Life cycle of macrophages in atherosclerotic inflammation progression and resolution: mediators and interventions (narrative review)

Yuxiao Feng , Qinlan Wang , Bin He , Xumin Hou

Emergency and Critical Care Medicine ›› 2025, Vol. 5 ›› Issue (2) : 100 -108.

PDF (198KB)
Emergency and Critical Care Medicine ›› 2025, Vol. 5 ›› Issue (2) : 100 -108. DOI: 10.1097/EC9.0000000000000129
Review
research-article

Life cycle of macrophages in atherosclerotic inflammation progression and resolution: mediators and interventions (narrative review)

Author information +
History +
PDF (198KB)

Abstract

As one of the pathological causes of coronary heart disease, atherosclerosis poses a major threat to human health. Macrophages play an important role in regulating atherosclerotic disease progression. Specifically, atherosclerotic inflammation is initiated when low-density lipoproteins infiltrate the subcutaneous area and are phagocytosed by macrophages, leading to foam cell formation. The subsequent inflammation progression or resolution depends on the delicate balance between proinflammatory and anti-inflammatory mediators. In cases where proinflammatory factors dominate, macrophages tend to activate the pyroptosis and necrosis pathways, resulting in the release of intracellular damage-associated molecular patterns and promoting necrotic core formation and plaque progression. Conversely, when anti-inflammatory factors prevail, macrophages engage in autophagy-mediated intracellular lipid metabolism while inhibiting inflammation progression through the efferocytosis of apoptotic cells. The regulatory function of macrophages in atherosclerosis can also be understood from the perspective of their life cycles. Lipid retention within the arterial intima and its subsequent uptake by macrophages are the characteristic pathological hallmarks of atherosclerosis. As pivotal effector cells in this process, macrophages with their distinctive performances decisively determine the progression and resolution of atherosclerotic inflammation. The complete life cycle of macrophages in atherosclerotic plaques encompasses chemotaxis, infiltration, polarization, uptake of lipoproteins for metabolic efflux, foam cell formation, lipid overload, and various forms of programmed necrosis, including autophagy, pyroptosis, apoptosis, necrosis, and efferocytosis, to facilitate the removal of apoptotic macrophages and limit inflammation progression. The behavior of macrophages in atherosclerosis has rarely been comprehensively addressed in previous review articles. This article provides an extensive overview of the entire life cycle of macrophages following their response to atherosclerotic inflammation and the impact of regulatory factors on inflammation progression and resolution. Considering that macrophages play a pivotal role in the inflammatory response associated with atherosclerosis, targeting the regulation of their life cycle holds promise for therapeutic interventions against atherosclerosis-related cardiovascular diseases.

Keywords

Atherosclerosis / Autophagy / Efferocytosis / Macrophage / Pyroptosis

Cite this article

Download citation ▾
Yuxiao Feng, Qinlan Wang, Bin He, Xumin Hou. Life cycle of macrophages in atherosclerotic inflammation progression and resolution: mediators and interventions (narrative review). Emergency and Critical Care Medicine, 2025, 5(2): 100-108 DOI:10.1097/EC9.0000000000000129

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of interest statement

The authors declare no conflict of interest.

Author contributions

Feng Y wrote and revised the paper. Wang Q and He B participated in the revising and editing of the paper. Hou X supervised and re-vised the paper.

Funding

This study was supported by the National Natural Science Founda-tion of China (82172168, 82372202 to Hou X)

Ethical approval of studies and informed consent

Not applicable.

Acknowledgments

None.

