Ultrasound-guided fluid resuscitation versus usual care guided fluid resuscitation in patients with septic shock: a systematic review and meta-analysis

Zheyuan Chen , Xiao Han , Ying Liu , Mengjun Wang , Beibei Wang , Ling Wang , Hongxu Jin

Emergency and Critical Care Medicine ›› 2024, Vol. 4 ›› Issue (2) : 82 -89.

PDF (765KB)
Emergency and Critical Care Medicine ›› 2024, Vol. 4 ›› Issue (2) :82 -89. DOI: 10.1097/EC9.0000000000000088
Meta-Analysis
research-article

Ultrasound-guided fluid resuscitation versus usual care guided fluid resuscitation in patients with septic shock: a systematic review and meta-analysis

Author information +
History +
PDF (765KB)

Abstract

Background: Ultrasound is widely used in critical care for fluid resuscitation in critically ill patients. We conducted a systematic review to assess the relationship between ultrasound-guided fluid resuscitation strategies and usual care in septic shock.

Methods: We searched PubMed, Embase, Cochrane Library, Web of Science, and registers for randomized controlled trials to evaluate the prognosis of ultrasound-guided fluid resuscitation in patients with septic shock.

Results: Twelve randomized controlled studies with 947 participants were included. Ultrasound-guided fluid resuscitation in patients with septic shock was associated with reduced mortality (risk ratio: 0.78; 95% confidence interval [CI]: 0.65 to 0.94; P = 0.007) and 24-hour fluid volume (mean differences [MD]: −1.02; 95% CI: −1.28 to −0.75; P < 0.001), low heterogeneity (I2 = 29%, I2 = 0%), and increased dose of norepinephrine (MD: 0.07; 95% CI: 0.02-0.11; P = 0.002) and dobutamine dose (MD: 2.2; 95% CI: 0.35-4.04; P = 0.02), with low heterogeneity (I2 = 45%, I2 = 0%). There was no reduction in the risk of dobutamine use (risk ratio: 1.67; 95% CI: 0.52 to 5.36; P = 0.39; I2 = 0%). Inferior vena cava-related measures reduced the length of hospital stay (MD: −2.91; 95% CI: −5.2 to −0.62; P = 0.01; low heterogeneity, I2 = 8%) and length of intensive care unit stay (MD: −2.77; 95% CI: −4.51 to −1.02; P = 0.002; low heterogeneity, I2 = 0%). The use of the passive leg-raising test combined with echocardiography to assess fluid reactivity was superior. Ultrasound-guided fluid resuscitation did not significantly change the length of the free intensive care unit stay (MD: 1.5; 95% CI: −3.81 to 6.81; P = 0.58; I2 = 0%).

Conclusion: Ultrasound-guided fluid resuscitation in patients with septic shock is beneficial, especially when using inferior vena cava-related measures and the passive leg-raising test combined with echocardiography.

Keywords

Meta-analysis / Mortality / Resuscitation / Septic shock / Systematic review / Ultrasonography

Cite this article

Download citation ▾
Zheyuan Chen, Xiao Han, Ying Liu, Mengjun Wang, Beibei Wang, Ling Wang, Hongxu Jin. Ultrasound-guided fluid resuscitation versus usual care guided fluid resuscitation in patients with septic shock: a systematic review and meta-analysis. Emergency and Critical Care Medicine, 2024, 4(2): 82-89 DOI:10.1097/EC9.0000000000000088

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of interest statement

The authors declare no conflict of interest.

Author contributions

Chen Z conceived and designed the study, acquired the data, and drafted the manuscript. Han X conceived the study, extracted the data, and performed the statistical analysis. Liu Y and Wang M interpreted the data and drafted the manuscript. Wang BB collected the data and designed the study. Wang L contributed to the study design, and Jin HX edited and examined the manuscript. All authors have read and approved the final manuscript.

Funding

None.

