Research progress of viral sepsis: etiology, pathophysiology, diagnosis, and treatment

Jianping Li , Yiqi Luo , Hao Li , Yunhong Yin , Yi Zhang

Emergency and Critical Care Medicine ›› 2024, Vol. 4 ›› Issue (2) : 74 -81.

PDF (311KB)
Emergency and Critical Care Medicine ›› 2024, Vol. 4 ›› Issue (2) :74 -81. DOI: 10.1097/EC9.0000000000000086
Review
research-article

Research progress of viral sepsis: etiology, pathophysiology, diagnosis, and treatment

Author information +
History +
PDF (311KB)

Abstract

Sepsis is a common systemic disease characterized by various physiological and pathological disorders. It can result from infection by various pathogens, such as bacteria, viruses, and fungi. The rate of culture-negative sepsis is almost 42%, indicating that most patients may have nonbacterial infections. With the outbreak of coronavirus disease 2019, viral sepsis has attracted growing attention because many critically ill patients develop sepsis. Viral sepsis can be caused by viral infections and combined with, or secondary to, bacterial infections. Understanding the common types of viral sepsis and the main characteristics of its pathogenesis will be helpful for effective diagnosis and treatment, thereby reducing mortality. Early identification of the causative agent of viral sepsis can help reduce the overuse of broad-spectrum antibiotics. In this article, we reviewed the common viruses of sepsis, their potential pathophysiology, targets of diagnosis, and remedies for viral sepsis.

Keywords

Acute gastrointestinal injury / Acute kidney injury / Acute lung injury / Cytokine storm / Diagnosis / Treatment of viral sepsis / Viral sepsis

Cite this article

Download citation ▾
Jianping Li, Yiqi Luo, Hao Li, Yunhong Yin, Yi Zhang. Research progress of viral sepsis: etiology, pathophysiology, diagnosis, and treatment. Emergency and Critical Care Medicine, 2024, 4(2): 74-81 DOI:10.1097/EC9.0000000000000086

登录浏览全文

4963

注册一个新账户 忘记密码

Conflict of interest statement

The authors declare no conflict of interest.

Author contributions

Zhang Y conceived the topic and scope of the study. Li J and Luo Y wrote the manuscript. Li H and Yin Y critically revised the manuscript. All the authors have read and approved the final version of the manuscript.

Funding

None.

Ethical approval of studies and informed consent

Not applicable.

Acknowledgments

None.

References

[1]

Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016; 315(8):762-774. doi:10.1001/jama.2016.0288

[2]

Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet. 2020; 395(10219):200-211. doi:10.1016/S0140-6736(19)32989-7

[3]

Trzeciak A, Mongre RK, Kim MR, et al. Neutrophil heterogeneity in complement C1q expression associated with sepsis mortality. Front Immunol. 2022; 13:965305. doi:10.3389/fimmu.2022.965305

[4]

Bosmann M, Ward PA.The inflammatory response in sepsis. Trends Immunol. 2013; 34(3):129-136. doi:10.1016/j.it.2012.09.004

[5]

Delano MJ, Ward PA. Sepsis-induced immune dysfunction: can immune therapies reduce mortality?. J Clin Invest. 2016; 126(1):23-31. doi:10.1172/JCI82224

[6]

Iba T, Levy JH. Sepsis-induced coagulopathy and disseminated intravascular coagulation. Anesthesiology. 2020; 132(5):1238-1245. doi:10.1097/ALN.0000000000003122

[7]

Weiss SL, Fitzgerald JC, Pappachan J, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015; 191(10):1147-1157. doi:10.1164/rccm.201412-2323OC

[8]

Zhao Y, Lu R, Shen J, Xie Z, Liu G, Tan W. Comparison of viral and epidemiological profiles of hospitalized children with severe acute respiratory infection in Beijing and Shanghai, China. BMC Infect Dis. 2019; 19(1):729. doi:10.1186/s12879-019-4385-5

[9]

