Electrochemical CO2 reduction integrated with membrane/adsorption-based CO2 capture in gas-diffusion electrodes and electrolytes

Hesamoddin Rabiee , Penghui Yan , Hao Wang , Zhonghua Zhu , Lei Ge

EcoEnergy ›› 2024, Vol. 2 ›› Issue (1) : 3 -21.

PDF
EcoEnergy ›› 2024, Vol. 2 ›› Issue (1) : 3 -21. DOI: 10.1002/ece2.23
PERSPECTIVE

Electrochemical CO2 reduction integrated with membrane/adsorption-based CO2 capture in gas-diffusion electrodes and electrolytes

Author information +
History +
PDF

Abstract

Electrochemical CO2 reduction reaction (CO2RR) has attracted much attention in the last decade, owing to its unique advantages such as operation at ambient conditions, coupling with renewable electricity, and producing a wide range of products and commodities. The majority of CO2RR studies are focused on pure CO2 as feed, while in real CO2 waste streams, such as flue gas or biogas, CO2 concentration does not exceed 40%. Therefore, the economic feasibility of CO2RR and its carbon footprint are greatly limited by the CO2 purification steps before electrolysis ($70–100 per ton of CO2 for CO2/N2 separation). In recent years, studies have exhibited the importance of this matter by integrating CO2 capture and electroreduction in a single unit. Mostly, CO2 capture solutions as electrolytes have been under attention, and promising results have been achieved to significantly improve the overall economy of CO2RR. The focus on CO2 capture-electroreduction integration can go beyond the solution/electrolyte-based CO2 capture (e.g., amine solutions and ionic liquids) and other processes such as solid adsorption and membrane-based processes, as more efficient options, can be potentially integrated with CO2 electroreduction in the gas-diffusion electrode design. This article aims to review the recent efforts in integrating capture and electroreduction of CO2 and provides new perspectives in material selection and electrode design for membrane- and adsorption-based CO2 capture-reduction integration, in addition to the analysis of the economic feasibility of this integration.

Keywords

CO 2 capture-electroreduction integration / electrochemical CO 2 reduction reaction / gasdiffusion electrodes

Cite this article

Download citation ▾
Hesamoddin Rabiee, Penghui Yan, Hao Wang, Zhonghua Zhu, Lei Ge. Electrochemical CO2 reduction integrated with membrane/adsorption-based CO2 capture in gas-diffusion electrodes and electrolytes. EcoEnergy, 2024, 2(1): 3-21 DOI:10.1002/ece2.23

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zheng RY, Liu ZC, Wang YD, Xie ZK, He MY. The future of green energy and chemicals: rational design of catalysis routes. Joule. 2022;6:1148-1159.

[2]

van der Spek M, Banet C, Bauer C. Perspective on the hydrogen economy as a pathway to reach net-zero CO2 emissions in Europe. Energy Environ Sci. 2022;15(3):1034-1077.

[3]

Langie KMG, Tak K, Kim C. Toward economical application of carbon capture and utilization technology with near-zero carbon emission. Nat Commun. 2022;13(1):7482.

[4]

Yan P, Peng H, Vogrin J, Rabiee H, Zhu Z. Selective CO2 Hydrogenation over zeolite-based catalysts for targeted high value product. J Mater Chem A. 2023;11(34):17938-17960.

[5]

Chen G, Wei F, Zhou Z. Phase junction crystalline carbon nitride nanosheets modified with CdS nanoparticles for photocatalytic CO2 reduction. Sustain Energy Fuels. 2023;7(2):381-388.

[6]

Stephens IEL, Chan K, Bagger A, et al. 2022 Roadmap on low temperature electrochemical CO2 reduction. J Phys Energy. 2022;4(4):042003.

[7]

Chang B, Pang H, Raziq F, et al. Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives. Energy Environ Sci. 2023;16(11):4714-4758.

[8]

Overa S, Ko BH, Zhao Y, Jiao F. Electrochemical approaches for CO2 conversion to chemicals: a journey toward practical applications. Accounts Chem Res. 2022;55(5):638-648.

[9]

Zhao Y, Pei Z, Lu XF, Luan D, Wang X, Lou XW. Rationally designed nitrogen-doped carbon macroporous fibers with loading of single cobalt sites for efficient aqueous Zn-CO2 batteries. Chem Catal. 2022;2(6):1480-1493.