References

[1]

Björkegren JLM, Lusis AJ. Atherosclerosis: recent developments. Cell. 2022; 185(10):1630-1645. doi:10.1016/j.cell.2022.04.004

[2]

BäckM, YurdagulA, TabasI, ÖörniK, KovanenPT. Inflammationandits resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019; 16(7):389-406. doi:10.1038/s41569-019-0169-2

[3]

Laguna-Fernandez A, Checa A, Carracedo M, et al. ERV1/ChemR23 signaling protects against atherosclerosis by modifying oxidized low-density lipoprotein uptake and phagocytosis in macrophages. Circulation. 2018; 138(16):1693-1705. doi:10.1161/CIRCULATIONAHA.117.032801

[4]

Blagov AV, Markin AM, Bogatyreva AI, Tolstik TV, Sukhorukov VN, Orekhov AN. The role of macrophages in the pathogenesis of atherosclerosis. Cells. 2023; 12(4):522. doi:10.3390/cells12040522

[5]

Lin Z, Zhao S, Li X, et al. Cathepsin B S-nitrosylation promotes ADAR1-mediated editing of its own mRNA transcript via an ADD1/MATR3 regulatory axis. Cell Res. 2023; 33(7):546-561. doi:10.1038/s41422-023-00812-4

[6]

Zheng Y, Li Y, Ran X, et al. Mettl 14 mediates the inflammatory response of macrophages in atherosclerosis through the NF-κB/IL-6 signaling pathway. Cell Mol Life Sci. 2022; 79(6):311. doi:10.1007/s00018-022-04331-0

[7]

Jian D, Wang Y, Jian L, et al. METTL 14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics. 2020; 10(20):8939-8956. doi:10.7150/thno.45178

[8]

Li Q, Yu L, Gao A, et al. METTL 3 (methyltransferase like 3)-dependent N6-methyladenosine modification on Braf mRNA promotes macrophage inflammatory response and atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2023; 43(5):755-773. doi:10.1161/ATVBAHA.122.318451

[9]

Zhang J, Cao L, Gao A, et al. E 3 ligase RNF99 negatively regulates TLR-mediated inflammatory immune response via K48-linked ubiquitination of TAB2. Cell Death Differ. 2023; 30(4):966-978. doi: 10.1038/s41418-023-01115-2

[10]

Liu Q, Pan J, Bao L, et al. Major vault protein prevents atherosclerotic plaque destabilization by suppressing macrophage ASK1-JNK signaling. Arterioscler Thromb Vasc Biol. 2022; 42(5):580-596. doi:10.1161/ATVBAHA.121.316662

[11]

Wei Y, Corbalán-Campos J, Gurung R, et al. Dicer in macrophages prevents atherosclerosis by promoting mitochondrial oxidative metabolism. Circulation. 2018; 138(18):2007-2020. doi:10.1161/CIRCULATIONAHA.117.031589

[12]

Sharma M, Schlegel MP, Afonso MS, et al. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ Res. 2020; 127(3):335-353. doi:10.1161/CIRCRESAHA.119.316461

[13]

Deng L, Kersten S, Stienstra R. Triacylglycerol uptake and handling by macrophages: from fatty acids to lipoproteins. Prog Lipid Res. 2023; 92:101250. doi:10.1016/j.plipres.2023.101250

[14]

Wang B, Tang X, Yao L, et al. Disruption of USP9X in macrophages promotes foam cell formation and atherosclerosis. JClinInves.t 2022; 132(10):e154217. doi:10.1172/JCI154217

[15]

Li Y, Zhou M, Li H, et al. Macrophage P2Y 6 receptor deletion attenuates atherosclerosis by limiting foam cell formation through phospholipase Cβ/store-operated calcium entry/calreticulin/scavenger receptor a pathways. Eur Heart J. 2024; 45(4):268-283. doi:10.1093/eurheartj/ehad796

[16]

Luo Y, Duan H, Qian Y, et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 2017; 27(3): 352-372. doi:10.1038/cr.2017.8

[17]

Cui K, Gao X, Wang B, et al. Epsin nanotherapy pegulates cholesterol transport to fortify atheroma regression. Circ Res. 2023; 132(1): e22-e42. doi:10.1161/CIRCRESAHA.122.321723

[18]

Badimon L, Luquero A, Crespo J, Peña E, Borrell-Pages M. PCSK9 and LRP5 in macrophage lipid internalization and inflammation. Cardiovasc Res. 2021; 117(9):2054-2068. doi:10.1093/cvr/cvaa254

