The role of intravenous glutamine administration in critical care patients with acute kidney injury: a narrative review

Jonny Jonny , Astrid Devina Larasati , Bunga Pinandhita Ramadhani , Bhimo Aji Hernowo , Taufiq Fredrik Pasiak

Emergency and Critical Care Medicine ›› 2024, Vol. 4 ›› Issue (3) : 117 -125.

PDF (453KB)
Emergency and Critical Care Medicine ›› 2024, Vol. 4 ›› Issue (3) :117 -125. DOI: 10.1097/EC9.0000000000000123
Review
research-article

The role of intravenous glutamine administration in critical care patients with acute kidney injury: a narrative review

Author information +
History +
PDF (453KB)

Abstract

The kidneys are complex organs responsible for waste removal and various regulatory functions. Critically ill patients often experience acute kidney injury (AKI). Although renal replacement therapy is used to manage AKI, nutritional therapy is crucial. Glutamine, an amino acid involved in cellular functions, has potential benefits when administered intravenously to critically ill patients. This administration is associated with reduced mortality rates, infectious complications, and hospitalization duration. However, its use in patients with AKI remains controversial. Glutamine is used by various organs, including the kidneys, and its metabolism affects several important pathways. Intravenous glutamine supplementation at specific doses can improve blood marker levels and restore plasma glutamine concentrations. Moreover, this supplementation reduces infections, enhances immune responses, decreases disease severity scores, and reduces complications in critically ill patients. However, caution is advised in patients with multiple organ failure, particularly AKI, as high doses of glutamine may increase mortality rates. Hyperglutaminemia can have adverse effects. Monitoring and appropriate dosing can help to mitigate these risks. Kidneys rely on glutamine for various essential functions. Thus, the use of intravenous glutamine in critically ill patients with AKI remains controversial. Despite its potential benefits in terms of infection reduction, immunomodulation, and improved outcomes, careful consideration of the patient’s condition, dosage, and treatment duration is necessary. Further research is needed to establish optimal guidelines for glutamine administration in this patient population.

Keywords

Acute kidney injury / Critical illness / Glutamine / Parenteral nutrition

Cite this article

Download citation ▾
Jonny Jonny, Astrid Devina Larasati, Bunga Pinandhita Ramadhani, Bhimo Aji Hernowo, Taufiq Fredrik Pasiak. The role of intravenous glutamine administration in critical care patients with acute kidney injury: a narrative review. Emergency and Critical Care Medicine, 2024, 4(3): 117-125 DOI:10.1097/EC9.0000000000000123

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of interest statement

The authors declare no conflict of interest.

Author contributions

Jonny J and Pasiak TF participated in conception and design. Jonny J contributed to data analysis and interpretation. All authors contributed to provision of study materials or patients, collection and assembly of data, manuscript writing, and final approval of manuscript.

Funding

None.

Ethical approval of studies and informed consent

Not applicable.

Acknowledgments

None.

References

[1]

Zhang X, Agborbesong E, Li X. The role of mitochondria in acute kidney injury and chronic kidney disease and its therapeutic potential. Int J Mol Sci. 2021; 22(20):11253. doi:10.3390/ijms222011253

[2]

Ge M, Fontanesi F, Merscher S, Fornoni A. The vicious cycle of renal lipotoxicity and mitochondrial dysfunction. Front Physiol. 2020; 11:732. doi:10.3389/fphys.2020.00732

[3]

Wang Y, Guan Y, Xie Q, et al. The metabolites of de novo NAD+ synthesis are a valuable predictor of acute kidney injury. Clin Kidney J. 2022; 16(4):711-721. doi:10.1093/ckj/sfac262

[4]

Kellum JA, Lameire N; KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (part 1). Crit Care. 2013; 17(Part 1):204. https://pubmed.ncbi.nlm.nih.gov/23394211/

[5]

Hoste EAJ, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018; 14(10):607-625. doi:10.1038/S41581-018-0052-0

[6]

Jonny J, Hasyim M, Angelia V, et al. Incidence of acute kidney injury and use of renal replacement therapy in intensive care unit patients in Indonesia. BMC Nephrol. 2020; 21(1):191. doi:10.1186/s12882-020-01849-y

[7]

