:2203647.
|
| [152] |
Liu C, Li H, Chen J, et al. 3D transition-metal-mediated columbite nanocatalysts for decentralized electrosynthesis of hydrogen peroxide. Small. 2021;17(13):2007249.
|
| [153] |
Deng Z, Li L, Ren Y, et al. Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cudoped TiO2. Nano Res. 2022;15(5):3880-3885.
|
| [154] |
Deng Z, Ma C, Yan S, et al. Electrocatalytic H2O2 production via two-electron O2 reduction by Mo-doped TiO2 nanocrystallines. Catal Sci Technol. 2021;11(21):6970-6974.
|
| [155] |
Wang Y, Shi R, Shang L, et al. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew Chem Int Ed. 2020;59(31):13057-13062.
|
| [156] |
Yan L, Cheng X, Wang Y, et al. Exsolved Co3O4 with tunable oxygen vacancies for electrocatalytic H2O2 production. Mater Today Energy. 2022;24:100931.
|
| [157] |
Carneiro JF, Paulo MJ, Siaj M, Tavares AC, Lanza MRV. Nb2O5 nanoparticles supported on reduced graphene oxide sheets as electrocatalyst for the H2O2 electrogeneration. J Catal. 2015;332:51-61.
|
| [158] |
Wu Z, Wang T, Zou JJ, Li Y, Zhang C. Amorphous nickel oxides supported on carbon nanosheets as high-performance catalysts for electrochemical synthesis of hydrogen peroxide. ACS Catal. 2022;12(10):5911-5920.
|
| [159] |
Cheng X, Dou S, Qin G, et al. Rational design of highly selective nitrogen-doped Fe2O3-CNTs catalyst towards H2O2 generation in alkaline media. Int J Hydrogen Energy. 2020;45(11):6128-6137.
|
| [160] |
Wang C, Lv Z, Yang W, Feng X, Wang B. A rational design of functional porous frameworks for electrocatalytic CO2 reduction reaction. Chem Soc Rev. 2023;52(4):1382-1427.
|
| [161] |
Wang H, Wen N, Wang Y, Jiao X, Xia Y, Chen D. Boosting electrochemical reduction of CO2 to formate over oxygen vacancy stabilized copper-tin dual single atoms catalysts. Adv Funct Mater. 2023;33(42):2303473.
|
| [162] |
Wang P, Meng S, Zhang B, et al. Sub-1 nm Cu2O nanosheets for the electrochemical CO2 reduction and valence state-activity relationship. J Am Chem Soc. 2023;145(48):26133-26143.
|
| [163] |
Chen P, Zhang P, Kang X, et al. Efficient electrocatalytic reduction of CO2 to ethane over nitrogen-doped Fe2O3. J Am Chem Soc. 2022;144(32):14769-14777.
|
| [164] |
Zhang B, Chang Y, Wu Y, et al. Regulating *OCHO intermediate as rate-determining step of defective oxynitride nanosheets enabling robust CO2 electroreduction. Adv Energy Mater. 2022;12(27):2200321.
|
| [165] |
Qin H, Ye Y, Li J, et al. Synergistic engineering of doping and vacancy in Ni(OH)2 to boost urea electrooxidation. Adv Funct Mater. 2022;33(4):2209698.
|
| [166] |
Zhao J, Zhang Y, Guo H, et al. Defect-rich Ni(OH)2/NiO regulated by WO3 as core-shell nanoarrays achieving energysaving water-to-hydrogen conversion via urea electrolysis. Chem Eng J. 2022;433:134497.
|
| [167] |
Chen S, Huang D, Liu D, et al. Hollow and porous NiCo2O4 nanospheres for enhanced methanol oxidation reaction and oxygen reduction reaction by oxygen vacancies engineering. Appl Catal B Environ. 2021;291:120065.
|
| [168] |
Fan L, Xia C, Zhu P, Lu Y, Wang H. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat Commun. 2020;11(1):3633.
|
| [169] |
Dong J, Liu Y, Pei J, et al. Continuous electroproduction of formate via CO2 reduction on local symmetry-broken singleatom catalysts. Nat Commun. 2023;14(1):6849.
|
| [170] |
Liu Y, Chen S, Quan X, Yu H. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc. 2015;137(36):11631-11636.
|
| [171] |
Mou S, Wu T, Xie J, et al. Boron phosphide nanoparticles: a nonmetal catalyst for high-selectivity electrochemical reduction of CO2 to CH3OH. Adv Mater. 2019;31(36):1903499.
|
| [172] |
Chen Z, Wang T, Liu B, et al. Grain-boundary-rich copper for efficient solar-driven electrochemical CO2 reduction to ethylene and ethanol. JAmChem Soc. 2020;142(15):6878-6883.