Cilloniz C, Dominedo C, Magdaleno D, Ferrer M, Gabarrus A, Torres A. Pure viral sepsis secondary to community-acquired pneumonia in adults: risk and prognostic factors. J Infect Dis. 2019; 220(7):1166-1171. doi:10.1093/infdis/jiz257

[10]

Kalil AC, Thomas PG. Influenza virus-related critical illness: pathophysiology and epidemiology. Crit Care. 2019; 23(1):258. doi:10.1186/s13054-019-2539-x

[11]

Xie J, Wang H, Kang Y, et al. The epidemiology of sepsis in Chinese ICUs: a national cross-sectional survey. Crit Care Med. 2020; 48(3):e209-e218. doi:10.1097/CCM.0000000000004155

[12]

Chow EJ, Doyle JD, Uyeki TM. Influenza virus-related critical illness: prevention, diagnosis, treatment. Crit Care. 2019; 23(1):214. doi:10.1186/s13054-019-2491-9

[13]

Abzug MJ, Michaels MG, Wald E, et al. A randomized, double-blind, placebo-controlled trial of pleconaril for the treatment of neonates with enterovirus sepsis. J Pediatric Infect Dis Soc. 2016; 5(1):53-62. doi:10.1093/jpids/piv015

[14]

Muller DA, Depelsenaire AC, Young PR. Clinical and laboratory diagnosis of dengue virus infection. J Infect Dis. 2017; 215(suppl 2):S89-S95. doi:10.1093/infdis/jiw649

[15]

Iuliano AD, Roguski KM, Chang HH, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet. 2018; 391(10127):1285-1300. doi:10.1016/S0140-6736(17)33293-2

[16]

Herold S, Becker C, Ridge KM, Budinger GR. Influenza virus-induced lung injury: pathogenesis and implications for treatment. Eur Respir J. 2015; 45(5):1463-1478. doi:10.1183/09031936.00186214

[17]

Smith RE, Shifrin MM. Critical care considerations in adult patients with influenza-induced ARDS. Crit Care Nurse. 2020; 40(5):15-24. doi:10.4037/ccn2020746

[18]

Aykac K, Karadag-Oncel E, Tanir Basaranoglu S, et al. Respiratory viral infections in infants with possible sepsis. J Med Virol. 2019; 91(2):171-178. doi:10.1002/jmv.25309

[19]

Jartti T, Gern JE. Role of viral infections in the development and exacerbation of asthma in children. J Allergy Clin Immunol. 2017; 140(4):895-906. doi:10.1016/j.jaci.2017.08.003

[20]

Haerskjold A, Kristensen K, Kamper-Jørgensen M, Nybo Andersen AM, Ravn H, Graff Stensballe L. Risk factors for hospitalization for respiratory syncytial virus infection: a population-based cohort study of Danish children. Pediatr Infect Dis J. 2016; 35(1):61-65. doi:10.1097/INF.0000000000000924

[21]

Smith DK, Seales S, Budzik C. Respiratory syncytial virus bronchiolitis in children. Am Fam Physician. 2017; 95(2):94-99.

[22]

Bakalli I. Liver dysfunction in severe sepsis from respiratory syncytial virus. J Pediatr Intensive Care. 2018; 7(2):110-114. doi:10.1055/s-0037-1612609

[23]

Su S, Wong G, Shi W, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016; 24(6):490-502. doi:10.1016/j.tim.2016.03.003

[24]

Karakike E, Giamarellos-Bourboulis EJ, Kyprianou M, et al. Coronavirus disease 2019 as cause of viral sepsis: a systematic review and meta-analysis. Crit Care Med. 2021; 49(12):2042-2057. doi:10.1097/CCM.0000000000005195

[25]

Lynch JP 3rd, Kajon AE. Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. Semin Respir Crit Care Med. 2016; 37(4):586-602. doi:10.1055/s-0036-1584923

[26]

Shauer A, Gotsman I, Keren A, et al. Acute viral myocarditis: current concepts in diagnosis and treatment. Isr Med Assoc J. 2013; 15(3):180-185.