Gaudry S, Hajage D, Benichou N, et al. Delayed versus early initiation of renal replacement therapy for severe acute kidney injury: a systematic review and individual patient data meta-analysis of randomised clinical trials. Lancet. 2020; 395(10235):1506-1515. doi:10.1016/S0140-6736(20)30531-6

[8]

Tandukar S, Palevsky PM. Continuous renal replacement therapy: who, when, why, and how. Chest. 2019; 155(3):626-638. doi:10.1016/j.chest.2018.09.004

[9]

Bolisetty S, Zarjou A, Agarwal A. Heme oxygenase 1 as a therapeutic target in acute kidney injury. Am J Kidney Dis. 2017; 69(4):531-545. doi:10.1053/j.ajkd.2016.10.037

[10]

Li G, Zhou CL, Ba YM, et al. Nutritional risk and therapy for severe and critical COVID-19 patients: a multicenter retrospective observational study. Clin Nutr. 2021; 40(4):2154-2161. doi:10.1016/j.clnu.2020.09.040

[11]

Martindale R, Patel JJ, Taylor B, Arabi YM, Warren M, McClave SA. Nutrition therapy in critically ill patients with coronavirus disease 2019. J Parenter Enteral Nutr. 2020; 44(7):1174-1184. doi:10.1002/jpen.1930

[12]

Leguina-Ruzzi A, Cariqueo M. Glutamine:a conditionally essential amino acid with multiple biological functions. In: N Shiomi, VY Waisundara, eds. Superfood and Functional Food—The Development of Superfoods and Their Roles as Medicine. InTech; 2017:187-205. https://www.intechopen.com/chapters/53125

[13]

Mori M, Rooyackers O, Smedberg M, Tjäder I, Norberg Å, Wernerman J. Endogenous glutamine production in critically ill patients: the effect of exogenous glutamine supplementation. Crit Care. 2014; 18(2):R72. doi:10.1186/cc13829

[14]

Cruzat V, Rogero MM, Keane KN, Curi R, Newsholme P. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients. 2018; 10(11):1564. doi:10.3390/nu10111564

[15]

Tajan M, Hock AK, Blagih J, et al. A role for p53 in the adaptation to glutamine starvation through the expression of SLC1A3. Cell Metab. 2018; 28(5):721-736.e6. doi:10.1016/j.cmet.2018.07.005

[16]

Stehle P, Ellger B, Kojic D, et al. Glutamine dipeptide-supplemented parenteral nutrition improves the clinical outcomes of critically ill patients: a systematic evaluation of randomised controlled trials. Clin Nutr ESPEN. 2017; 17:75-85. doi:10.1016/j.clnesp.2016.09.007

[17]

Apostolopoulou A, Haidich AB, Kofina K, et al. Effects of glutamine supplementation on critically ill patients: focus on efficacy and safety: an overview of systematic reviews. Nutrition. 2020; 78:110960. doi:10.1016/j.nut.2020.110960

[18]

Newsholme P, Diniz VLS, Dodd GT, Cruzat V. Glutamine metabolism and optimal immune and CNS function. Proc Nutr Soc. 2023; 82(1):22-31. doi:10.1017/S0029665122002749

[19]

Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int. 2020; 140:104809. doi:10.1016/j.neuint.2020.104809

[20]

Shah AM, Wang Z, Ma J. Glutamine metabolism and its role in immunity, a comprehensive review. Animals (Basel). 2020; 10(2):326. doi:10.3390/ani10020326

[21]

Fishman G, Singer P. Metabolic and nutritional aspects in continuous renal replacement therapy. J Intensive Med. 2023; 3(3):228-238. doi:10.1016/j.jointm.2022.11.001

[22]

Curi R, Newsholme P, Marzuca-Nassr GN, et al. Regulatory principles in metabolism—then and now. Biochem J. 2016; 473(13):1845-1857. doi:10.1042/BCJ20160103

[23]

Nguyen TL, Durán RV.Glutamine metabolism in cancer therapy. Cancer Drug Resist. 2018; 1(3):126-138. doi:10.20517/cdr.2018.08

[24]

Minich DM, Brown BI. A review of dietary (phyto)nutrients for glutathione support. Nutrients. 2019; 11(9):2073. doi:10.3390/nu11092073