|
| [173] |
Han L, Song S, Liu M, et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J Am Chem Soc. 2020;142(29):12563-12567.
|
| [174] |
Huang M, Deng B, Zhao X, et al. Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction. ACS Nano. 2022;16(2):2110-2119.
|
| [175] |
Deng B, Huang M, Li K, et al. The crystal plane is not the key factor for CO2-to-methane electrosynthesis on reconstructed Cu2O microparticles. Angew Chem Int Ed. 2021;61(7):e2021 14080.
|
| [176] |
Jia L, Sun M, Xu J, et al. Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals. Angew Chem Int Ed. 2021;60(40):21741-21745.
|
| [177] |
Li J, Kuang Y, Meng Y, et al. Electroreduction of CO2 to formate on a copper-based electrocatalyst at high pressures with high energy conversion efficiency. J Am Chem Soc. 2020;142(16):7276-7282.
|
| [178] |
Pardo Pérez LC, Teschner D, Willinger E, et al. In situ formed “Sn1-xInx@In1-ySnyOz” core@shell nanoparticles as electrocatalysts for CO2 reduction to formate. Adv Funct Mater. 2021;31(41):2103601.
|
| [179] |
Zhong X, Liang S, Yang T, et al. Sn dopants with synergistic oxygen vacancies boost CO2 electroreduction on CuO nanosheets to CO at low overpotential. ACS Nano. 2022;16(11):19210-19219.
|
| [180] |
Li Z, Jiang X, Wang X, et al. Concave PtCo nanocrosses for methanol oxidation reaction. Appl Catal B Environ. 2020;277:119135.
|
| [181] |
Wang J, Zhang B, Guo W, et al. Toward electrocatalytic methanol oxidation reaction: longstanding debates and emerging catalysts. Adv Mater. 2023;35(26):2211099.
|
| [182] |
Gu H, Li J, Niu X, et al. Symmetry-breaking p-block antimony single atoms trigger N-bridged titanium sites for electrocatalytic nitrogen reduction with high efficiency. ACS Nano. 2023;17(21):21838-21849.
|
| [183] |
Zhang Y, Wang Y, Ma N, Liang B, Xiong Y, Fan J. Revealing the adsorption behavior of nitrogen reduction reaction on strained Ti2CO2 by a spin-polarized d-band center model. Small. 2023:2306840.
|
| [184] |
Li Z, Zhou P, Zhou M, et al. Synergistic electrocatalysis of crystal facet and O-vacancy for enhancive urea synthesis from nitrate and CO2. Appl Catal B Environ. 2023;338:122962.
|
| [185] |
Dong S, Niu A, Wang K, et al. Modulation of oxygen vacancy and zero-valent zinc in ZnCr2O4 nanofibers by enriching zinc for efficient nitrate reduction. Appl Catal B Environ. 2023;333:122772.
|
| [186] |
Chu K, Zong W, Xue G, et al. Cation substitution strategy for developing perovskite oxide with rich oxygen vacancymediated charge redistribution enables highly efficient nitrate electroreduction to ammonia. J Am Chem Soc. 2023;145(39):21387-21396.
|
| [187] |
Chu K, Liu F, Zhu J, et al. A general strategy to boost electrocatalytic nitrogen reduction on perovskite oxides via the oxygen vacancies derived from a-site deficiency. Adv Energy Mater. 2021;11:2003799.
|
| [188] |
Cui X, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv Energy Mater. 2018;8(22):1800369.
|
| [189] |
Yang Y, Zhang W, Tan X, Jiang K, Zhai S, Li Z. Atomic-level reactive sites for electrocatalytic nitrogen reduction to ammonia under ambient conditions. Coord Chem Rev. 2023;489:215196.
|
| [190] |
Chen GF, Ren S, Zhang L, et al. Advances in electrocatalytic N2 reduction-strategies to tackle the selectivity challenge. Small Methods. 2019;3(6):1800337.
|
| [191] |
Chen Y, Liu H, Ha N, Licht S, Gu S, Li W. Revealing nitrogen-containing species in commercial catalysts used for ammonia electrosynthesis. Nat Catal. 2020;3(12):1055-1061.
|
| [192] |
Rehman F, Delowar Hossain M, Tyagi A, Lu D, Yuan B, Luo Z. Engineering electrocatalyst for low-temperature N2 reduction to ammonia. Mater Today. 2021;44:136-167.
|
| [193] |
Kong J, Lim A, Yoon C, et al. Electrochemical synthesis of NH3 at low temperature and atmospheric pressure using a γ-Fe2O3 catalyst. ACS Sustain Chem Eng. 2017;5(11):10986-10995.