[27]

Echavarria M.Adenoviruses in immunocompromised hosts. Clin Microbiol Rev. 2008; 21(4):704-715. doi:10.1128/CMR.00052-07

[28]

Lynch JP 3rd, Fishbein M, Echavarria M. Adenovirus. Semin Respir Crit Care Med. 2011; 32(4):494-511. doi:10.1055/s-0031-1283287

[29]

Otto WR, Lamson DM, Gonzalez G, et al. Fatal neonatal sepsis associated with human adenovirus type 56 infection: genomic analysis of three recent cases detected in the United States. Viruses. 2021; 13(6):1105. doi:10.3390/v13061105

[30]

Engelmann I, Coiteux V, Heim A, et al. Severe adenovirus pneumonia followed by bacterial septicaemia: relevance of co-infections in allogeneic hematopoietic stem cell transplantation. Infect Disord Drug Targets. 2016; 16(1):69-76. doi:10.2174/1871526516666160407114623

[31]

Tapparel C, Siegrist F, Petty TJ, Kaiser L. Picornavirus and enterovirus diversity with associated human diseases. Infect Genet Evol. 2013; 14:282-293. doi:10.1016/j.meegid.2012.10.016

[32]

Olijve L, Jennings L, Walls T. Human parechovirus: an increasingly recognized cause of sepsis-like illness in young infants. Clin Microbiol Rev. 2017; 31(1):e00047-e00017. doi:10.1128/CMR.00047-17

[33]

Makvandi M, Teimoori A, Pirmoradi R, et al. Parechovirus and enteroviruses among young infants with sepsis in Iran. Iran J Microbiol. 2021; 13(3):312-318. doi:10.18502/ijm.v13i3.6393

[34]

Li S, Jiang W, Peng JM, Du B, Weng L. Herpes simplex virus associated sepsis in an immunocompetent adult: the value of next-generation sequencing. Chin Med J (Engl). 2020; 133(14):1727-1728. doi:10.1097/CM9.0000000000000893

[35]

Winther B. Rhinovirus infections in the upper airway. Proc Am Thorac Soc. 2011; 8(1):79-89. doi:10.1513/pats.201006-039RN

[36]

Liu J, Zhao H, Feng Z, et al. A severe case of human rhinovirus A45 with central nervous system involvement and viral sepsis. Virol J. 2022; 19(1):72. doi:10.1186/s12985-022-01799-x

[37]

Koçak , Tufan Z, Kayaaslan B, Mer M. COVID-19 and sepsis. Turk J Med Sci. 2021; 51(SI-1):3301-3311. doi:10.3906/sag-2108-239

[38]

Ahmadian E, Hosseiniyan Khatibi SM, Razi Soofiyani S, et al. COVID-19 and kidney injury: pathophysiology and molecular mechanisms. Rev Med Virol. 2021; 31(3):e2176. doi:10.1002/rmv.2176

[39]

Chuang YY, Huang YC.Enteroviral infection in neonates. J Microbiol Immunol Infect. 2019; 52(6):851-857. doi:10.1016/j.jmii.2019.08.018

[40]

Benschop KS, Schinkel J, Minnaar RP, et al. Human parechovirus infections in Dutch children and the association between serotype and disease severity. Clin Infect Dis. 2006; 42(2):204-210. doi:10.1086/498905

[41]

Sharp J, Bell J, Harrison CJ, Nix WA, Oberste MS, Selvarangan R. Human parechovirus in respiratory specimens from children in Kansas City, Missouri. J Clin Microbiol. 2012; 50(12):4111-4113. doi:10.1128/JCM.01680-12

[42]

Khatami A, McMullan BJ, Webber M, et al. Sepsis-like disease in infants due to human parechovirus type 3 during an outbreak in Australia. Clin Infect Dis. 2015; 60(2):228-236. doi:10.1093/cid/ciu784

[43]

Alam MM, Khurshid A, Shaukat S, et al. Identification of human parechovirus genotype, HPeV-12, in a paralytic child with diarrhea. J Clin Virol. 2012; 55(4):339-342. doi:10.1016/j.jcv.2012.08.008

[44]

Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med. 2020; 383(23):2255-2273. doi:10.1056/NEJMra2026131

[45]

Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017; 39(5):517-528. doi:10.1007/s00281-017-0639-8

[46]

Gu Y, Zuo X, Zhang S, et al. The mechanism behind influenza virus cytokine storm. Viruses. 2021; 13(7):1362. doi:10.3390/v13071362

[47]

Oviedo-Boyso J, Bravo-Patiño A, Baizabal-Aguirre VM. Collaborative action of toll-like and NOD-like receptors as modulators of the inflammatory response to pathogenic bacteria. Mediators Inflamm. 2014; 2014:432785. doi:10.1155/2014/432785

[48]

Rassa JC, Ross SR. Viruses and toll-like receptors. Microbes Infect. 2003; 5(11):961-968. doi:10.1016/s1286-4579(03)00193-x

[49]

Man SM, Kanneganti TD. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol. 2016; 16(1):7-21. doi:10.1038/nri.2015.7

[50]

Kim S, Bauernfeind F, Ablasser A, et al. Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur J Immunol. 2010; 40(6):1545-1551. doi:10.1002/eji.201040425

[51]

Costa EL, Schettino IA, Schettino GP. The lung in sepsis: guilty or innocent?. Endocr Metab Immune Disord Drug Targets. 2006; 6(2):213-216. doi:10.2174/187153006777442413

[52]

Ljungstrom LR, Jacobsson G, Claesson BEB, Andersson R, Enroth H. Respiratory viral infections are underdiagnosed in patients with suspected sepsis. Eur J Clin Microbiol Infect Dis. 2017; 36(10):1767-1776. doi:10.1007/s10096-017-2990-z

[53]

Park I, Kim M, Choe K, et al. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury. Eur Respir J. 2019; 53(3):1800786. doi:10.1183/13993003.00786-2018

[54]

Sui X, Liu W, Liu Z. Exosomes derived from LPS-induced MHs cells prompted an inflammatory response in sepsis-induced acute lung injury. Respir Physiol Neurobiol. 2021; 292:103711. doi:10.1016/j.resp.2021.103711

[55]

Xiong S, Hong Z, Huang LS, et al. IL-1β suppression of VE-cadherin transcription underlies sepsis-induced inflammatory lung injury. J Clin Invest. 2020; 130(7):3684-3698. doi:10.1172/JCI136908

[56]

Wei B, Chen Y, Zhou W, Li X, Shi L, Liao S. Interleukin IL-5 alleviates sepsis-induced acute lung injury by regulating the immune response in rats. Bioengineered. 2021; 12(1):2132-2139. doi:10.1080/21655979.2021.1930746

[57]

Bhargava R, Altmann CJ, Andres-Hernando A, et al. Acute lung injury and acute kidney injury are established by four hours in experimental sepsis and are improved with pre, but not post, sepsis administration of TNF-α antibodies. PLoS One. 2013; 8(11):e79037. doi:10.1371/journal.pone.0079037

[58]

Godin M, Murray P, Mehta RL. Clinical approach to the patient with AKI and sepsis. Semin Nephrol. 2015; 35(1):12-22. doi:10.1016/j.semnephrol.2015.01.003

[59]

Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005; 294(7):813-818. doi:10.1001/jama.294.7.813

[60]

Poston JT, Koyner JL.Sepsis associated acute kidney injury. BMJ. 2019;364:k4891. doi:10.1136/bmj.k4891

[61]

Antonucci E, Fiaccadori E, Donadello K, Taccone FS, Franchi F, Scolletta S. Myocardial depression in sepsis: from pathogenesis to clinical manifestations and treatment. J Crit Care. 2014; 29(4):500-511. doi:10.1016/j.jcrc.2014.03.028

[62]

Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019; 96(5):1083-1099. doi:10.1016/j.kint.2019.05.026

[63]

Fani F, Regolisti G, Delsante M, et al. Recent advances in the pathogenetic mechanisms of sepsis-associated acute kidney injury. J Nephrol. 2018; 31(3):351-359. doi:10.1007/s40620-017-0452-4

