Vaspin alleviates pathological cardiac hypertrophy by regulating autophagy-dependent myocardial senescence

Haiying Rui , Huaxiang Yu , Dan Zou , Kai Chi , Ping Xu , Xiaoshuai Song , Lulu Liu , Xuting Wu , Jinxin Wang , Li Xue

Emergency and Critical Care Medicine ›› 2024, Vol. 4 ›› Issue (1) : 4 -15.

PDF (1798KB)
Emergency and Critical Care Medicine ›› 2024, Vol. 4 ›› Issue (1) :4 -15. DOI: 10.1097/EC9.0000000000000097
Original Articles
research-article

Vaspin alleviates pathological cardiac hypertrophy by regulating autophagy-dependent myocardial senescence

Author information +
History +
PDF (1798KB)

Abstract

Background: Visceral adipose tissue-derived serine protease inhibitor (vaspin), a secretory adipokine, protects against insulin resistance. Recent studies have demonstrated that serum vaspin levels are decreased in patients with coronary artery disease and that vaspin protects against myocardial ischemia-reperfusion injury and atherosclerosis. However, it remains unclear whether vaspin exerts specific effects on pathological cardiac hypertrophy.

Methods: An in vivo study was conducted using a cardiac hypertrophy model established by subcutaneous injection of isoproterenol (ISO) in C57BL/6 and vaspin-ko mice. Rapamycin was administered intraperitoneally to mice, for further study. H9c2 cells and neonatal rat ventricular myocytes (NRVMs) were treated with ISO to induce hypertrophy. Human vaspin fusion protein, the proteasome inhibitor MG132, and chloroquine diphosphate were used for further mechanistic studies.

Results: Here, we provide the first evidence that vaspin knockdown results in markedly exaggerated cardiac hypertrophy, fibrosis, and cardiomyocyte senescence in mice treated with ISO. Conversely, the administration of exogenous recombinant human vaspin protected NRVMs in vitro against ISO-induced hypertrophy and senescence. Furthermore, vaspin significantly potentiated the ISO-induced decrease in autophagy. Both rapamycin and chloroquine diphosphate regulated autophagy in vivo and in vitro, respectively, and participated in vaspin-mediated cardioprotection. Moreover, the PI3K-AKT-mTOR pathway plays a critical role in vaspin-mediated autophagy in cardiac tissues and NRVMs. Our data showed that vaspin downregulated the p85 and p110 subunits of PI3K by linking p85 and p110 to NEDD4L-mediated ubiquitination degradation.

Conclusion: Our results show, for the first time, that vaspin functions as a critical regulator that alleviates pathological cardiac hypertrophy by regulating autophagy-dependent myocardial senescence, providing potential preventive and therapeutic targets for pathological cardiac hypertrophy.

Keywords

Autophagic flux / Myocardial senescence / Pathological cardiac hypertrophy / Ubiquitination / Vaspin

Cite this article

Download citation ▾
Haiying Rui, Huaxiang Yu, Dan Zou, Kai Chi, Ping Xu, Xiaoshuai Song, Lulu Liu, Xuting Wu, Jinxin Wang, Li Xue. Vaspin alleviates pathological cardiac hypertrophy by regulating autophagy-dependent myocardial senescence. Emergency and Critical Care Medicine, 2024, 4(1): 4-15 DOI:10.1097/EC9.0000000000000097

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of interest statement

The authors declare no conflict of interest.

Author contributions

Yu H, Rui H, and Xue L participated in research design. Yu H, Rui H, and Zou D participated in the writing of the article. Yu H, Rui H, Chi K, and Xu P participated in the performance of the research. Yu H, Rui H, Liu L, and Song X contributed new reagents or analytic tools. Yu H, Rui H, Wu X, and Wang J participated in data analysis.

Funding

This study was supported by the State Key Program of the National Natural Science Foundation of China (82030059), National Natural Science Foundation of China (82172178, 82072144, 81873950, 81873953, 81300219, 81671951), National Key R&D Program of China (2020YFC1512700, 2020YFC1512705, 2020YFC1512703), National S&T Fundamental Resources Investigation Project (2018FY100600, 2018FY100602), Natural Science Foundation of Shandong Province (ZR2022MH078), Key R&D Program of Shandong Province (2019GSF108131), Taishan Pandeng Scholar Program of Shandong Province (tspd20181220), Taishan Young Scholar Program of Shandong Province (tsqn202103173, tsqn20161065, tsqn201812129), Youth Top-Talent Project of National Ten Thousand Talents Plan, and Qilu Young Scholar Program.