[10]

Liu S, Xiao J, Lu XF, Wang J, Wang X, Lou XWD. Efficient electrochemical reduction of CO2 to HCOOH over sub-2 nm SnO2 quantum wires with exposed grain boundaries. Angew Chem Int Ed. 2019;58(25):8499-8503.

[11]

Salvatore DA, Gabardo CM, Reyes A, et al. Designing anion exchange membranes for CO2 electrolysers. Nat Energy. 2021;6(4):339-348.

[12]

Rabiee H, Ge L, Zhang X, Hu S, Li M, Yuan Z. Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy Environ Sci. 2021;14(4):1959-2008.

[13]

Quan W, Lin Y, Luo Y, Huang Y. Electrochemical CO2 reduction on Cu: synthesis-controlled structure preference and selectivity. Adv Sci. 2021;8(23):e2101597.

[14]

Wakerley D, Lamaison S, Wicks J, et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat Energy. 2022;7(2):130-143.

[15]

Li J, Gong J. Operando characterization techniques for electrocatalysis. Energy Environ Sci. 2020;13(11):3748-3779.

[16]

Li M, Irtem E, van Iglesias Montfort HP, Abdinejad M, Burdyny T. Energy comparison of sequential and integrated CO2 capture and electrochemical conversion. Nat Commun. 2022;13(1):5398.

[17]

Xiao YC, Gabardo CM, Liu S, et al. Direct carbonate electrolysis into pure syngas. EES Catal. 2023;1:54-61.

[18]

Kumar De S, Won DI, Kim J, Kim DH. Integrated CO2 capture and electrochemical upgradation: the underpinning mechanism and techno-chemical analysis. Chem Soc Rev. 2023;52(16):5744-5802.

[19]

Sullivan I, Goryachev A, Digdaya IA, et al. Coupling electrochemical CO2 conversion with CO2 capture. Nat Catal. 2021;4(11):952-958.

[20]

Kim D, Choi W, Lee HW, et al. Electrocatalytic reduction of low concentrations of CO2 gas in a membrane electrode assembly electrolyzer. ACS Energy Lett. 2021;6(10):3488-3495.

[21]

Vennekötter J-B, Scheuermann T, Sengpiel R, Wessling M. The electrolyte matters: stable systems for high rate electrochemical CO2 reduction. J CO2 Util. 2019;32:202-213.

[22]

Gutiérrez-Sánchez O, Daems N, Offermans W, et al. The inhibition of the proton donor ability of bicarbonate promotes the electrochemical conversion of CO2 in bicarbonate solutions. J CO2 Util. 2021;48:101521.

[23]

Lees EW, Mowbray BAW, Parlane FGL, Berlinguette CP. Gas diffusion electrodes and membranes for CO2 reduction electrolysers. Nat Rev Mater. 2022;7(1):55-64.

[24]

Wen G, Ren B, Yang X, et al. Electrocatalytic upgrade of impure CO2 by in situ-reconstructed Cu catalysts with gas exsolution electrolyzers. Indus Eng Chem Res. 2023;62(46):19482-19492.

[25]

Cheng Y, Hou P, Wang X, Kang P. CO2 electrolysis system under industrially relevant conditions. Accounts Chem Res. 2022;55(3):231-240.

[26]

Burdyny T, Smith WA. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ Sci. 2019;12(5):1442-1453.

[27]

Kuang Y, Rabiee H, Ge L, et al. High-concentration electrosynthesis of formic acid/formate from CO2: reactor and electrode design strategies. Energy Environ Mater. 2023:e12596.

[28]

Al-Attas T, Nabil SK, Zeraati AS, et al. Permselective MOFbased gas diffusion electrode for direct conversion of CO2 from quasi flue gas. ACS Energy Lett. 2022;8(1):107-115.

[29]

Sun S, Sun H, Williams PT, Wu C. Recent advances in integrated CO2 capture and utilization: a review. Sustain Energy Fuels. 2021;5(18):4546-4559.

[30]

Liu H, Chen Y, Lee J, Gu S, Li W. Ammonia-mediated CO2 capture and direct electroreduction to formate. ACS Energy Lett. 2022;7(12):4483-4489.

[31]

Jerng SE, Gallant BM. Electrochemical reduction of CO2 in the captured state using aqueous or nonaqueous amines. iScience. 2022;25(7):104558.