[25]

Li G, Li D, Wang T, He S. Pyrimidine biosynthetic enzyme CAD: its function, regulation, and diagnostic potential. Int J Mol Sci. 2021; 22(19):10253. doi:10.3390/ijms221910253

[26]

Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol. 2019; 15(6):346-366. doi:10.1038/s41581-019-0129-4

[27]

Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol. 2019; 20(7):436-450. doi:10.1038/s41580-019-0123-5

[28]

Meitei K, Devi K. Comparison of oral versus intravenous glutamine in critically ill patients. Int J Sci Res. 2018; 7(6):34-35. doi:10.36106/ijsr

[29]

Çekmen N, Aydimathn A, Erdemli Ö. The impact of l-alanyl-l-glutamine dipeptide supplemented total parenteral nutrition on clinical outcome in critically patients. e-SPEN. 2011; 6(2):67-70. doi:10.1016/j.eclnm.2011.02.001

[30]

Smedberg M. Glutamine Metabolism in Health. In: J Wernerman, O Rooyackers, A Norberg, I Tjader, eds. Glutamine Kinetics in Critically Ill Patients. 1st ed. Karolinska Institutet; 2020:1-2.

[31]

Mogensen KM, Robinson MK. Parenteral nutrition in adults. In: Conn’s Current Therapy 2020. Elsevier; 2020:361-369.

[32]

Stehle P, Kuhn KS. Glutamine: an obligatory parenteral nutrition substrate in critical care therapy. Biomed Res Int. 2015; 2015:545467. doi:10.1155/2015/545467

[33]

Wischmeyer PE, Dhaliwal R, McCall M, Ziegler TR, Heyland DK. Parenteral glutamine supplementation in critical illness: a systematic review. Crit Care. 2014; 18(2):R76. doi:10.1186/cc13836

[34]

Bendavid I, Zusman O, Kagan I, Theilla M, Cohen J, Singer P. Early administration of protein in critically ill patients: a retrospective cohort study. Nutrients. 2019; 11(1):106. doi:10.3390/nu11010106

[35]

Itzhaki MH, Singer P. Advances in medical nutrition therapy: parenteral nutrition. Nutrients. 2020; 12(3):717. doi:10.3390/nu12030717

[36]

Kayambankadzanja RK, Schell CO, Wärnberg MG, et al. Towards definitions of critical illness and critical care using concept analysis. BMJ Open. 2022; 12(9):e060972. doi:10.1136/bmjopen-2022-060972

[37]

Wu JM, Ho TW, Lai IR, Chen CN, Lin MT. Parenteral glutamine supplementation improves serum albumin values in surgical cancer patients. Clin Nutr. 2021; 40(2):645-650. doi:10.1016/j.clnu.2020.06.015

[38]

Smedberg M. Hypoglutaminemia. In: J Wernerman, O Rooyackers, Å Norberg, I ITjader, eds. Glutamine kinetics in critically ill patients. 1st ed. Karolinska Institutet; 2020:8-9.

[39]

Smedberg M. Glutamine metabolism in critical illness. In: J Wernerman, O Rooyackers, A Norberg, I Tjader, eds. Glutamine Kinetics in Critically Ill Patients. Karolinska Institutet; 2020:5-7.

[40]

Hsu CC, Sun CY, Tsai CY, et al. Metabolism of proteins and amino acids in critical illness: from physiological alterations to relevant clinical practice. J Multidiscip Healthc. 2021; 14:1107-1117. doi:10.2147/JMDH.S306350

[41]

Sun Y, Zhu S, Li S, Liu H. Glutamine on critical-ill patients: a systematic review and meta-analysis. Ann Palliat Med. 2021; 10(2):1503-1520. doi:10.21037/apm-20-702

[42]

Watford M. Glutamine and glutamate: nonessential or essential amino acids? Anim Nutr. 2015; 1(3):119-122. doi:10.1016/j.aninu.2015.08.008

[43]

Singer P. Protein metabolism and requirements in the ICU. Clin Nutr ESPEN. 2020; 38:3-8. doi:10.1016/j.clnesp.2020.03.026

[44]