|
| [194] |
Zhang Y, Qiu W, Ma Y, et al. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions. ACS Catal. 2018;8(9):8540-8544.
|
| [195] |
Chu K, Liu YP, Li YB, Zhang H, Tian Y. Efficient electrocatalytic N2 reduction on CoO quantum dots. J Mater Chem A. 2019;7(9):4389-4394.
|
| [196] |
Wu X, Xia L, Wang Y, et al. Mn3O4 nanocube: an efficient electrocatalyst toward artificial N2 fixation to NH3. Small. 2018;14(48):1803111.
|
| [197] |
Xu B, Xia L, Zhou F, et al. Enhancing electrocatalytic N2 reduction to NH3 by CeO2 nanorod with oxygen vacancies. ACS Sustain Chem Eng. 2019;7(3):2889-2893.
|
| [198] |
Zhang X, Liu Q, Shi X, et al. TiO2 nanoparticles-reduced graphene oxide hybrid: an efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. J Mater Chem A. 2018;6(36):17303-17306.
|
| [199] |
Xiang X, Wang Z, Shi X, Fan M, Sun X. Ammonia synthesis from electrocatalytic N2 reduction under ambient conditions by Fe2O3 nanorods. ChemCatChem. 2018;10(20):4530-4535.
|
| [200] |
Han J, Ji X, Ren X, et al. MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3. J Mater Chem A. 2018;6(27):12974-12977.
|
| [201] |
Zhang M, Xu W, Ma CL, Yu J, Liu YT, Ding B. Highly active and selective electroreduction of N2 by the catalysis of Ga single atoms stabilized on amorphous TiO2 nanofibers. ACS Nano. 2022;16(3):4186-4196.
|
| [202] |
Chen D, Zhang S, Bu X, et al. Synergistic modulation of local environment for electrochemical nitrate reduction via asymmetric vacancies and adjacent ion clusters. Nano Energy. 2022;98:107338.
|
| [203] |
Zhang G, Wang G, Wan Y, Liu X, Chu K. Ampere-level nitrate electroreduction to ammonia over monodispersed Bidoped FeS2. ACS Nano. 2023;17(21):21328-21336.
|
| [204] |
Wang G, Chen Q, Zhang J, et al. NiMoO4 nanorods with oxygen vacancies self-supported on Ni foam towards highefficiency electrocatalytic conversion of nitrite to ammonia. J Colloid Interface Sci. 2023;647:73-80.
|
| [205] |
Chen S, Qi G, Yin R, et al. Electrocatalytic nitrate-toammonia conversion on CoO/CuO nanoarrays using Znnitrate batteries. Nanoscale. 2023;15(48):19577-19585.
|
| [206] |
Guo Y, Zhang R, Zhang S, et al. Pd doping-weakened intermediate adsorption to promote electrocatalytic nitrate reduction on TiO2 nanoarrays for ammonia production and energy supply with zinc-nitrate batteries. Energy Environ Sci. 2021;14(7):3938-3944.
|
| [207] |
Zhang X, Zhu X, Bo S, et al. Electrocatalytic urea synthesis with 63.5%faradaic efficiency and 100%N-selectivity via one-step CN coupling. Angew Chem Int Ed. 2023;62(33):e202305447.
|
| [208] |
Cao N, Quan Y, Guan A, et al. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J Colloid Interface Sci. 2020;577:109-114.
|
| [209] |
Wei X, Liu Y, Zhu X, et al. Dynamic reconstitution between copper single atoms and clusters for electrocatalytic urea synthesis. Adv Mater. 2023;35(18):2300020.
|
| [210] |
Chen C, Zhu X, Wen X, et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat Chem. 2020;12(8):717-724.
|
| [211] |
Meng N, Huang Y, Liu Y, Yu Y, Zhang B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep Phys Sci. 2021;2(12):100378.
|
| [212] |
Duan W, Chen Y, Ma H, Lee JF, Lin YJ, Feng C. In situ reconstruction of metal oxide cathodes for ammonium generation from high-strength nitrate wastewater: elucidating the role of the substrate in the performance of Co3O4-x. Environ Sci Technol. 2023;57(9):3893-3904.
|
| [213] |
Zheng H, Zhang Y, Wang Y, et al. Perovskites with enriched oxygen vacancies as a family of electrocatalysts for efficient nitrate reduction to ammonia. Small. 2022;19(5):2205625.
|
| [214] |
Wang Y, Zhou W, Jia R, Yu Y, Zhang B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew Chem Int Ed. 2020;59(13):5350-5354.
|
RIGHTS & PERMISSIONS
2024 The Authors. EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.