[32]

Zhang Z, Xi D, Ren Z, Li J. A carbon-efficient bicarbonate electrolyzer. Cell Rep Phys Sci. 2023;4(11):101662.

[33]

Chen L, Li F, Zhang Y, et al. Electrochemical reduction of carbon dioxide in a monoethanolamine capture medium. ChemSusChem. 2017;10(20):4109-4118.

[34]

Diaz LA, Gao N, Adhikari B, Lister TE, Dufek EJ, Wilson AD. Electrochemical production of syngas from CO2 captured in switchable polarity solvents. Green Chem. 2018;20(3):620-626.

[35]

Lee G, Li YGC, Kim JY, et al. Electrochemical upgrade of CO2 from amine capture solution. Nat Energy. 2021;6(1):46-53.

[36]

Pérez-Gallent E, Vankani C, Sánchez-Martínez C, Anastasopol A, Goetheer E. Integrating CO2 capture with electrochemical conversion using amine-based capture solvents as electrolytes. Ind Eng Chem Res. 2021;60(11):4269-4278.

[37]

Lee G, Rasouli AS, Lee B-H, et al. CO2 electroreduction to multicarbon products from carbonate capture liquid. Joule. 2023;7(6):1277-1288.

[38]

Zhang Z, Lees EW, Habibzadeh F, et al. Porous metal electrodes enable efficient electrolysis of carbon capture solutions. Energy Environ Sci. 2022;15(2):705-713.

[39]

Wen G, Ren B, Wang X, et al. Continuous CO2 electrolysis using a CO2 exsolution-induced flow cell. Nat Energy. 2022;7(10):978-988.

[40]

Gutiérrez-Sánchez O, de Mot B, Daems N, et al. Electrochemical conversion of CO2 from direct air capture solutions. Energy Fuel. 2022;36(21):13115-13123.

[41]

Welch AJ, Dunn E, DuChene JS, Atwater HA. Bicarbonate or carbonate processes for coupling carbon dioxide capture and electrochemical conversion. ACS Energy Lett. 2020;5(3):940-945.

[42]

Li T, Lees EW, Zhang Z, Berlinguette CP. Conversion of bicarbonate to formate in an electrochemical flow reactor. ACS Energy Lett. 2020;5(8):2624-2630.

[43]

Lees EW, Goldman M, Fink AG, et al. Electrodes designed for converting bicarbonate into CO. ACS Energy Lett. 2020;5(7):2165-2173.

[44]

Kas R, Yang K, Yewale GP, Crow A, Burdyny T, Smith WA. Modeling the local environment within porous electrode during electrochemical reduction of bicarbonate. Ind Eng Chem Res. 2022;61(29):10461-10473.

[45]

Pang X, Verma S, Liu C, Esposito DV. Membrane-free electrochemical CO2 conversion using serially connected porous flow-through electrodes. Joule. 2022;6(12):2745-2761.

[46]

Zhang Z, Lees EW, Ren S, Mowbray BAW, Huang A, Berlinguette CP. Conversion of reactive carbon solutions into CO at low voltage and high carbon efficiency. ACS Cent Sci. 2022;8(6):749-755.

[47]

Fink AG, Lees EW, Zhang Z, Ren S, Delima RS, Berlinguette CP. Impact of alkali cation identity on the conversion of HCO3 to CO in bicarbonate electrolyzers. Chemelectrochem. 2021;8(11):2094-2100.

[48]

Zhang Z, Melo L, Jansonius RP, Habibzadeh F, Grant ER, Berlinguette CP. pH matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 2020;5(10):3101-3107.

[49]

Li T, Lees EW, Goldman M, Salvatore DA, Weekes DM, Berlinguette CP. Electrolytic conversion of bicarbonate into CO in a flow cell. Joule. 2019;3(6):1487-1497.

[50]

Li YC, Lee G, Yuan T, et al. CO2 electroreduction from carbonate electrolyte. ACS Energy Lett. 2019;4(6):1427-1431.

[51]

Omodolor IS, Otor HO, Andonegui JA, Allen BJ, Alba-Rubio AC. Dual-function materials for CO2 capture and conversion: a review. Ind Eng Chem Res. 2020;59(40):17612-17631.