Sethi SK, Maxvold N, Bunchman T, Jha P, Kher V, Raina R. Nutritional management in the critically ill child with acute kidney injury: a review. Pediatr Nephrol. 2017; 32(4):589-601. doi:10.1007/s00467-016-3402-9

[45]

Grohmann U, Mondanelli G, Belladonna ML, et al. Amino-acid sensing and degrading pathways in immune regulation. Cytokine Growth Factor Rev. 2017; 35:37-45. doi:10.1016/j.cytogfr.2017.05.004

[46]

Ma G, Zhang Z, Li P, et al. Reprogramming of glutamine metabolism and its impact on immune response in the tumor microenvironment. Cell Commun Signal. 2022; 20(1):114. doi:10.1186/s12964-022-00909-0

[47]

Tocchi A, Mazzoni G, Puma F, et al. Clinical significance of serum gastrin levels in patients with colorectal cancer. Int J Biol Markers. 2004; 19(1):46-51. doi:10.1177/172460080401900106

[48]

Blaauw R, Nel DG, Schleicher GK. Plasma glutamine levels in relation to intensive care unit patient outcome. Nutrients. 2020; 12(2):402. doi:10.3390/nu12020402

[49]

Gholamalizadeh M, Tabrizi R, Rezaei S, et al. Effect of glutamine supplementation on inflammatory markers in critically ill patients supported with enteral or parenteral feeding. J Parenter Enteral Nutr. 2022; 46(1):61-68. doi:10.1002/jpen.2217

[50]

Cai G, Yan J, Zhang Z, Yu Y. Immunomodulatory effects of glutamine-enriched nutritional support in elderly patients with severe sepsis: a prospective, randomized, controlled study. J Organ Dysfunct. 2008; 4(1):31-37. doi:10.1080/17471060701682260

[51]

Mundi MS, Shah M, Hurt RT. When is it appropriate to use glutamine in critical illness?. Nutr Clin Pract. 2016; 31(4):445-450. doi:10.1177/0884533616651318

[52]

van Zanten AR, Sztark F, Kaisers UX, et al. High-protein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition and nosocomial infections in the ICU: a randomized clinical trial. JAMA. 2014; 312(5):514-524. doi:10.1001/jama.2014.7698

[53]

Ostermann M, Macedo E, Oudemans-van Straaten H. How to feed a patient with acute kidney injury. Intensive Care Med. 2019; 45(7):1006-1008. doi:10.1007/s00134-019-05615-z

[54]

Hill A, Elke G, Weimann A. Nutrition in the intensive care unit—a narrative review. Nutrients. 2021; 13(8):2851. doi:10.3390/nu13082851

[55]

Smedberg M. Hyperglutaminemia. In: J Wernerman, O Rooyackers, A Norberg, I Tjader, eds. Karolinska Institutet; Glutamine Kinetics in Critically Ill Patients. 2020:10.

[56]

Kellerman RD, Rakel DP;KUSM-W Medical Practice Association. Conn’s Current Therapy 2022. 1st ed. Philadelphia: Elsevier; 2022.

[57]

Naserzadeh R, Jafaripour L, Eslamifar Z, Alizamani E, Nouryazdan N, Ahmadvand H. The effect of receiving l-glutamine on the reduction of renal tissue damages and renal function recovery following gentamicin-induced nephrotoxicity in rats. J Babol Univ Med Sci. 2021; 23(1):267-274

[58]

Smedberg M. Glutamine and the liver. In: J Wernerman, O Rooyackers, Å Norberg, I Tjäder, eds. Glutamine Kinetics in Critically Ill Patients. Karolinska Institutet; 2020:4-5.

[59]

Bruno CM, Valenti M. Acid-base disorders in patients with chronic obstructive pulmonary disease: a pathophysiological review. J Biomed Biotechnol. 2012; 2012:915150. doi:10.1155/2012/915150

[60]

Curthoys NP, Moe OW. Proximal tubule function and response to acidosis. Clin J Am Soc Nephrol. 2014; 9(9):1627-1638. doi:10.2215/CJN.10391012

[61]

Lumintang M, Joewarini E, Zakaria S, Widodo G, Susilo I. Effect of glutamine before gets cisplatin on AIF and BCL-2 in the evidence of apoptosis cell tubulus proximal in rats kidney of Rattus norvegicus strain Wistar. Indian J Forensic Med Toxicol. 2020; 14(2):1742-1746. doi:10.37506/ijfmt.v14i2.3188

