Mapping plastic pollution in water from space: potential opportunities and challenges for the application of NASA’s PACE mission

Sabastian Simbarashe Mukonza

Emerging Contaminants and Environmental Health ›› 2025, Vol. 4 ›› Issue (3) : 16

PDF
Emerging Contaminants and Environmental Health ›› 2025, Vol. 4 ›› Issue (3) :16 DOI: 10.20517/wecn.2025.15
review-article

Mapping plastic pollution in water from space: potential opportunities and challenges for the application of NASA’s PACE mission

Author information +
History +
PDF

Abstract

Marine plastic pollution is an escalating global concern, yet accurate data on aquatic plastic debris remain scarce due to the inherent limitations of traditional in situ sampling methods. To address this gap, next-generation hyperspectral satellite missions, particularly the Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE) mission of the National Aeronautics and Space Administration (NASA), offer promising potential for monitoring plastic pollution. This review applies narrative and scoping approaches to evaluate the potential utility of PACE in aquatic plastic monitoring. Drawing on 100 curated references, it examines 10 key studies employing Sentinel-2, Landsat-8, WorldView-2 and -3, the Hyperspectral Precursor of the Application Mission (PRISMA), Sentinel-3, and the Environmental Mapping Analysis Program (EnMAP), providing insights relevant to PACE’s hyperspectral capabilities. Key mission parameters - including spatial resolution, spectral granularity, temporal revisit cycles, and polarimetric sensitivity - are compared across platforms. A post-hoc design suitability assessment and a structured Strengths, Weaknesses, Opportunities, and Constraints (SWOC) analysis of PACE’s instruments highlight both advantages and limitations for aquatic plastic monitoring. The review proposes targeted strategies such as spectral unmixing, correction for confounding absorption effects, and derivative reflectance analysis to enhance the detection of plastic signals in optically complex waters. Although empirical evidence remains limited, this review argues that PACE’s unique architecture - combined with multisensor data fusion and advanced analytical methods - has the potential to overcome current methodological constraints. It presents a testable hypothesis that PACE’s spatial, spectral, and polarimetric capacities can significantly advance satellite-based monitoring of aquatic plastic pollution.

Keywords

Marine plastics / water pollution / hyperspectral sensors / OCI / HARP2 / SPEXone / water quality

Cite this article

Download citation ▾
Sabastian Simbarashe Mukonza. Mapping plastic pollution in water from space: potential opportunities and challenges for the application of NASA’s PACE mission. Emerging Contaminants and Environmental Health, 2025, 4(3): 16 DOI:10.20517/wecn.2025.15

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ritchie H,Roser M. Plastic pollution. https://ourworldindata.org/plastic-pollution. (accessed 5 Sep 2025)

[2]

Rieger N,Thiel M.Seasonal hotspots of beach litter in the North-East Atlantic linked to aquaculture and river runoff.Commun Earth Environ2024;5:1913

[3]

Ostle C,Broughton D,Wootton M.The rise in ocean plastics evidenced from a 60-year time series.Nat Commun2019;10:1622 PMCID:PMC6467903

[4]

Kaandorp MLA,Kehl C,van Sebille E.Global mass of buoyant marine plastics dominated by large long-lived debris.Nat Geosci2023;16:689-94

[5]

Prata JC.A One Health perspective on water contaminants.Water Emerg Contam Nanoplastics2022;1:15

[6]

Jin X,Peñuelas J.Quantitative assessment on the distribution patterns of microplastics in global inland waters.Commun Earth Environ2025;6:2320

[7]

Galgani F,Weis J.Are litter, plastic and microplastic quantities increasing in the ocean?.Micropl Nanopl2021;1:2

[8]

Gerigny O,Lips U.Comparative analysis of microplastics detection methods applied to marine sediments: a case study in the Bay of Marseille.Mar Pollut Bull2024;207:116787

[9]

Topouzelis K,Karagaitanakis A,Arias Ballesteros M.Remote sensing of sea surface artificial floating plastic targets with Sentinel-2 and Unmanned Aerial Systems (Plastic Litter Project 2019).Remote Sens2020;12:2013

[10]

Papageorgiou D,Suaria G,Corradi P.Sentinel-2 detection of floating marine litter targets with partial spectral unmixing and spectral comparison with other floating materials (Plastic Litter Project 2021).Remote Sens2022;14:5997