Ethical approval of studies and informed consent

All studies included in this study followed the principles of the Declaration of Helsinki as revised in 2013.

Acknowledgments

The authors are grateful to Xingshun Qi for providing consultation regarding this study.

References

[1]

Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016; 315(8):801-810. doi:10.1001/jama.2016.0287

[2]

Reinhart K, Daniels R, Kissoon N, Machado FR, Schachter RD, Finfer S. Recognizing sepsis as a global health priority—a WHO resolution. N Engl J Med. 2017; 377(5):414-417. doi:10.1056/NEJMp1707170

[3]

Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013; 369(9):840-851. doi:10.1056/NEJMra1208623

[4]

Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004; 32(3):858-873. doi:10.1097/01.ccm.0000117317.18092.e4

[5]

van Drumpt A, van Bommel J, Hoeks S, et al. The value of arterial pressure waveform cardiac output measurements in the radial and femoral artery in major cardiac surgery patients. BMC Anesthesiol. 2017; 17(1):42. doi:10.1186/s12871-017-0334-2

[6]

Peake SL, Delaney A, Bailey M, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014; 371(16):1496-1506. doi:10.1056/NEJMoa1404380

[7]

Mouncey PR, Osborn TM, Power GS, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015; 372(14):1301-1311. doi:10.1056/NEJMoa1500896

[8]

Saoraya J, Wongsamita L, Srisawat N, Musikatavorn K. The effects of a limited infusion rate of fluid in the early resuscitation of sepsis on glycocalyx shedding measured by plasma syndecan-1: a randomized controlled trial. J Intensive Care. 2021; 9(1):1. doi:10.1186/s40560-020-00515-7

[9]

Corl KA, Prodromou M, Merchant RC, et al. The restrictive IV fluid trial in severe sepsis and septic shock (RIFTS): a randomized pilot study. Crit Care Med. 2019; 47(7):951-959. doi:10.1097/ccm.0000000000003779

[10]

Self WH, Semler MW, Bellomo R, et al. Liberal versus restrictive intravenous fluid therapy for early septic shock: rationale for a randomized trial. Ann Emerg Med. 2018; 72(4):457-466. doi:10.1016/j.annemergmed.2018.03.039

[11]

Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Crit Care Med. 2021; 49(11):e1063-e1143. doi:10.1097/CCM.0000000000005337

[12]

Brown SM, Kasal J. Bedside ultrasound in the intensive care unit: where is the evidence?. Semin Respir Crit Care Med. 2015; 36(6):878-889. doi:10.1055/s-0035-1564873

[13]

Shenoy MM, Dhala A, Khanna A. Transesophageal echocardiography in emergency medicine and critical care. Am J Emerg Med. 1991; 9(6):580-587. doi:10.1016/0735-6757(91)90119-5

[14]

Lichtenstein DA. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill. Chest. 2015; 147(6):1659-1670. doi:10.1378/chest.14-1313

[15]

Vieillard-Baron A, Millington SJ, Sanfilippo F, et al. A decade of progress in critical care echocardiography: a narrative review. Intensive Care Med. 2019; 45(6):770-788. doi:10.1007/s00134-019-05604-2

[16]

Ñamendys-Silva SA, Garrido-Aguirre E, Romero-González JP, Mena-Arceo RG, Rojo Del Moral O, González-Chon O. Pulmonary ultrasound: a new era in critical care medicine. Ultrasound Q. 2018; 34(4):219-225. doi:10.1097/RUQ.0000000000000357

[17]

Nicolaou S, Talsky A, Khashoggi K, Venu V. Ultrasound-guided interventional radiology in critical care. Crit Care Med. 2007; 35(5 suppl):S186-S197. doi:10.1097/01.CCM.0000260630.68855

[18]

Corradi F, Brusasco C, Via G, Tavazzi G, Forfori F. Renal Doppler-based assessment of regional organ perfusion in the critically ill patient. Shock. 2021; 55(6):842-843. doi:10.1097/SHK.0000000000001571