[62]

Peng ZY, Zhou F, Wang HZ, et al. The anti-oxidant effects are not the main mechanism for glutamine’s protective effects on acute kidney injury in mice. Eur J Pharmacol. 2013; 705(1-3):11-19. doi:10.1016/j.ejphar.2013.02.028

[63]

Wei Q, Xiao X, Fogle P, Dong Z. Changes in metabolic profiles during acute kidney injury and recovery following ischemia/reperfusion. PLoS One. 2014; 9(9):e106647. doi:10.1371/journal.pone.0106647

[64]

Hewitson JP, Shah KM, Brown N, et al. miR-132 suppresses transcription of ribosomal proteins to promote protective Th1 immunity. EMBO Rep. 2019; 20(4):e46620. doi:10.15252/embr.201846620

[65]

Li S, Huang X, Wang S, Chu X, Aierken M. Analysis of microRNA expression after glutamine intervention in acute renal ischemia-reperfusion injury. J Healthc Eng. 2022; 2022:2401152. doi:10.1155/2022/2401152

[66]

Fakhrinnisa TA, Susilo I, Mustika A, Sofyan MS. Effect of intravenous glutamine on caspase-12 expression in the apoptosis of the glomerular epithelial cells of male rats exposed to cisplatin. Asian Pac J Cancer Prev. 2021; 22(2):457-462. doi:10.31557/APJCP.2021.22.2.457

[67]

Ayush O, Jin ZW, Kim HK, Shin YR, Im SY, Lee HK. Glutamine up-regulates MAPK phosphatase-1 induction via activation of Ca2+→ ERK cascade pathway. Biochem Biophys Rep. 2016; 7:10-19. doi:10.1016/j.bbrep.2016.05.011

[68]

Rofananda IF, Nugraha J, Susilo I, Sofyan MS. Effect of glutamine on apoptosis-inducing factor expression and apoptosis of glomerular parietal epithelial cells of cisplatin-exposed rats. Open Access Maced J Med Sci. 2021; 9:367-372. doi:10.3889/oamjms.2021.5915

[69]

Su LH, Lin MT, Yeh SL, Yeh CL. Glutamine administration attenuates kidney inflammation in obese mice complicated with polymicrobial sepsis. Mediators Inflamm. 2021; 2021:5597118. doi:10.1155/2021/5597118

[70]

Khalid A, Aslam S, Ghafoor A, Asif S. Histological effects of glutamine on gentamicin-induced nephrotoxicity in Wistar rats. J Sharif Med Dent Coll Lahore. 2022; 8(01):7-12

[71]

Thomas K, Zondler L, Ludwig N, et al. Glutamine prevents acute kidney injury by modulating oxidative stress and apoptosis in tubular epithelial cells. JCI Insight. 2022; 7(21):e163161. doi:10.1172/jci.insight.163161

[72]

Kim YS, Jung MH, Choi MY, et al. Glutamine attenuates tubular cell apoptosis in acute kidney injury via inhibition of the c-Jun N-terminal kinase phosphorylation of 14-3-3. Crit Care Med. 2009; 37(6):2033-2044. doi:10.1097/CCM.0b013e3181a005ba

[73]

Tatsukawa H, Hitomi K. Role of transglutaminase 2 in cell death, survival, and fibrosis. Cells. 2021; 10(7):1842. doi:10.3390/cells10071842

[74]

Chebotareva N, Bobkova I, Shilov E. Heat shock proteins and kidney disease: perspectives of HSP therapy. Cell Stress Chaperones. 2017; 22(3):319-343. doi:10.1007/s12192-017-0790-0

[75]

Kennedy D, Jäger R, Mosser DD, Samali A. Regulation of apoptosis by heat shock proteins. IUBMB Life. 2014; 66(5):327-338. doi:10.1002/iub.1274

[76]

Shen Y, Chen S, Zhao Y. Sulfiredoxin-1 alleviates high glucose-induced podocyte injury though promoting Nrf2/ARE signaling via inactivation of GSK-3β. Biochem Biophys Res Commun. 2019; 516(4):1137-1144. doi:10.1016/j.bbrc.2019.06.157