[52]

Kosaka F, Liu Y, Chen S-Y, et al. Enhanced activity of integrated CO2 capture and reduction to CH4 under pressurized conditions toward atmospheric CO2 utilization. Acs Sustain Chem Eng. 2021;9:3452-3463.

[53]

Dubey A, Arora A. Advancements in carbon capture technologies: a review. J Clean Prod. 2022;373:133932.

[54]

Ghadimi A, Norouzbahari S, Lin H, Rabiee H, Sadatnia B. Geometric restriction of microporous supports on gas permeance efficiency of thin film composite membranes. J Membr Sci. 2018;563:643-654.

[55]

Garcia Arquer FP, Dinh CT, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science. 2020;367(6478):661-666.

[56]

Rabiee H, Meshkat Alsadat S, Soltanieh M, Mousavi SA, Ghadimi A. Gas permeation and sorption properties of poly(amide- 12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. J Ind Eng Chem. 2015;27:223-239.

[57]

Castro-Muñoz R, Zamidi Ahmad M, Malankowska M, Coronas J. A new relevant membrane application: CO2 direct air capture (DAC). Chem Eng J. 2022;446:137047.

[58]

Fujikawa S, Selyanchyn R, Kunitake T. A new strategy for membrane-based direct air capture. Polym J. 2020;53(1):111-119.

[59]

Ghosal K, Chandra A, Roy S, Agatemor C, Thomas S, Provaznik I. Electrospinning over solvent casting: tuning of mechanical properties of membranes. Sci Rep. 2018;8(1):5058.

[60]

Dorosti F, Ge L, Wang H, Zhu Z. A path forward: understanding and mitigating defects in polycrystalline membranes. Prog Mater Sci. 2023;137:101123.

[61]

Hou R, Fong C, Freeman BD, Hill MR, Xie Z. Current status and advances in membrane technology for carbon capture. Sep Purif Technol. 2022;300:121863.

[62]

Pardakhti M, Jafari T, Tobin Z, et al. Trends in solid adsorbent materials development for CO2 capture. ACS Appl Mater Interfaces. 2019;11(38):34533-34559.

[63]

Guo X, Qiao Z, Liu D, Zhong C. Mixed-matrix membranes for CO2 separation: role of the third component. J Mater Chem A. 2019;7(43):24738-24759.

[64]

Walton KS, Millward AR, Dubbeldam D, et al. Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. J Am Chem Soc. 2008;130(2):406-407.

[65]

Bhavsar RS, Mitra T, Adams DJ, Cooper AI, Budd PM. Ultrahigh-permeance PIM-1 based thin film nanocomposite membranes on PAN supports for CO2 separation. J Membr Sci. 2018;564:878-886.

[66]

He S, Zhu B, Li S, et al. Recent progress in PIM-1 based membranes for sustainable CO2 separations: polymer structure manipulation and mixed matrix membrane design. Sep Purif Technol. 2022;284:120277.

[67]

Marken F, Carta M, McKeown NB. Polymers of intrinsic microporosity in the design of electrochemical multicomponent and multiphase interfaces. Anal Chem. 2021;93(3):1213-1220.

[68]

Perry SC, Gateman SM, Malpass-Evans R, et al. Polymers with intrinsic microporosity (PIMs) for targeted CO2 reduction to ethylene. Chemosphere. 2020;248:125993.

[69]

Rabiee H, Ghadimi A, Mohammadi T. Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim] [BF4] gel membranes for CO2/light gases separation. J Membr Sci. 2015;476:286-302.

[70]

Rabiee H, Soltanieh M, Mousavi SA, Ghadimi A. Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes. J Membr Sci. 2014;469:43-58.

[71]

Pera-Titus M. Porous inorganic membranes for CO2 capture: present and prospects. Chem Rev. 2014;114(2):1413-1492.

[72]

Yu M, Funke HH, Noble RD, Falconer JL. H2 separation using defect-free, inorganic composite membranes. J Am Chem Soc. 2011;133(6):1748-1750.

[73]

Nam DH, Shekhah O, Ozden A, et al. High-rate and selective CO2 electrolysis to ethylene via metal-organic-frameworkaugmented CO2 availability. Adv Mater. 2022;34(51):e2207088.

[74]

Ge L, Rabiee H, Li M, et al. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem. 2022;8(3):663-692.

