Effects of spirulina (Arthrospira maxima) on teratogenicity and diclofenac-induced oxidative damage in Xenopus laevis
Itzayana Pérez-Alvarez , Hariz Islas-Flores , Livier Mireya Sánchez-Aceves , Leobardo Manuel Gómez-Olivan , Germán Chamorro-Cevallos
Emerging Contaminants and Environmental Health ›› 2023, Vol. 2 ›› Issue (1) : 5
Effects of spirulina (Arthrospira maxima) on teratogenicity and diclofenac-induced oxidative damage in Xenopus laevis
Diclofenac (DCF) is a medication that is highly consumed and eliminated worldwide; it is constantly detected in the environment (primarily in water) and resists conventional degradation processes. It was included in the European Union watch list for the water framework. There are no regulations for this compound in Mexico. Therefore, this study evaluated the protective effect antioxidant activity of spirulina (Arthrospira maxima) against DCF-induced toxicity in Xenopus laevis at early life stages. X. laevis oocytes were exposed at the medium blastula stage for 96 h to three different mixtures: DCF+S 2 (149 µg L-1 DCF plus 2 mg L-1 spirulina), DCF+S 4 (149 µg L-1 DCF plus 4 mg L-1 spirulina), DCF+S 10 (149 µg L-1 DCF plus 10 mg L-1 spirulina). Other groups of oocytes were also exposed to DCF 149 µg L-1 and a control group. The mortality and malformation rate, growth, lipid peroxidation, and antioxidant enzymatic activity (superoxide dismutase and catalase) were determined. Spirulina at 4 and 10 mg L-1 reduced DCF-induced mortality by 80% and reduced malformations in severity and frequency. The abnormalities were malformations of the eye, tail, notochord, intestine, and rectum. All spirulina exposure groups showed an increase in total body size compared to those exposed to DCF. Regarding oxidative damage, the groups exposed to the mixture with spirulina decreased lipid peroxidation levels and diminished antioxidant activity. Spirulina reduced DCF-induced damage in X. laevis at early life stages and decreased mortality, frequency, and severity of abnormalities, growth inhibition, and oxidative damage. Further research is needed to evaluate the effects of spirulina against toxicity induced by xenobiotics in the early stages of development.
Pharmaceuticals / diclofenac / spirulina / teratogenesis / oxidative stress / Xenopus laevis
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
Sousa DNR, Mozeto AA, Carneiro RL, Fadini PS. Spatio-temporal evaluation of emerging contaminants and their partitioning along a Brazilian watershed.Environ Sci Pollut Res Int2018;25:4607-20 |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
Ael-D, Elbaghdady HA, Zahran E. Arsenic-induced genotoxicity in Nile tilapia (Orechromis niloticus); the role of Spirulina platensis extract.Environ Monit Assess2015;187:751 |
| [83] |
|
| [84] |
American Society for Testing Materials. Standard guide for conducting the frog embryo teratogenesis assay - Xenopus (FETAX). Available from: https://www.astm.org/e1439-12r19.html [Last accessed on 29 Mar 2023] |
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
Ch, González R, Ledón N, Remirez D, Rimbau V. C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects.Curr Protein Pept Sci2003;4:207-16 |
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
/
| 〈 |
|
〉 |