[77]

Druml W. Metabolic alterations and nutrition in AKI. In: A Jörres, C Ronco, J Kellum, eds. Management of Acute Kidney Problems. Berlin Heidelberg: Springer ; 2010:161-168. doi:10.1007/978-3-540-69441-0_18

[78]

Schmidt JJ, Hafer C, Spielmann J, et al. Removal characteristics and total dialysate content of glutamine and other amino acids in critically ill patients with acute kidney injury undergoing extended dialysis. Nephron Clin Pract. 2014; 126(1):62-66. doi:10.1159/000358434

[79]

Song YH, Seo EH, Yoo YS, Jo YI. Phosphate supplementation for hypophosphatemia during continuous renal replacement therapy in adults. Ren Fail. 2019; 41(1):72-79. doi:10.1080/0886022X.2018.1561374

[80]

Tazmini K, Frisk M, Lewalle A, et al. Hypokalemia promotes arrhythmia by distinct mechanisms in atrial and ventricular myocytes. Circ Res. 2020; 126(7):889-906. doi:10.1161/CIRCRESAHA.119.315641

[81]

Baeg SI, Jeon J, Kang D, et al. Impact of protocolized fluid management on electrolyte stability in patients undergoing continuous renal replacement therapy. Front Med (Lausanne). 2022; 9:915072. doi:10.3389/fmed.2022.915072

[82]

Kelly YP, Sharma S, Mothi SS, et al. Hypocalcemia is associated with hypotension during CRRT: a secondary analysis of the acute renal failure trial network study. J Crit Care. 2021; 65:261-267. doi:10.1016/j.jcrc.2021.07.008

[83]

Coutrot M, Hékimian G, Moulin T, et al. Euglycemic ketoacidosis, a common and underecognized complication of continuous renal replacement therapy using glucose-free solutions. Intensive Care Med. 2018; 44(7):1185-1186. doi:10.1007/s00134-018-5118-8

[84]

Sriperumbuduri S, Clark E, Biyani M, Ruzicka M. High anion gap metabolic acidosis on continuous renal replacement therapy. Kidney Int Rep. 2020; 5(10):1833-1835. doi:10.1016/j.ekir.2020.07.014

[85]

Zhang J, Tian J, Sun H, et al. How does continuous renal replacement therapy affect septic acute kidney injury? Blood Purif. 2018; 46(4):326-331. doi:10.1159/000492026

[86]

Navarro JF, Mora C, León C, et al. Amino acid losses during hemodialysis with polyacrylonitrile membranes: effect of intradialytic amino acid supplementation on plasma amino acid concentrations and nutritional variables in nondiabetic patients. Am J Clin Nutr. 2000; 71(3):765-773. doi:10.1093/ajcn/71.3.765

[87]

Mir AW, Raja KM, Azam MN, Arshad AR, Tahir TS. Effect of different dialysis membranes on protein loss during hemodialysis. Pakistan Armed Forces Med J. 2023; 73(2):390-393. doi:10.51253/pafmj.v73i2.3879

[88]

Oh WC, Mafrici B, Rigby M, et al. Micronutrient and amino acid losses during renal replacement therapy for acute kidney injury. Kidney Int Rep. 2019; 4(8):1094-1108. doi:10.1016/j.ekir.2019.05.001

[89]

Ostermann M, Summers J, Lei K, et al. Micronutrients in critically ill patients with severe acute kidney injury—a prospective study. Sci Rep. 2020; 10(1):1505. doi:10.1038/s41598-020-58115-2

[90]

Chua HR, Baldwin I, Fealy N, Naka T, Bellomo R. Amino acid balance with extended daily diafiltration in acute kidney injury. Blood Purif. 2012; 33(4):292-299. doi:10.1159/000335607

[91]

Pickkers P, Darmon M, Hoste E, et al. Acute kidney injury in the critically ill: an updated review on pathophysiology and management. Intensive Care Med. 2021; 47(8):835-850. doi:10.1007/s00134-021-06454-7

[92]

Fan J, Kamphorst JJ, Mathew R, et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol. 2013; 9:712. doi:10.1038/msb.2013.65

[93]