[11]

Themistocleous K,Michaelides S.Investigating detection of floating plastic litter from space using Sentinel-2 imagery.Remote Sens2020;12:2648

[12]

Ciappa AC.Marine plastic litter detection offshore Hawai’i by Sentinel-2.Mar Pollut Bull2021;168:112457

[13]

Zhu X,Dou C.Improving sea surface floating matter identification from Sentinel-2 MSI imagery using optical radiative simulation of neighborhood difference.Opt Express2023;31:27612-20

[14]

Biermann L,Martinez-Vicente V.Finding plastic patches in coastal waters using optical satellite data.Sci Rep2020;10:5364 PMCID:PMC7181820

[15]

Biermann L,Martinez-Vicente V.Detecting and identifying floating plastic debris in coastal waters using Sentinel-2 Earth observation data. In EGU General Assembly 2020. 2020; Paper EGU2020-19145.

[16]

Wu C,An C.A novel spectral index for detecting large plastic accumulations using Sentinel-2 imagery.SSRN2025;

[17]

Valente A,Giusti A,Silva P.An open-source data pipeline framework to detect floating marine plastic litter using Sentinel-2 imagery and machine learning. In IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA. Jul 16-21, 2023. IEEE; 2023. pp. 4108-11.

[18]

Jayabhavani GN.Floating litter detection at the estuary of Puducherry using Sentinel-2 data and machine learning model.Reg Stud Mar Sci2024;77:103686

[19]

Sannigrahi S,Basu AS.Development of automated marine floating plastic detection system using Sentinel-2 imagery and machine learning models.Mar Pollut Bull2022;178:113527

[20]

Basu B,Sarkar Basu A.Development of novel classification algorithms for detection of floating plastic debris in coastal waterbodies using multispectral Sentinel-2 remote sensing imagery.Remote Sens2021;13:1598

[21]

Booth H,Karakuş O.High-precision density mapping of marine debris and floating plastics via satellite imagery.Sci Rep2023;13:6822 PMCID:PMC10133222

[22]

Jamali A.A cloud-based framework for large-scale monitoring of ocean plastics using multi-spectral satellite imagery and generative adversarial network.Water2021;13:2553

[23]

Priyadarshini R,Sowmya KS.Automated marine debris detection from Sentinel-2 satellite imagery. In 2024 IEEE Space, Aerospace and Defence Conference (SPACE), Bangalore, India. Jul 22-23, 2024. IEEE; 2024. pp. 454-8.

[24]

Mohsen A,Kovács F.Machine learning-based detection and mapping of riverine litter utilizing Sentinel-2 imagery.Environ Sci Pollut Res Int2023;30:67742-57 PMCID:PMC10202999

[25]

Acuña-Ruz T,Taylor R.Anthropogenic marine debris over beaches: spectral characterization for remote sensing applications.Remote Sens Environ2018;217:309-22

[26]

Zhou S,Bochow M,Brell M.A knowledge-based, validated classifier for the identification of aliphatic and aromatic plastics by Worldview-3 satellite data.Remote Sens Environ2021;264:112598

[27]

Tasseron P,Peller J,Biermann L.Advancing floating macroplastic detection from space using hyperspectral imagery.Remote Sens2021;13:2335

[28]

Biermann L,van Emmerik T,Ling Y.Finding riverine plastics in floating plant patches using Worldview-3 satellite imagery. In EGU General Assembly 2022. 2022; Paper EGU22-12856.

[29]

Jakovljević G,Taboada . Remote sensing data in mapping plastics at surface water bodies. In FIG Working Week, Hanoi, Vietnam. Apr 22-26, 2019. https://www.fig.net/resources/proceedings/fig_proceedings/fig2019/papers/ts01d/TS01D_jakovljevic_govedarica_et_al_9974.pdf. (accessed 5 Sep 2025)

[30]

Garaba SP.Top-of-atmosphere hyper and multispectral signatures of submerged plastic litter with changing water clarity and depth.Opt Express2022;30:16553-71

[31]

Park YJ,Sainte-Rose B.Detecting the Great Pacific Garbage Patch floating plastic litter using WorldView-3 satellite imagery.Opt Express2021;29:35288-98

[32]

Kikaki A,Power CA.Remotely sensing the source and transport of marine plastic debris in Bay Islands of Honduras (Caribbean Sea).Remote Sens2020;12:1727