[19]

Rusu DM, Grigoras I, Blaj M, et al. Lung ultrasound-guided fluid management versus standard care in surgical ICU patients: a randomised controlled trial. Diagnostics (Basel). 2021; 11(8):1444. doi:10.3390/diagnostics11081444

[20]

Li G, Wei F, Zhang G, Sun L, Lian R. Clinical value of early liquid resuscitation guided by passive leg-raising test combined with transthoracic echocardiography in patients with septic shock. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2019; 31(4):413-417. doi:10.3760/cma.j.issn.2095-4352.2019.04.008

[21]

Yu K, Zhang S, Chen N, et al. Critical care ultrasound goal-directed versus early goal-directed therapy in septic shock. Intensive Care Med. 2022; 48(1):121-123. doi:10.1007/s00134-021-06538-4

[22]

Huan C, Lu C, Song B, et al. The shape change index (SCI) of inferior vena cava (IVC) measuring by transabdominal ultrasound to predict the presence of septic shock in intensive care unit (ICU) patients. Eur Rev Med Pharmacol Sci. 2019; 23(6):2505-2512. doi:10.26355/eurrev_201903_17398

[23]

Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010; 8(5):336-341. doi:10.1016/j.ijsu.2010.02.007

[24]

McGrath S, Zhao X, Steele R, Thombs BD, Benedetti A. DEPRESsion Screening Data (DEPRESSD) Collaboration. Estimating the sample mean and standard deviation from commonly reported quantiles in meta-analysis. Stat Methods Med Res. 2020; 29(9):2520-2537. doi:10.1177/0962280219889080

[25]

Higgins JPT, Thomas J, Chandler J, et al, eds. Cochrane Handbook for Systematic Reviews of Interventions. 2nd ed. Chichester, UK: John Wiley & Sons; 2019.

[26]

Alhabashy WS, Shalaby OM, Elgebaly AS, El Ghafar MSA. Echocardiography-guided hemodynamic management of severe sepsis and septic shock in adults: a randomized controlled trial. Anaesth Pain Intensive Care. 2021; 25(6):722-732. doi:10.35975/apic.v25i6.1691

[27]

Elsayed Afandy M, El Sharkawy SI, Omara AF. Transthoracic echocardiographic versus cardiometry derived indices in management of septic patients. Egypt J Anaesth. 2020; 36(1):312-318. doi:10.1080/11101849.2020.1854597

[28]

Garg M, Sen J, Goyal S, Chaudhry D. Comparative evaluation of central venous pressure and sonographic inferior vena cava variability in assessing fluid responsiveness in septic shock. Indian J Crit Care Med. 2016; 20(12):708-713. doi:10.4103/0972-5229.195706

[29]

Ismail RM, Dahroug AH, Zaytoun TM. Determination of end point of fluid resuscitation using simplified lung ultrasound protocol in patients with septic shock. Intensive Care Soc. 2018; 19(3):NP5-NP8. doi:10.1177/1751143718772957

[30]

Lanspa MJ, Burk RE, Wilson EL, Hirshberg EL, Grissom CK, Brown SM. Echocardiogram-guided resuscitation versus early goal-directed therapy in the treatment of septic shock: a randomized, controlled, feasibility trial. J Intensive Care. 2018; 6:50. doi:10.1186/s40560-018-0319-3

[31]

Li L, Ai Y, Wang X, et al. Effect of focused cardiopulmonary ultrasonography on clinical outcome of septic shock: a randomized study. J Int Med Res. 2021; 49(5):3000605211013176. doi:10.1177/03000605211013176

[32]

Musikatavorn K, Plitawanon P, Lumlertgul S, et al. Randomized controlled trial of ultrasound-guided fluid resuscitation of sepsis-induced hypoperfusion and septic shock. West J Emerg Med. 2021; 22(2):369-378. doi:10.5811/westjem.2020.11.48571

[33]