[64]

Reintam Blaser A, Jakob SM, Starkopf J. Gastrointestinal failure in the ICU. Curr Opin Crit Care. 2016; 22(2):128-141. doi:10.1097/MCC.0000000000000286

[65]

Sun JK, Liu Y, Zou L, et al. Acute gastrointestinal injury in critically ill patients with COVID-19 in Wuhan, China. World J Gastroenterol. 2020; 26(39):6087-6097. doi:10.3748/wjg.v26.i39.6087

[66]

Yang H, Song Z, Jin H, Cui Y, Hou M, Gao Y. Protective effect of rhBNP on intestinal injury in the canine models of sepsis. Int Immunopharmacol. 2014; 19(2):262-266. doi:10.1016/j.intimp.2014.01.023

[67]

Santacruz CA, Quintairos A, Righy C, et al. Is there a role for enterohormones in the gastroparesis of critically ill patients?. Crit Care Med. 2017; 45(10):1696-1701. doi:10.1097/CCM.0000000000002625

[68]

Esposito S, De Simone G, Boccia G, De Caro F, Pagliano P. Sepsis and septic shock: new definitions, new diagnostic and therapeutic approaches. J Glob Antimicrob Resist. 2017; 10:204-212. doi:10.1016/j.jgar.2017.06.013

[69]

Phua J, Ngerng W, See K, et al. Characteristics and outcomes of culture-negative versus culture-positive severe sepsis. Crit Care. 2013; 17(5):R202. doi:10.1186/cc12896

[70]

Meisner M.Update on procalcitonin measurements. Ann Lab Med. 2014; 34(4):263-273. doi:10.3343/alm.2014.34.4.263

[71]

Ayazi P, Mahyar A, Daneshi MM, Jahanihashemi H, Esmailzadehha N, Mosaferirad N. Comparison of serum IL-1beta and C reactive protein levels in early diagnosis and management of neonatal sepsis. Infez Med. 2014; 22(4):296-301.

[72]

Brenner T, Decker SO, Grumaz S, et al. Next-generation sequencing diagnostics of bacteremia in sepsis (Next GeneSiS-Trial): study protocol of a prospective, observational, noninterventional, multicenter, clinical trial. Medicine (Baltimore). 2018; 97(6):e9868. doi:10.1097/MD.0000000000009868

[73]

Duan LW, Qu JL, Wan J, et al. Effects of viral infection and microbial diversity on patients with sepsis: a retrospective study based on metagenomic next-generation sequencing. World J Emerg Med. 2021; 12(1):29-35. doi:10.5847/wjem.j.1920-8642.2021.01.005

[74]

Garcia-Arroyo L, Prim N, Marti N, Roig MC, Navarro F, Rabella N. Benefits and drawbacks of molecular techniques for diagnosis of viral respiratory infections. Experience with two multiplex PCR assays. J Med Virol. 2016; 88(1):45-50. doi:10.1002/jmv.24298

[75]

Li N, Ma X, Zhou J, et al. Clinical application of metagenomic next-generation sequencing technology in the diagnosis and treatment of pulmonary infection pathogens: a prospective single-center study of 138 patients. J Clin Lab Anal. 2022; 36(7):e24498. doi:10.1002/jcla.24498

[76]

Kozel TR, Burnham-Marusich AR. Point-of-care testing for infectious diseases: past, present, and future. J Clin Microbiol. 2017; 55(8):2313-2320. doi:10.1128/JCM.00476-17

[77]

Contenti J, Corraze H, Lemoël F, Levraut J. Effectiveness of arterial, venous, and capillary blood lactate as a sepsis triage tool in ED patients. Am J Emerg Med. 2015; 33(2):167-172. doi:10.1016/j.ajem.2014.11.003

[78]

Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017; 43(3):304-377. doi:10.1007/s00134-017-4683-6

[79]

Saikant R, Ravindran S, Vijayan A, et al. Response of letter to the editor on procalcitonin: a promising diagnostic marker for sepsis and antibiotic therapy. J Intensive Care. 2017; 5:68. doi:10.1186/s40560-017-0260-x