Xie N, Zhang L, Gao W, et al. NAD+ metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct Target Ther. 2020; 5(1):227. doi:10.1038/s41392-020-00311-7

[94]

Heyland D, Muscedere J, Wischmeyer PE, et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013; 368(16):1489-1497. doi:10.1056/nejmoa1212722

[95]

Mahanna E, Crimi E, White P, Mann DS, Fahy BG. Nutrition and metabolic support for critically ill patients. Curr Opin Anaesthesiol. 2015; 28(2):131-138. doi:10.1097/ACO.0000000000000172

[96]

Koyner JL, Topf J, Lerma E. The metabolic management and nutrition of acute kidney injury. In: Handbook of Critical Care Nephrology. 2021:236-250.

[97]

Wernerman J. Glutamine supplementation to critically ill patients? Crit Care. 2014; 18(2):214. doi:10.1186/cc13781

[98]

Fiaccadori E, Sabatino A, Barazzoni R, et al. ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin Nutr. 2021; 40(4):1644-1668. doi:10.1016/j.clnu.2021.01.028

[99]

van Zanten AR, Dhaliwal R, Garrel D, Heyland DK. Enteral glutamine supplementation in critically ill patients: a systematic review and meta-analysis. Crit Care. 2015; 19(1):294. doi:10.1186/s13054-015-1002-x

[100]

D’Souza R, Powell-Tuck J. Glutamine supplements in the critically ill. J R Soc Med. 2004; 97(9):425-427. doi:10.1258/jrsm.97.9.425

[101]

Brinkmann SJH, Buijs N, Vermeulen MAR, et al. Perioperative glutamine supplementation restores disturbed renal arginine synthesis after open aortic surgery: a randomized controlled clinical trial. Am J Physiol Ren Physiol. 2016; 311(3):F567-F575. doi:10.1152/ajprenal.00340.2015

[102]

Weiss R, Meersch M, Gerke M, et al. Effect of glutamine administration after cardiac surgery on kidney damage in patients at high risk for acute kidney injury: a randomized controlled trial. Anesth Analg. 2023; 137(5):1029-1038. doi:10.1213/ANE.0000000000006288

[103]

Abstracts of the ESICM (European Society of Intensive Care Medicine) 25th Annual Congress.Lisbon, Portugal. October 13-17, 2012. Intensive Care Med. 2012; 38(Suppl 1):S8-S327. doi:10.1007/s00134-012-2683-0

[104]

Wang ZE, Zheng JJ, Bin Feng J, et al. Glutamine relieves the hypermetabolic response and reduces organ damage in severe burn patients: a multicenter, randomized controlled clinical trial. Burns. 2022; 48(7):1606-1617. doi:10.1016/j.burns.2021.12.005

[105]

Heyland DK, Wibbenmeyer L, Pollack JA, et al. A randomized trial of enteral glutamine for treatment of burn injuries. N Engl J Med. 2022; 387(11):1001-1010. doi:10.1056/nejmoa2203364

[106]

Ng JWG, Cairns SA, O’Boyle CP. Management of the lower gastrointestinal system in burn: a comprehensive review. Burns. 2016; 42(4):728-737. doi:10.1016/j.burns.2015.08.007

[107]

Ay N, Derbent A, Kiyak H, Salihoglu Z. Evaluation of immunomodulatory nutrients in critically ill patients in the intensive care unit. North Clin Istanb. 2022; 9(6):557-564. doi:10.14744/nci.2021.00908

[108]

Kum L, Friedrich A, Kieler M, et al. Kidney function worsening is linked to parenteral-nutrition-dependent survival in palliative care patients. Nutrients. 2022; 14(4):769. doi:10.3390/nu14040769

[109]

Andrews PJD, Avenell A, Noble DW, et al. Randomised trial of glutamine, selenium, or both, to supplement parenteral nutrition for critically ill patients. BMJ. 2011;342:d1542. doi:10.1136/bmj.d1542

[110]

Honoré PM, De Waele E, Jacobs R, et al. Nutritional and metabolic alterations during continuous renal replacement therapy. Blood Purif. 2013; 35(4):279-284. doi:10.1159/000350610

PDF (453KB)

157

Accesses

0

Citation

Detail

Sections
Recommended

/