[33]

Atwood EC,Piehl S.Coastal accumulation of microplastic particles emitted from the Po River, Northern Italy: comparing remote sensing and hydrodynamic modelling with in situ sample collections.Mar Pollut Bull2019;138:561-74

[34]

Taggio N,Ceriola G.A combination of machine learning algorithms for marine plastic litter detection exploiting hyperspectral PRISMA data.Remote Sens2022;14:3606

[35]

Kremezi M,Karathanassi V.Pansharpening PRISMA data for marine plastic litter detection using plastic indexes.IEEE Access2021;9:61955-71

[36]

Salgado-Hernanz PM,Alomar C,Romero L.Assessment of marine litter through remote sensing: recent approaches and future goals.Mar Pollut Bull2021;168:112347

[37]

Mukonza SS.Satellite sensors as an emerging technique for monitoring macro- and microplastics in aquatic ecosystems.Water Emerg Contam Nanoplastics2022;1:17

[38]

Park S,Jeong S.Review of remote sensing applicability for monitoring marine microplastics.Korean J Remote Sens2022;38:835-50

[39]

Veettil BK,Hauser LT,Quang NX.Coastal and marine plastic litter monitoring using remote sensing: a review.Estuar Coast Shelf Sci2022;279:108160

[40]

Ma J,Pan Q,Wang J.A global review of progress in remote sensing and monitoring of marine pollution.Water2023;15:3491

[41]

Goddijn-Murphy L,Dierssen HM.Emerging technologies for remote sensing of floating and submerged plastic litter.Remote Sens2024;16:1770

[42]

Chabot D.Aerial remote sensing of aquatic microplastic pollution: the state of the science and how to move it forward.Microplastics2024;3:685-95

[43]

Dierssen HM,Guild LS.Synergies between NASA’s hyperspectral aquatic missions PACE, GLIMR, and SBG: opportunities for new science and applications.J Geophys Res Biogeosci2023;128:e2023JG007574

[44]

Frouin R.PCA-based atmospheric correction of PACE OCI ocean color imagery. In Active and Passive Remote Sensing of Oceans, Seas, and Lakes. 2025.

[45]

Vandermeulen R,Otoshi C,Tomlinson M.Plankton, Aerosol, Cloud and ocean Ecosystem (PACE) satellite data for aquaculture and fisheries management. 2025.

[46]

Frouin RJ,Ibrahim A.Atmospheric correction of satellite ocean-color imagery during the PACE Era.Front Earth Sci2019;7:145 PMCID:PMC7241613

[47]

Jutla AS,Islam S.A framework for predicting endemic cholera using satellite derived environmental determinants.Environ Model Softw2013;47:148-58

[48]

Engstrom R,Newhouse D.Poverty from space: using high resolution satellite imagery for estimating economic well-being.World Bank Econ Rev2022;36:382-412

[49]

Wu Z,Gu X.Deep learning enables satellite-based monitoring of large populations of terrestrial mammals across heterogeneous landscape.Nat Commun2023;14:3072 PMCID:PMC10224963

[50]

Raynor J,Costello C,Mayorga J.Little-to-no industrial fishing occurs in fully and highly protected marine areas.Science2025;389:392-5

[51]

NASA Applied Remote Sensing Training Program (ARSET). ARSET - Introduction to Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE) hyperspectral observations for water quality monitoring. 2024. https://appliedsciences.nasa.gov/get-involved/training/english/arset-introduction-plankton-aerosol-cloud-ocean-ecosystem-pace. (accessed 5 Sep 2025)

[52]

Meister G,Bars .On-orbit OCI characterization measurements from the first six months of the PACE mission. In Sensors, Systems, and Next-Generation Satellites XXVIII. 2024.

[53]

Meister G,Gliese U.The Ocean Color Instrument (OCI) on the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Mission: system design and prelaunch radiometric performance.IEEE Trans Geosci Remote Sens2024;62:1-18

[54]

Gliese U,Squire K.Pulse response of the short-wave infrared detection system of the ocean color instrument for the NASA PACE mission. In Sensors, Systems, and Next-Generation Satellites XXVII. 2023.

[55]

Lee S,Kitchen S,Gliese U.PACE OCI crosstalk characterization based on pre-launch testing. In Sensors, Systems, and Next-Generation Satellites XXVII. 2023.