[19]

Wu H, Ballantyne CM. Dyslipidaemia: PCSK9 inhibitors and foamy monocytes in familial hypercholesterolaemia. Nat Rev Cardiol. 2017; 14(7):385-386. doi:10.1038/nrcardio.2017.75

[20]

Zhang X, Xu H, Yu J, et al. Immune regulation of the liver through the PCSK9/CD 36 pathway during heart transplant rejection. Circulation. 2023; 148(4):336-353. doi:10.1161/CIRCULATIONAHA.123.062788

[21]

Robichaud S, Fairman G, Vijithakumar V, et al. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy. 2021; 17(11):3671-3689. doi:10.1080/15548627.2021.1886839

[22]

Laval T, Ouimet M. A role for lipophagy in atherosclerosis. Nat Rev Cardiol. 2023; 20(7):431-432. doi:10.1038/s41569-023-00885-z

[23]

Cui W, Sathyanarayan A, Lopresti M, Aghajan M, Chen C, Mashek DG. Lipophagy-derived fatty acids undergo extracellular efflux via lysosomal exocytosis. Autophagy. 2021; 17(3):690-705. doi:10.1080/15548627.2020.1728097

[24]

Dang EV, McDonald JG, Russell DW, Cyster JG. Oxysterol restraint of cholesterol synthesis prevents AIM2 inflammasome activation. Cell. 2017; 171(5):1057-1071.e11. doi:10.1016/j.cell.2017.09.029

[25]

Shan R, Liu N, Yan Y, Liu B. Apoptosis, autophagy and atherosclerosis: relationships and the role of Hsp27. Pharmacol Res. 2021;166:105169. doi:10.1016/j.phrs.2020.105169

[26]

Sergin I, Evans TD, Zhang X, et al. Exploiting macrophage autophagy-lysosomal biogenesis as a therapy for atherosclerosis. Nat Commun. 2017;8:15750. doi:10.1038/ncomms15750

[27]

Zhang X, Qin Y, Wan X, et al. Rosuvastatin exerts anti-atherosclerotic effects by improving macrophage-related foam cell formation and polarization conversion via mediating autophagic activities. JTransl Med. 2021; 19(1):62. doi:10.1186/s12967-021-02727-3

[28]

Li X, Zhu R, Jiang H, et al. Autophagy enhanced by curcumin ameliorates inflammation in atherogenesis via the TFEB-P300-BRD4 axis Acta Pharm Sin B. 2022; 12(5):2280-2299. doi:10.1016/j.apsb.2021.12.014

[29]

Tao H, Yancey PG, Blakemore JL, et al. Macrophage SR-BI modulates autophagy via VPS 34 complex and PPARα transcription of Tfeb in atherosclerosis. J Clin Invest. 2021; 131(7):e94229. doi:10.1172/JCI94229

[30]

Zhang H, Ge S, Ni B, et al. Augmenting ATG 14 alleviates atherosclerosis and inhibits inflammation via promotion of autophagosome-lysosome fusion in macrophages. Autophagy. 2021; 17(12):4218-4230. doi:10.1080/15548627.2021.1909833

[31]

Xia Y, Liu N, Xie X, et al. The macrophage-specific V-ATPase subunit ATP6V0D 2 restricts inflammasome activation and bacterial infection by facilitating autophagosome-lysosome fusion. Autophagy. 2019; 15(6):960-975. doi:10.1080/15548627.2019.1569916

[32]

Zhong S, Li L, Zhang YL, et al. Acetaldehyde dehydrogenase 2 interactions with LDLR and AMPK regulate foam cell formation. J Clin Invest. 2019; 129(1):252-267. doi:10.1172/JCI122064

[33]

Ma L, Li W, Zhang Y, et al. FLT4/VEGFR3 activates AMPK to coordinate glycometabolic reprogramming with autophagy and inflammasome activation for bacterial elimination. Autophagy. 2022; 18(6):1385-1400. doi:10.1080/15548627.2021.1985338

[34]