[80]

Gunsolus IL, Sweeney TE, Liesenfeld O, Ledeboer NA. Diagnosing and managing sepsis by probing the host response to infection: advances, opportunities, and challenges. J Clin Microbiol. 2019; 57(7):e00425-e00419. doi:10.1128/JCM.00425-19

[81]

Gaini S, Koldkjaer OG, Pedersen C, Pedersen SS. Procalcitonin, lipopolysaccharide-binding protein, interleukin-6 and C-reactive protein in community-acquired infections and sepsis: a prospective study. Crit Care. 2006; 10(2):R53. doi:10.1186/cc4866

[82]

Fidalgo P, Nora D, Coelho L, Povoa P. Pancreatic stone protein: review of a new biomarker in sepsis. J Clin Med. 2022; 11(4):1085. doi:10.3390/jcm11041085

[83]

Gukasjan R, Raptis DA, Schulz HU, Halangk W, Graf R. Pancreatic stone protein predicts outcome in patients with peritonitis in the ICU. Crit Care Med. 2013; 41(4):1027-1036. doi:10.1097/CCM.0b013e3182771193

[84]

Morin L, Ray S, Wilson C, et al. Refractory septic shock in children: a European Society of Paediatric and Neonatal Intensive Care definition. Intensive Care Med. 2016; 42(12):1948-1957. doi:10.1007/s00134-016-4574-2

[85]

Weiss SL, Balamuth F, Hensley J, et al. The epidemiology of hospital death following pediatric severe sepsis: when, why, and how children with sepsis die. Pediatr Crit Care Med. 2017; 18(9):823-830. doi:10.1097/PCC.0000000000001222

[86]

Cvetkovic M, Lutman D, Ramnarayan P, Pathan N, Inwald DP, Peters MJ. Timing of death in children referred for intensive care with severe sepsis: implications for interventional studies. Pediatr Crit Care Med. 2015; 16(5):410-417. doi:10.1097/PCC.0000000000000385

[87]

Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 47(11):1181-1247. doi:10.1007/s00134-021-06506-y

[88]

Marik P, Bellomo R. A rational approach to fluid therapy in sepsis. Br J Anaesth. 2016; 116(3):339-349. doi:10.1093/bja/aev349

[89]

Dellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013; 41(2):580-637. doi:10.1097/CCM.0b013e31827e83af

[90]

Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Crit Care Med. 2018; 46(6):997-1000. doi:10.1097/CCM.0000000000003119

[91]

Arabi YM, Aldawood AS, Haddad SH, et al. Permissive underfeeding or standard enteral feeding in critically ill adults. N Engl J Med. 2015; 372(25):2398-2408. doi:10.1056/NEJMoa1502826

[92]

Holford P, Carr AC, Jovic TH, et al. Vitamin C—an adjunctive therapy for respiratory infection, sepsis and COVID-19. Nutrients. 2020; 12(12):3760. doi:10.3390/nu12123760

[93]

Geraghty RJ, Aliota MT, Bonnac LF. Broad-spectrum antiviral strategies and nucleoside analogues. Viruses. 2021; 13(4):667. doi:10.3390/v13040667

[94]

Gu X, Zhou F, Wang Y, Fan G, Cao B.Respiratory viral sepsis: epidemiology, pathophysiology, diagnosis and treatment. Eur Respir Rev. 2020; 29(157):200038. doi:10.1183/16000617.0038-2020

[95]

Traen S, Bochanen N, Ieven M, et al. Is acyclovir effective among critically ill patients with herpes simplex in the respiratory tract?. J Clin Virol. 2014; 60(3):215-221. doi:10.1016/j.jcv.2014.04.010

[96]

Hernández M. A randomized, double-blind, placebo-controlled trial of pleconaril for the treatment of neonates with enterovirus sepsis. Rev Chilena Infectol. 2016; 33(3):359. doi:10.4067/S0716-10182016000300021

[97]