[56]

Zibordi G,Voss KJ.Impact of spectral resolution of in situ ocean color radiometric data in satellite matchups analyses.Opt Express2017;25:A798-812

[57]

Olyaei M.Uncovering plastic litter spectral signatures: a comparative study of hyperspectral band selection algorithms.Remote Sens2024;16:172

[58]

Singh MK,Thakur A.Hyperspectral imaging-based classification of post-consumer thermoplastics for plastics recycling using artificial neural network.Process Saf Environ Prot2023;179:593-602

[59]

Hasekamp OP,Rusli SP.Aerosol measurements by SPEXone on the NASA PACE mission: expected retrieval capabilities.J Quant Spectrosc Radiat Transfer2019;227:170-84

[60]

Rietjens J,Chanumolu A.Expected performance and error analysis for SPEXone, a multi-angle channeled spectropolarimeter for the NASA PACE mission. In Polarization Science and Remote Sensing IX. 2019.

[61]

Smit JM,van Harten G.SPEX airborne spectropolarimeter calibration and performance.Appl Opt2019;58:5695-719

[62]

Ottaviani M,Chowdhary J.Polarimetric retrievals of surface and cirrus clouds properties in the region affected by the Deepwater Horizon oil spill.Remote Sens Environ2012;121:389-403

[63]

Ottaviani M,Cairns B.Remote sensing of the ocean surface refractive index via short-wave infrared polarimetry.Remote Sens Environ2019;221:14-23

[64]

Jamet C,Ahmad Z.Going beyond standard ocean color observations: lidar and polarimetry.Front Mar Sci2019;6:251

[65]

Arksey H.Scoping studies: towards a methodological framework.Int J Soc Res Methodol2005;8:19-32

[66]

Paré G. Chapter 9 Methods for literature reviews. In: Lau F, Kuziemsky C, Editors. Handbook of eHealth evaluation: an evidence-based approach. University of Victoria; 2017. https://www.ncbi.nlm.nih.gov/books/NBK481583/. (accessed 5 Sep 2025)

[67]

GIZ. Advances in remote sensing of plastic waste. 2023. https://globalplasticshub.org/technical-resource/10838. (accessed 5 Sep 2025)

[68]

Maximenko N,Law KL.Toward the integrated marine debris observing system.Front Mar Sci2019;6:447

[69]

Vasudeva M,Kartha V.Advances in microplastic characterization: spectroscopic techniques and heavy metal adsorption insights.TrAC Trends Anal Chem2025;183:118111

[70]

Wang J,Ofiara D.Chapter 25 - Marine debris. In The first global integrated marine assessment: World Ocean Assessment I. Cambridge University Press; 2017. pp. 389-408.

[71]

Bermúdez JR.A microplastic size classification scheme aligned with universal plankton survey methods.MethodsX2021;8:101516 PMCID:PMC8563659

[72]

Egger M,Wolter H.Pelagic distribution of plastic debris (> 500 µm) and marine organisms in the upper layer of the North Atlantic Ocean.Sci Rep2022;12:13465 PMCID:PMC9372048

[73]

Garaba SP.An airborne remote sensing case study of synthetic hydrocarbon detection using short wave infrared absorption features identified from marine-harvested macro- and microplastics.Remote Sens Environ2018;205:224-35

[74]

Castagna A,Devriese LI,Knaeps E.Evaluation of historic and new detection algorithms for different types of plastics over land and water from hyperspectral data and imagery.Remote Sens Environ2023;298:113834

[75]

International Ocean-Colour Coordinating Group (IOCCG). IOCCG Task Force: remote sensing of marine litter and debris. https://ioccg.org/group/marine-litter-debris/. (accessed 5 Sep 2025)

[76]

European Space Agency (ESA). TPM data help advance plastic litter detection from space. 2023. https://earth.esa.int/eogateway/news/tpm-data-help-advance-plastic-litter-detection-from-space. (accessed 5 Sep 2025)

[77]

Guffogg J,Bellman C,Skidmore A.Beached plastic debris index; a modern index for detecting plastics on beaches.Mar Pollut Bull2024;209:117124

[78]

de Fockert A,Bakker W.Assessing the detection of floating plastic litter with advanced remote sensing technologies in a hydrodynamic test facility.Sci Rep2024;14:25902 PMCID:PMC11522325

[79]