Qiao L, Ma J, Zhang Z, et al. Deficient chaperone-mediated autophagy promotes inflammation and atherosclerosis. Circ Res. 2021; 129(12): 1141-1157. doi:10.1161/CIRCRESAHA.121.318908

[35]

Wang L, Cai J, Zhao X, et al. Palmitoylation prevents sustained inflammation by limiting NLRP 3 inflammasome activation through chaperone-mediated autophagy. Mol Cell. 2023; 83(2):281- 297.e10. doi:10.1016/j.molcel.2022.12.002

[36]

Tang Y, Feng M, Su Y, et al. Jmjd 4 facilitates Pkm2 degradation in cardiomyocytes and is protective against dilated cardiomyopathy. Circulation. 2023; 147(22):1684-1704. doi:10.1161/CIRCULATIONAHA.123.064121

[37]

Madrigal-Matute J, de Bruijn J, van Kuijk K, et al. Protective role of chaperone-mediated autophagy against atherosclerosis. Proc Natl Acad Sci U S A. 2022; 119(14):e2121133119. doi:10.1073/pnas.2121133119

[38]

Madrigal-Matute J, Cuervo AM, Sluimer JC. Chaperone-mediated autophagy protects against atherosclerosis. Autophagy. 2022; 18(10): 2505-2507. doi:10.1080/15548627.2022.2096397

[39]

Takahashi M. NLRP 3 inflammasome as a key driver of vascular disease. Cardiovasc Res. 2022; 118(2):372-385. doi:10.1093/cvr/cvab010

[40]

Wei Y, Lan B, Zheng T, et al. GSDME-mediated pyroptosis promotes the progression and associated inflammation of atherosclerosis. Nat Commun. 2023; 14(1):929. doi:10.1038/s41467-023-36614-w

[41]

He B, Nie Q, Wang F, et al. Role of pyroptosis in atherosclerosis and its therapeutic implications. J Cell Physiol. 2021; 236(10):7159-7175. doi: 10.1002/jcp.30366

[42]

He X, Fan X, Bai B, Lu N, Zhang S, Zhang L. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res. 2021;165:105447. doi:10.1016/j.phrs.2021.105447

[43]

Yang Q, Chen S, Wang X, et al. Exercise mitigates endothelial pyroptosis and atherosclerosis by downregulating NEAT 1 through N6-methyladenosine modifications. Arterioscler Thromb Vasc Biol. 2023; 43(6):910-926. doi:10.1161/ATVBAHA.123.319251

[44]

Zeng W, Wu D, Sun Y, et al. The selective NLRP 3 inhibitor MCC950 hinders atherosclerosis development by attenuating inflammation and pyroptosis in macrophages. Sci Rep. 2021; 11(1):19305. doi:10.1038/s41598-021-98437-3

[45]

Jin Y, Liu Y, Xu L, et al. Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis. Cell Death Dis. 2022; 13(5):512. doi:10.1038/s41419-022-04966-8

[46]

Abbate A, Toldo S, Marchetti C, Kron J, Van Tassell BW, Dinarello CA. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ Res. 2020; 126(9):1260-1280. doi:10.1161/CIRCRESAHA.120.315937

[47]

Orecchioni M, Kobiyama K, Winkels H, et al. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science. 2022; 375(6577):214-221. doi:10.1126/science.abg3067

[48]

Luo X, Weng X, Bao X, et al. A novel anti-atherosclerotic mechanism of quercetin: competitive binding to KEAP 1 via Arg483 to inhibit macrophage pyroptosis. Redox Biol. 2022;57:102511. doi:10.1016/j.redox.2022.102511

[49]

Yao F, Jin Z, Zheng Z, et al. HDAC 11 promotes both NLRP3/caspase-1/GSDMD and caspase-3/GSDME pathways causing pyroptosis via ERG in vascular endothelial cells. Cell Death Discov. 2022; 8(1):112. doi:10.1038/s41420-022-00906-9

[50]

