Synthesis conditions affecting electrochemical and chemical stabilities of Ga-doped Li7La3Zr2O12 solid electrolyte

DingYuan Huang , Masao Kamiko , Shunsuke Yagi

EcoEnergy ›› 2024, Vol. 2 ›› Issue (1) : 141 -153.

PDF
EcoEnergy ›› 2024, Vol. 2 ›› Issue (1) : 141 -153. DOI: 10.1002/ece2.24
RESEARCH ARTICLE

Synthesis conditions affecting electrochemical and chemical stabilities of Ga-doped Li7La3Zr2O12 solid electrolyte

Author information +
History +
PDF

Abstract

All-solid-state lithium batteries with Li metal anodes and solid-state electrolytes (SSEs) can achieve higher energy density and enhanced safety compared to the current liquid-based Li-ion batteries. Among several SSEs, Li7La3Zr2O12 (LLZO) has attracted attention due to its high Li+ ion conductivity (∼10−3 S cm−1 at room temperature for Ga-doped LLZO) and good stability in ambient air. However, the challenges of Li penetration and the chemical instability against Li are the primary obstacles to its practical application. This study investigates the effects of the grain size and electronic conductivity of Gadoped LLZO on the critical current density (CCD). Using samples with similar interfacial impedances between Ga-doped LLZO and Li, we demonstrate that a decrease in the grain size of Ga-doped LLZO lowers the electronic conductivity, leading to a higher CCD. Furthermore, although a previous study suggests that Ga-doped LLZO might be unsuitable for direct contact with Li, the chemical stability against Li is enhanced in a more compact pellet prepared at a higher cold-pressing pressure. These results underscore the significance of the sintering conditions and pellet pressing pressure in the synthesis of Ga-doped LLZO since they ultimately affect the electrochemical and chemical stabilities of the Ga-doped LLZO solid electrolyte with a Li-metal anode.

Keywords

cold pressing / grain size / Li-metal batteries / LLZO / solid-state electrolytes

Cite this article

Download citation ▾
DingYuan Huang, Masao Kamiko, Shunsuke Yagi. Synthesis conditions affecting electrochemical and chemical stabilities of Ga-doped Li7La3Zr2O12 solid electrolyte. EcoEnergy, 2024, 2(1): 141-153 DOI:10.1002/ece2.24

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed. 2007;46(41):7778-7781.

[2]

Zhu Y, He X, Mo Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces. 2015;7(42):23685-23693.

[3]

Samson AJ, Hofstetter K, Bag S, Thangadurai V. A bird’s-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries. Energy Environ Sci. 2019;12(10):2957-2975.

[4]

Monroe C, Newman J. The effect of interfacial deformation on electrodeposition kinetics. J Electrochem Soc. 2004;151(6): A880.

[5]

Ren Y, Shen Y, Lin Y, Nan CW. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem Commun. 2015;57:27-30.

[6]

Aguesse F, Manalastas W, Buannic L, et al. Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with Li metal. ACS Appl Mater Interfaces. 2017;9(4):3808-3816.

[7]

Shen F, Dixit MB, Xiao X, Hatzell KB. Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography. ACS Energy Lett. 2018;3(4):1056-1061.

[8]

Porz L, Swamy T, Sheldon BW, et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater. 2017;7(20):1701003.

[9]

Tsai CL, Roddatis V, Chandran CV, et al. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces. 2016;8(16):10617-10626.

[10]

Han F, Westover AS, Yue J, et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat Energy. 2019;4(3):187-196.

[11]

Sharafi A, Haslam CG, Kerns R, Wolfenstine J, Sakamoto J. Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12-solid-state electrolyte. J Mater Chem A. 2017;5(40):21491-21504.

[12]

Cheng L, Wu CH, Jarry A, et al. Interrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes. ACS Appl Mater Interfaces. 2015;7(32):17649-17655.