ESA. Characterization of light polarization properties of virgin and marine-harvested plastic litter toward remote-sensing mapping of ocean plastics. Ocean Plastics Polarization Properties OP3. 2022. https://nebula.esa.int/sites/default/files/neb_study/2676/OP3_400013203720_Executive_Summary_16Dec2022_v2_0.pdf. (accessed 5 Sep 2025)

[80]

Cózar A,Suaria G.Proof of concept for a new sensor to monitor marine litter from space.Nat Commun2024;15:4637 PMCID:PMC11178853

[81]

Moshtaghi M,Sterckx S,Meire D.Spectral reflectance of marine macroplastics in the VNIR and SWIR measured in a controlled environment.Sci Rep2021;11:5436 PMCID:PMC7940656

[82]

Ho D,Karthikeyan KG.Shedding light on the polymer’s identity: microplastic detection and identification through Nile Red staining and multispectral imaging (FIMAP).J Environ Chem Eng2025;13:117944

[83]

Mahmoud A.Instant plastic waste detection on shores using laser-induced fluorescence and associated hyperspectral imaging.Opt Quant Electron2024;56:6564

[84]

Remer LA,Zhai P.Retrieving aerosol characteristics from the PACE mission, Part 2: multi-angle and polarimetry.Front Environ Sci2019;7:94

[85]

Fronkova L,Ribeiro JW,Beccari F.Assessing the effect of water on submerged and floating plastic detection using remote sensing and K-means clustering.Remote Sens2024;16:4405

[86]

Cetinić I,Carroll IT.Phytoplankton composition from sPACE: requirements, opportunities, and challenges.Remote Sens Environ2024;302:113964

[87]

Schollaert Uz, S.; Kim, G. E.; Mannino, A.; Werdell, P. J.; Tzortziou, M. Developing a community of practice for applied uses of future PACE data to address marine food security challenges.Front Earth Sci2019;7:283

[88]

Sellaperumal P,Dhanaraju M.Time series analysis of Sentinel 1 A SAR data to retrieve annual rice area maps and long-term dynamics of start of season.Sci Rep2025;15:8202 PMCID:PMC11894211

[89]

Hu C.Remote detection of marine debris using satellite observations in the visible and near infrared spectral range: challenges and potentials.Remote Sens Environ2021;259:112414

[90]

Du Q.Linear mixture analysis-based compression for hyperspectral image analysis.IEEE Trans Geosci Remote Sens2004;42:875-91

[91]

Wang L,Wang W.Endmember extraction and abundance estimation algorithm based on double-compressed sampling.Sci Rep2024;14:17934 PMCID:PMC11297147

[92]

Zuo C,Feng S.Deep learning in optical metrology: a review.Light Sci Appl2022;11:39 PMCID:PMC8866517

[93]

Jones DOB,Huvenne VAI,Bett BJ.Autonomous marine environmental monitoring: application in decommissioned oil fields.Sci Total Environ2019;668:835-53

[94]

Lou J,Xiong Y,Yuan X.Variational autoencoder framework for hyperspectral retrievals (Hyper-VAE) of phytoplankton absorption and chlorophyll a in coastal waters for NASA’s EMIT and PACE missions.IEEE Trans Geosci Remote Sens2025;63:1-16

[95]

Isachenko I.Transport and accumulation of plastic particles on the varying sediment bed cover: open-channel flow experiment.Mar Pollut Bull2022;183:114079

[96]

Parashar N,Hait S.Microplastics as carriers of per- and polyfluoroalkyl substances (PFAS) in aquatic environment: interactions and ecotoxicological effects.Water Emerg Contam Nanoplastics2023;3:15

[97]

Mukonza SS.Bird’s-eye view of per- and polyfluoroalkyl substances pollution research in the African hydrosphere.npj Clean Water2025;8:495

[98]

Martinez-Vicente V.The need for a dedicated marine plastic litter satellite mission.Nat Rev Earth Environ2022;3:728-9

[99]

Martínez-Vicente V,Corradi P.Measuring marine plastic debris from space: initial assessment of observation requirements.Remote Sens2019;11:2443

[100]

Hoellein TJ,Kazmierczak EM.Plastic litter is a part of the carbon cycle in an urban river: Microplastic and macroplastic accumulate with organic matter in floating debris rafts.Water Environ Res2024;96:e11116

AI Summary AI Mindmap
PDF

620

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/