Lin HY. The severe COVID-19: a sepsis induced by viral infection? And its immunomodulatory therapy. Chin J Traumatol. 2020; 23(4):190-195. doi:10.1016/j.cjtee.2020.06.002

[98]

Russell JA, Williams MD. Trials in adult critical care that show increased mortality of the new intervention: inevitable or preventable mishaps?. Ann Intensive Care. 2016; 6(1):17. doi:10.1186/s13613-016-0120-1

[99]

Trifi A, Abdennebi C, Mehdi A, et al. Beneficial of adding tocilizumab to standard care in critical forms of COVID-19 pneumonia: study on paired series. Tunis Med. 2022; 100(4):309-312.

[100]

Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013; 13(12):862-874. doi:10.1038/nri3552

[101]

Unsinger J, McGlynn M, Kasten KR, et al. IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol. 2010; 184(7):3768-3779. doi:10.4049/jimmunol.0903151

[102]

Ge Y, Huang M, Yao YM. Biology of interleukin-17 and its pathophysiological significance in sepsis. Front Immunol. 2020; 11:1558. doi:10.3389/fimmu.2020.01558

[103]

Boomer JS, To K, Chang KC, et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011; 306(23):2594-2605. doi:10.1001/jama.2011.1829

[104]

Tomino A, Masanobu T, Ruri A, et al. Increased PD-1 expression and altered T cell repertoire diversity predict mortality in patients with septic shock: a preliminary study. PLoS One. 2017; 12(1):e0169653. doi:10.1371/journal.pone.0169653

[105]

Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and immune pathogenesis of viral sepsis. Front Immunol. 2018; 9:2147. doi:10.3389/fimmu.2018.02147

[106]

Peters van Ton AM, Kox M, Abdo WF, Pickkers P.Precision immunotherapy for sepsis. Front Immunol. 2018; 9:1926. doi:10.3389/fimmu.2018.01926

[107]

Gandham R, Eerike M, Raj GM, Bisoi D, Priyadarshini R, Agarwal N. Adverse events following remdesivir administration in moderately ill COVID-19 patients—a retrospective analysis. J Family Med Prim Care. 2022; 11(7):3693-3698. doi:10.4103/jfmpc.jfmpc_2468_21

[108]

Alhazzani W, Evans L, Alshamsi F, et al. Surviving sepsis campaign guidelines on the management of adults with coronavirus disease 2019 (COVID-19) in the ICU: first update. Crit Care Med. 2021; 49(3):e219-e234. doi:10.1097/CCM.0000000000004899

[109]

RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021; 397(10285):1637-1645. doi:10.1016/S0140-6736(21)00676-0

[110]

Sheppard M, Laskou F, Stapleton PP, Hadavi S, Dasgupta B. Tocilizumab (Actemra). Hum Vaccin Immunother. 2017; 13(9):1972-1988. doi:10.1080/21645515.2017.1316909

[111]

Jorgensen SCJ, Tse CLY, Burry L, Dresser LD. Baricitinib: a review of pharmacology, safety, and emerging clinical experience in COVID-19. Pharmacotherapy. 2020; 40(8):843-856. doi:10.1002/phar.2438

[112]

Villanueva CA, Najera L, Espinosa P, Borbujo J. Bullous hemorrhagic dermatosis at distant sites: a report of 2 new cases due to enoxaparin injection and a review of the literature. Actas Dermosifiliogr. 2012; 103(9):816-819. doi:10.1016/j.ad.2011.06.012

[113]

Cuker A, Tseng EK, Nieuwlaat R, et al. American Society of Hematology 2021 guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19. Blood Adv. 2021; 5(3):872-888. doi:10.1182/bloodadvances.2020003763

[114]

Ozturk S, Can I, Erden I, Akyol H, Solmaz OA. Enoxaparin-induced hemorrhagic bullous dermatosis in a leprosy patient. Cutan Ocul Toxicol. 2015; 34(3):254-256. doi:10.3109/15569527.2014.950381

PDF (311KB)

135

Accesses

0

Citation

Detail

Sections
Recommended

/