[13]

Song Y, Yang L, Zhao W, et al. Revealing the short-circuiting mechanism of garnet-based solid-state electrolyte. Adv Energy Mater. 2019;9(21):1900671.

[14]

Geiger CA, Alekseev E, Lazic B, et al. Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg Chem. 2011;50(3):1089-1097.

[15]

Bernuy-Lopez C, Manalastas W, Jr, Lopez del Amo JM, Aguadero A, Aguesse F, Kilner JA. Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chem Mater. 2014;26(12):3610-3617.

[16]

Kim S, Kim JS, Miara L, et al. High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility. Nat Commun. 2022;13(1):1883.

[17]

Tsai CL, Thuy Tran NT, Schierholz R, et al. Instability of Gasubstituted Li7 La3Zr2O12 toward metallic Li. J Mater Chem A. 2022;10(20):12747.

[18]

Buschmann H, Doelle J, Berendts S, et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys Chem Chem Phys. 2011;13(43):21658-21659.

[19]

Huang X, Su J, Song Z, et al. Synthesis of Ga-doped Li7La3Zr2O12 solid electrolyte with high Li+ ion conductivity. Ceram Int. 2021;47(2):2123C2130.

[20]

Ye R, Ihrig M, Imanishi N, Finsterbusch M, Figgemeier E. A review on Li+/H+ exchange in garnet solid electrolytes: from instability against humidity to sustainable processing in water. ChemSusChem. 2021;14(20):4397-4407.

[21]

Ren Y, Deng H, Chen R, Shen Y, Lin Y, Nan C-W. Effects of Li source on microstructure and ionic conductivity of Alcontained Li6.75La3Zr1.75Ta0.25O12 ceramics. J Eur Ceram Soc. 2015;35(2):561-572.

[22]

Gao D, Wu R, Chen P, Hong T, Cheng J. Microwave assisted reactive sintering for Al doped Li7La3Zr2O12 lithium ion solid state electrolyte. Mater Res Express. 2020;6(12):125539.

[23]

Gao B, Jalem R, Tian K, Tateyama Y. Revealing atomic-scale ionic stability and transport around grain boundaries of garnet Li7La3Zr2O12 solid electrolyte. Adv Energy Mater. 2022;12(3):2102151.

[24]

Liu X, Lupini AR, Cheng Y, et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat Mater. 2021;20(11):1485-1490.

[25]

Philipp M, Gadermaier B, Posch P, et al. The electronic conductivity of single crystalline Ga-stabilized cubic Li7La3Zr2O12: a technologically relevant parameter for all-solid-state batteries. Adv Mater Interfac. 2020;7(16):2000450.

[26]

Fuchs T, Haslam CG, Richter FH, Sakamoto J, Janek J. Evaluating the use of critical current density tests of symmetric lithium transference cells with solid electrolytes. Adv Energy Mater. 2023;13(45):2302383.

[27]

Wolfenstine J, Allen JL, Read J, Sakamoto J. Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature. J Mater Sci. 2013;48(17):5846-5851.

[28]

Rangasamy E, Wolfenstine J, Sakamoto J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics. 2012;206:28-32.

[29]

Dubey R, Sastre J, Cancellieri C, et al. Building a better Ligarnet solid electrolyte/metallic Li interface with antimony. Adv Energy Mater. 2021;11(39):2102086.

[30]

Su J, Huang X, Song Z, et al. Overcoming the abnormal grain growth in Ga-doped Li7La3Zr2O12 to enhance the electrochemical stability against Li metal. Ceram Int. 2019;45(12):14991-14996.

[31]

Pesci FM, Brugge RH, Hekselman AKO, Cavallaro A, Chater RJ, Aguadero A. Elucidating the role of dopants in the critical current density for dendrite formation in garnet electrolytes. J Mater Chem A. 2018;6(40):19817-19827.

[32]

Cheng EJ, Sharafi A, Sakamoto J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta. 2017;223:85-91.

RIGHTS & PERMISSIONS

2024 The Authors. EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

227

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/