Biasizzo M, Kopitar-Jerala N. Interplay between NLRP3 inflammasome and autophagy. Front Immunol. 2020;11:591803. doi:10.3389/fimmu. 2020.591803

[51]

Simion V, Zhou H, Haemmig S, et al. A macrophage-specific lncRNA regulates apoptosis and atherosclerosis by tethering HuR in the nucleus. Nat Commun. 2020; 11(1):6135. doi:10.1038/s41467-020-19664-2

[52]

Fang S, Sun S, Cai H, et al. IRGM/Irgm 1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1+/- mice display increases atherosclerotic plaque stability. Theranostics. 2021; 11(19):9358-9375. doi:10.7150/thno.62797

[53]

Puylaert P, Zurek M, Rayner KJ, De Meyer GRY, Martinet W. Regulated necrosis in atherosclerosis. Arterioscler Thromb Vasc Biol. 2022; 42(11):1283-1306. doi:10.1161/ATVBAHA.122.318177

[54]

Liu W, Östberg N, Yalcinkaya M, et al. Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis. J Clin Invest. 2022; 132(13):e155724. doi:10. 1172/JCI155724

[55]

LuoX, WangY, ZhuX, etal. MCLattenuates atherosclerosis by suppressing macrophage ferroptosis via targeting KEAP1/NRF2 interaction. Redox Biol. 2023;69:102987. doi:10.1016/j.redox.2023.102987

[56]

Bao X, Luo X, Bai X, et al. Cigarette tar mediates macrophage ferroptosis in atherosclerosis through the hepcidin/FPN/SLC7A11 signaling pathway. Free Radic Biol Med. 2023; 201:76-88. doi:10.1016/j.freeradbiomed.2023.03.006

[57]

Tajbakhsh A, Rezaee M, Kovanen PT, Sahebkar A. Efferocytosis in atherosclerotic lesions: malfunctioning regulatory pathways and control mechanisms. Pharmacol Ther. 2018; 188:12-25. doi:10.1016/j.pharmthera.2018.02.003

[58]

Anandan V, Thulaseedharan T, Suresh Kumar A, et al. Cyclophilin a impairs efferocytosis and accelerates atherosclerosis by overexpressing CD 47 and down-regulating calreticulin. Cells. 2021; 10(12):3598. doi:10.3390/cells10123598

[59]

Doddapattar P, Dev R, Ghatge M, et al. Myeloid cell PKM2 deletion enhances efferocytosis and reduces atherosclerosis. Circ Res. 2022; 130(9):1289-1305. doi:10.1161/CIRCRESAHA.121.320704

[60]

Brophy ML, Dong Y, Tao H, et al. Myeloid-specific deletion of epsins 1 and 2 reduces atherosclerosis by preventing LRP-1 downregulation. Circ Res. 2019; 124(4):e6-e19. doi:10.1161/CIRCRESAHA.118.313028

[61]

Doran AC. Inflammation resolution: implications for atherosclerosis. Circ Res. 2022; 130(1):130-148. doi:10.1161/CIRCRESAHA.121.319822

[62]

Tao W, Yurdagul A, Kong N, et al. siRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice. Sci Transl Med. 2020; 12(553):eaay1063. doi:10.1126/scitranslmed.aay1063

[63]

Mueller PA, Kojima Y, Huynh KT, et al. Macrophage LRP 1 (low-density lipoprotein receptor-related protein 1) is required for the effect of CD47 blockade on efferocytosis and atherogenesis—brief report. Arterioscler Thromb Vasc Biol. 2022; 42(1):e1-e9. doi:10.1161/ATVBAHA.121.316854

[64]

Chen L, Zhou Z, Hu C, et al. Platelet membrane-coated nanocarriers targeting plaques to deliver anti-CD 47 antibody for atherosclerotic therapy. Research (Wash D C). 2022;2022:9845459. doi:10.34133/ 2022/9845459

[65]