[75]

Liu YY, Huang JR, Zhu HL, Liao PQ, Chen XM. Simultaneous capture of CO2 boosting its electroreduction in the micropores of a metal-organic framework. Angew Chem Int Ed. 2023;135(52):e202311265.

[76]

Shi Y, Ni R, Zhao Y. Review on multidimensional adsorbents for CO2 capture from ambient air: recent advances and future perspectives. Energy Fuel. 2023;37(9):6365-6381.

[77]

Gao X, Yang S, Hu L, Cai S, Wu L, Kawi S. Carbonaceous materials as adsorbents for CO2 capture: synthesis and modification. CCST. 2022;3:100039.

[78]

Sharma A, Jindal J, Mittal A, Kumari K, Maken S, Kumar N. Carbon materials as CO2 adsorbents: a review. Environ Chem Lett. 2021;19(2):875-910.

[79]

Lai JY, Ngu LH, Hashim SS. A review of CO2 adsorbents performance for different carbon capture technology processes conditions. Greenhouse Gases Sci Tech. 2021;11(5):1076-1117.

[80]

Tian D, Qu Z, Zhang J. Electrochemical condition optimization and techno-economic analysis on the direct CO2 electroreduction of flue gas. Appl Energy. 2023;351:121787.

[81]

Xu Y, Edwards JP, Zhong J, et al. Oxygen-tolerant electroproduction of C2 products from simulated flue gas. Energy Environ Sci. 2020;13(2):554-561.

[82]

Pasichnyk M, Stanovsky P, Polezhaev P, et al. Membrane technology for challenging separations: removal of CO2, SO2 and NOx from flue and waste gases. Sep Purif Technol. 2023;323:124436.

[83]

Brandt P, Nuhnen A, Öztürk S, Kurt G, Liang J, Janiak C. Comparative evaluation of different MOF and non-MOF porous materials for SO2 adsorption and separation showing the importance of small pore diameters for low-pressure uptake. Adv Sustain Syst. 2021;5(4):2000285.

[84]

Han Y, Ho WSW. Polymeric membranes for CO2 separation and capture. J Membr Sci. 2021;628:119244.

[85]

Du N, Park HB, Robertson GP, et al. Polymer nanosieve membranes for CO2-capture applications. Nat Mater. 2011;10(5):372-375.

[86]

Guan J, Huang T, Liu W, et al. Design and prediction of metal organic framework-based mixed matrix membranes for CO2 capture via machine learning. Cell Rep Phys Sci. 2022;3(5):100864.

[87]

Rabiee H, Ge L, Zhao J, et al. Regulating the reaction zone of electrochemical CO2 reduction on gas-diffusion electrodes by distinctive hydrophilic-hydrophobic catalyst layers. Appl Catal B. 2022;310:121362.

[88]

Rabiee H, Ge L, Hu S, Wang H, Yuan Z. Microtubular electrodes: an emerging electrode configuration for electrocatalysis, bioelectrochemical and water treatment applications. Chem Eng J. 2022;450:138476.

[89]

Rabiee H, Ge L, Zhang X, et al. Shape-tuned electrodeposition of bismuth-based nanosheets on flow-through hollow fiber gas diffusion electrode for high-efficiency CO2 reduction to formate. Appl Catal B. 2021;286:119945.

[90]

Rabiee H, Ge L, Zhang X, et al. Stand-alone asymmetric hollow fiber gas-diffusion electrodes with distinguished bronze phases for high-efficiency CO2 electrochemical reduction. Appl Catal B. 2021;298:120538.

[91]

Rabiee H, Zhang X, Ge L, et al. Tuning the product selectivity of the Cu hollow fiber gas diffusion electrode for efficient CO2 reduction to formate by controlled surface Sn electrodeposition. ACS Appl Mater Interfaces. 2020;12(19):21670-21681.

[92]

Chen A, Dong X, Mao J, et al. Gas penetrating hollow fiber Bi with contractive bond enables industry-level CO2 electroreduction. Appl Catal B. 2023;333:122768.

[93]

Zhu C, Song YF, Dong X, et al. Ampere-level CO2 reduction to multicarbon products over a copper gas penetration electrode. Energy Environ Sci. 2022;15(12):5391-5404.

RIGHTS & PERMISSIONS

2024 The Authors. EcoEnergy published by John Wiley & Sons Australia, Ltd on behalf of China Chemical Safety Association.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/