Ethical approval of studies and informed consent

This study was approved by the Ethics Committee of Qilu Hospital of Shandong University (KYLL-2022(ZM)-507, February 21, 2022).

Acknowledgments

None.

References

[1]

Lorell BH.Transition from hypertrophy to failure. Circulation. 1997; 96(11):3824-3827.

[2]

Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 2003; 65:45-79. doi:10.1146/annurev.physiol.65.092101.142243

[3]

Heineke J, Molkentin JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. 2006; 7(8):589-600. doi:10.1038/nrm1983

[4]

Hida K, Wada J, Zhang H, et al. Identification of genes specifically expressed in the accumulated visceral adipose tissue of OLETF rats. J Lipid Res. 2000; 41(10):1615-1622. doi:10.1016/S0022-2275(20)31994-5

[5]

Klöting N, Berndt J, Kralisch S, et al. Vaspin gene expression in human adipose tissue: association with obesity and type 2 diabetes. Biochem Biophys Res Commun. 2006; 339(1):430-436. doi:10.1016/j.bbrc.2005.11.039

[6]

Nakatsuka A, Wada J, Iseda I, et al. Vaspin is an adipokine ameliorating ER stress in obesity as a ligand for cell-surface GRP78/MTJ-1 complex. Diabetes. 2012; 61(11):2823-2832. doi:10.2337/db12-0232

[7]

Lin Y, Zhuang J, Li H, et al. Vaspin attenuates the progression of atherosclerosis by inhibiting ER stress-induced macrophage apoptosis in apoE-/- mice. Mol Med Rep. 2016; 13(2):1509-1516. doi:10.3892/mmr.2015.4708

[8]

Li HL, Peng WH, Cui ST, et al. Vaspin plasma concentrations and mRNA expressions in patients with stable and unstable angina pectoris. Clin Chem Lab Med. 2011; 49(9):1547-1554. doi:10.1515/CCLM

[9]

Yuan L, Dai X, Fu H, et al. Vaspin protects rats against myocardial ischemia/reperfusion injury (MIRI) through the TLR4/NF-κB signaling pathway. Eur J Pharmacol. 2018; 835:132-139. doi:10.1016/j.ejphar.2018.07.052

[10]

Li X, Ke X, Li Z, Li B. Vaspin prevents myocardial injury in rats model of diabetic cardiomyopathy by enhancing autophagy and inhibiting inflammation. Biochem Biophys Res Commun. 2019; 514(1):1-8. doi:10.1016/j.bbrc.2019.04.110

[11]

Yang F, Xue L, Han Z, et al. Vaspin alleviates myocardial ischaemia/reperfusion injury via activating autophagic flux and restoring lysosomal function. Biochem Biophys Res Commun. 2018; 503(2):501-507. doi:10.1016/j.bbrc.2018.05.004

[12]

Boon RA, Iekushi K, Lechner S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature. 2013; 495(7439):107-110. doi:10.1038/nature11919

[13]

Nishimura A, Shimauchi T, Tanaka T, et al. Hypoxia-induced interaction of filamin with Drp1 causes mitochondrial hyperfission-associated myocardial senescence. Sci Signal. 2018; 11(556):eaat5185. doi:10.1126/scisignal.aat5185

[14]

Xing Y, Niu T, Wang W, et al. Triterpenoid dihydro-CDDO-trifluoroethyl amide protects against maladaptive cardiac remodeling and dysfunction in mice: a critical role of Nrf2. PloS One. 2012; 7(9):e44899. doi:10.1371/journal.pone.0044899

[15]

Carmona-Gutierrez D, Zimmermann A, Kainz K, et al. The flavonoid 4,4′-dimethoxychalcone promotes autophagy-dependent longevity across species. Nat Commun. 2019; 10(1):651. doi:10.1038/s41467-019-08555-w

[16]

Wang X, Cui T. Autophagy modulation: a potential therapeutic approach in cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2017; 313(2):H304-H319. doi:10.1152/ajpheart.00145.2017.