Jarr KU, Kojima Y, Weissman IL, Leeper NJ. Jeffrey M. 2021 Hoeg award lecture: defining the role of efferocytosis in cardiovascular disease: a focus on the CD47 (cluster of differentiation 47) axis. Arterioscler Thromb Vasc Biol. 2022; 42(6):e145-e154. doi:10.1161/ATVBAHA.122.317049

[66]

Ye ZM, Yang S, Xia YP, et al. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis. 2019; 10(2):138. doi:10.1038/s41419-019-1409-4

[67]

Zhang J, Zhao X, Guo Y, et al. Macrophage ALDH 2 (aldehyde dehydrogenase 2) stabilizing rac2 is required for efferocytosis internalization and reduction of atherosclerosis development. Arterioscler Thromb Vasc Biol. 2022; 42(6):700-716. doi:10.1161/ATVBAHA.121.317204

[68]

Tajbakhsh A, Gheibihayat SM, Askari H, et al. Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. Pharmacol Ther. 2022;238:108282. doi:10.1016/j.pharmthera.2022.108282

[69]

Kasikara C, Schilperoort M, Gerlach B, et al. Deficiency of macrophage PHACTR1 impairs efferocytosis and promotes atherosclerotic plaque necrosis. J Clin Invest. 2021; 131(8):e145275. doi:10.1172/JCI145275

[70]

Jia D, Chen S, Bai P, et al. Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction. Circulation. 2022; 145(20):1542-1556. doi:10.1161/CIRCULATIONAHA.121.057549

[71]

Wang Y, Subramanian M, Yurdagul A, et al. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell. 2017; 171(2):331-345.e22. doi:10.1016/j.cell.2017.08.041

[72]

Mao Y. Apoptotic cell-derived metabolites in efferocytosis-mediated resolution of inflammation. Cytokine Growth Factor Rev. 2021; 62: 42-53. doi:10.1016/j.cytogfr.2021.10.002

[73]

Zhang X, McDonald JG, Aryal B, et al. Desmosterol suppresses macrophage inflammasome activation and protects against vascular inflammation and atherosclerosis. Proc Natl Acad Sci U S A. 2021; 118(47):e2107682118. doi:10.1073/pnas.2107682118

[74]

Cai S, Zhao M, Zhou B, et al. Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction. J Clin Invest. 2023; 133(4):e159498. doi:10.1172/JCI159498

[75]

Morioka S, Perry JSA, Raymond MH, et al. Efferocytosis induces a novel SLC program to promote glucose uptake and lactate release. Nature. 2018; 563(7733):714-718. doi:10.1038/s41586-018-0735-5

[76]

Schilperoort M, Ngai D, Katerelos M, Power DA, Tabas I. PFKFB2-mediated glycolysis promotes lactate-driven continual efferocytosis by macrophages. Nat Metab. 2023; 5(3):431-444. doi:10.1038/s42255-023-00736-8

[77]

Merlin J, Ivanov S, Dumont A, et al. Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. Nat Metab. 2021; 3(10):1313-1326. doi: 10.1038/s42255-021-00471-y

[78]

Yurdagul A, Subramanian M, Wang X, et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 2020; 31(3):518-533.e10. doi:10.1016/j.cmet.2020.01.001

[79]

Yurdagul A, Kong N, Gerlach BD, et al. ODC (ornithine decarboxylase)-dependent putrescine synthesis maintains MerTK (MER tyrosine-protein kinase) expression to drive resolution. Arterioscler Thromb Vasc Biol. 2021; 41(3):e144-e159. doi:10.1161/ATVBAHA.120.315622.120.315622

[80]

Ampomah PB, Cai B, Sukka SR, et al. Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nat Metab. 2022; 4(4):444-457. doi:10.1038/s42255-022-00551-7

[81]

Zhang S, Weinberg S, DeBerge M, et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 2019; 29(2):443-456.e5. doi:10.1016/j.cmet.2018.12.004

[82]

Gerlach BD, Ampomah PB, Yurdagul A, et al. Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metab. 2021; 33(12):2445-2463.e8. doi:10.1016/j.cmet.2021.10.015

AI Summary AI Mindmap
PDF (198KB)

311

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/