Qi B, Yang W, Zhang H, et al. Clinical application of inferior vena cava inspiratory collapsibility in early goal-directed therapy of septic shock. Chin J Respi Crit Care Med. 2020; 19(3):246-250. doi:10.7507/1671-6205.201906018

[34]

Sricharoenchai T, Saisirivechakun P. Clinical outcomes of dynamic ultrasound-guided versus static central venous pressure-guided fluid resuscitation in patients with sepsis and/or septic shock in Thammasat University Hospital. Intensive Care Med Exp. 2019; 7(Suppl 3):55. doi:10.1186/s40635-019-0265-y

[35]

Zhuang Y, Dai L, Cheng L, Lu J, Pei Y, Wang J. Inferior vena cava diameter combined with lung ultrasound B-line score to guide fluid resuscitation in patients with septic shock. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2020; 32(11):1356-1360. doi:10.3760/cma.j.cn121430-20200611-00463

[36]

Yuan J, Yang X, Yuan Q, Li M, Chen Y, Dong C. Systematic review of ultrasound-guided fluid resuscitation vs. Early goal-directed therapy in patients with septic shock. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2020; 32(1):56-61. doi:10.3760/cma.j.cn121430-20191114-00010

[37]

Li Y, Xiaozhu Z, Guomei R, Qiannan D, Hahn RG. Effects of vasoactive drugs on crystalloid fluid kinetics in septic sheep. PloS One. 2017; 12(2):e0172361. doi:10.1371/journal.pone.0172361

[38]

Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017; 43(3):304-377. doi:10.1007/s00134-017-4683-6

[39]

Bakker J, Kattan E, Annane D, et al. Current practice and evolving concepts in septic shock resuscitation. Intensive Care Med. 2022; 48(2):148-163. doi:10.1007/s00134-021-06595-9

[40]

Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care. 2016; 6(1):111. doi:10.1186/s13613-016-0216-7

[41]

Vincent JL, Singer M, Einav S, et al. Equilibrating SSC guidelines with individualized care. Crit Care. 2021; 25(1):397. doi:10.1186/s13054-021-03813-0

[42]

Wilson JG, Breyer KEW. Critical care ultrasound: a review for practicing nephrologists. Adv Chronic Kidney Dis. 2016; 23(3):141-145. doi:10.1053/j.ackd.2016.01.015

[43]

Shokoohi H, Boniface KS, Pourmand A, et al. Bedside ultrasound reduces diagnostic uncertainty and guides resuscitation in patients with undifferentiated hypotension. Crit Care Med. 2015; 43(12):2562-2569. doi:10.1097/CCM.0000000000001285

[44]

Kaptein MJ, Kaptein EM. Inferior vena cava collapsibility index: clinical validation and application for assessment of relative intravascular volume. Adv Chronic Kidney Dis. 2021; 28(3):218-226. doi:10.1053/j.ackd.2021.02.003

[45]

Navaratnam M, Punn R, Ramamoorthy C, Tacy TA. LVOT-VTI is a useful indicator of low ventricular function in young patients. Pediatr Cardiol. 2017; 38(6):1148-1154. doi:10.1007/s00246-017-1630-9

[46]

Ma GG, Xu LY, Luo JC, et al. Change in left ventricular velocity time integral during Trendelenburg maneuver predicts fluid responsiveness in cardiac surgical patients in the operating room. Quant Imaging Med Surg. 2021; 11(7):3133-3145. doi:10.21037/qims-20-700

[47]

Blanco P. Rationale for using the velocity-time integral and the minute distance for assessing the stroke volume and cardiac output in point-of-care settings. Ultrasound J. 2020; 12(1):21. doi:10.1186/s13089-020-00170-x

[48]

Vignon P, Repessé X, Bégot E, et al. Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients. Am J Respir Crit Care Med. 2017; 195(8):1022-1032. doi:10.1164/rccm.201604-0844OC

PDF (765KB)

231

Accesses

0

Citation

Detail

Sections
Recommended

/