[17]

Ren J, Zhang Y. Targeting autophagy in aging and aging-related cardiovascular diseases. Trends Pharmacol Sci. 2018; 39(12):1064-1076. doi:10.1016/j.tips.2018.10.005

[18]

Ajoolabady A, Chiong M, Lavandero S, et al. Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Trends Mol Med. 2022; 28(10):836-849. doi:10.1016/j.molmed.2022.06.007

[19]

Ma X, Song Y, Chen C, et al. Distinct actions of intermittent and sustained β-adrenoceptor stimulation on cardiac remodeling. Sci China Life Sci. 2011; 54(6):493-501. doi:10.1007/s11427-011-4183-9

[20]

McMullen JR, Sherwood MC, Tarnavski O, et al. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation. 2004; 109(24):3050-3055. doi:10.1161/01.CIR.0000130641.08705.45

[21]

Chen MZ, Bu QT, Pang SC, et al. Tetrodotoxin attenuates isoproterenol-induced hypertrophy in H9c2 rat cardiac myocytes. Mol Cell Biochem. 2012; 371(1-2):77-88. doi:10.1007/s11010-012-1424-6

[22]

Kobat MA, Celik A, Balin M, et al. The investigation of serum vaspin level in atherosclerotic coronary artery disease. J Clin Med Res. 2012; 4(2):110-113. doi:10.4021/jocmr841w

[23]

Aktaş , Uzun YE, Kutlu O, et al. The effects of high intensity-interval training on vaspin, adiponectin and leptin levels in women with polycystic ovary syndrome. Arch Physiol Biochem. 2022; 128(1):37-42. doi:10.1080/13813455.2019.1662450

[24]

Böhm C, Benz V, Clemenz M, et al. Sexual dimorphism in obesity-mediated left ventricular hypertrophy. Am J Physiol Heart Circ Physiol. 2013; 305(2):H211-H218. doi:10.1152/ajpheart.00593.2012

[25]

Weiner J, Rohde K, Krause K, et al. Brown adipose tissue (BAT) specific vaspin expression is increased after obesogenic diets and cold exposure and linked to acute changes in DNA-methylation. Mol Metab. 2017; 6(6):482-493. doi:10.1016/j.molmet.2017.03.004

[26]

Jung CH, Lee WJ, Hwang JY, et al. Vaspin protects vascular endothelial cells against free fatty acid-induced apoptosis through a phosphatidylinositol 3-kinase/Akt pathway. Biochem Biophys Res Commun. 2011; 413(2):264-249. doi:10.1016/j.bbrc.2011.08.083

[27]

Sun N, Wang H, Wang L. Vaspin alleviates dysfunction of endothelial progenitor cells induced by high glucose via PI3K/Akt/eNOS pathway. Int J Clin Exp Pathol. 2015; 8(1):482-489.

[28]

Din S, Konstandin MH, Johnson B, et al. Metabolic dysfunction consistent with premature aging results from deletion of Pim kinases. Circ Res. 2014; 115(3):376-387. doi:10.1161/CIRCRESAHA.115.304441

[29]

Niemann B, Chen Y, Teschner M, Li L, Silber RE, Rohrbach S. Obesity induces signs of premature cardiac aging in younger patients: the role of mitochondria. J Am Coll Cardiol. 2011; 57(5):577-585. doi:10.1016/j.jacc.2010.09.040

[30]

Miyata M, Suzuki S, Misaka T, et al. Senescence marker protein 30 has a cardio-protective role in doxorubicin-induced cardiac dysfunction. PloS One. 2013; 8(12):e79093. doi:10.1371/journal.pone.0079093

[31]

Childs BG, Gluscevic M, Baker DJ, et al. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov. 2017; 16(10):718-735. doi:10.1038/nrd.2017.116

[32]

Misaka T, Suzuki S, Miyata M, et al. Senescence marker protein 30 inhibits angiotensin II-induced cardiac hypertrophy and diastolic dysfunction. Biochem Biophys Res Commun. 2013; 439(1):142-147. doi:10.1016/j.bbrc.2013.08.002

[33]

Tang X, Chen XF, Wang NY, et al. SIRT2 acts as a cardioprotective deacetylase in pathological cardiac hypertrophy. Circulation. 2017; 136(21):2051-2067. doi:10.1161/CIRCULATIONAHA.117.028728

PDF (1798KB)

71

Accesses

0

Citation

Detail

Sections
Recommended

/