A review of multiscale numerical modeling of rock mechanics and rock engineering

Xindong Wei , Zhe Li , Gaofeng Zhao

Deep Underground Science and Engineering ›› 2025, Vol. 4 ›› Issue (3) : 382 -405.

PDF
Deep Underground Science and Engineering ›› 2025, Vol. 4 ›› Issue (3) : 382 -405. DOI: 10.1002/dug2.12127
REVIEW ARTICLE

A review of multiscale numerical modeling of rock mechanics and rock engineering

Author information +
History +
PDF

Abstract

Rock is geometrically and mechanically multiscale in nature, and the traditional phenomenological laws at the macroscale cannot render a quantitative relationship between microscopic damage of rocks and overall rock structural degradation. This may lead to problems in the evaluation of rock structure stability and safe life. Multiscale numerical modeling is regarded as an effective way to gain insight into factors affecting rock properties from a cross-scale view. This study compiles the history of theoretical developments and numerical techniques related to rock multiscale issues according to different modeling architectures, that is, the homogenization theory, the hierarchical approach, and the concurrent approach. For these approaches, their benefits, drawbacks, and application scope are underlined. Despite the considerable attempts that have been made, some key issues still result in multiple challenges. Therefore, this study points out the perspectives of rock multiscale issues so as to provide a research direction for the future. The review results show that, in addition to numerical techniques, for example, high-performance computing, more attention should be paid to the development of an advanced constitutive model with consideration of fine geometrical descriptions of rock to facilitate solutions to multiscale problems in rock mechanics and rock engineering.

Keywords

constitutive model / multiscale modeling / numerical method / rock

Cite this article

Download citation ▾
Xindong Wei, Zhe Li, Gaofeng Zhao. A review of multiscale numerical modeling of rock mechanics and rock engineering. Deep Underground Science and Engineering, 2025, 4(3): 382-405 DOI:10.1002/dug2.12127

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abraham FF, Bernstein N, Broughton JQ, Hess D. Dynamic fracture of silicon: concurrent simulation of quantum electrons, classical atoms, and the continuum solid. MRS Bull. 2000; 25(5): 27-32.

[2]

Abraham FF, Broughton JQ, Bernstein N, Kaxiras E. Spanning the length scales in dynamic simulation. Comp Phys. 1998; 12(6): 538-546.

[3]

Adelman SA, Doll JD. Generalized Langevin equation approach for atom/solid-surface scattering: general formulation for classical scattering off harmonic solids. J Chem Phys. 1976; 64(64): 2375-2388.

[4]

Allen DH, Little DN, Soares RF, Berthelot C. Multi-scale computational model for design of flexible pavement–part III: two-way coupled multi-scaling. Int J Pavement Eng. 2017; 18(4): 335-348.

[5]

Areias P, Reinoso J, Camanho P, Rabczuk T. A constitutive-based element-by-element crack propagation algorithm with local mesh refinement. Comput Mech. 2015; 56: 291-315.

[6]

Aubertin P, Réthoré J, de Borst R. Energy conservation of atomistic/continuum coupling. Int J Numer Meth Eng. 2009; 78(11): 1365-1386.

[7]

Aubertin P, Rethore J, de Borst R. Dynamic crack propagation using a combined molecular dynamics/extended finite element approach. Int J Multiscale Comp Eng. 2010; 8(2): 221-235.

[8]

Babuška I, Caloz G, Osborn JE. Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J Num Anal. 1994; 31(4): 945-981.

[9]

Babuška I, Osborn JE. Generalized finite element methods: their performance and their relation to mixed methods. SIAM J Num Anal. 1983; 20(3): 510-536.

[10]

Bai Y, Li X, Yang W, Xu Z, Lv M. Multiscale analysis of tunnel surrounding rock disturbance: a PFC3D-FLAC3D coupling algorithm with the overlapping domain method. Comp Geotech. 2022; 147:104752.

[11]

Benveniste Y. On the Mori-Tanaka's method in cracked bodies. Mech Res Commun. 1986; 13(4): 193-201.

[12]

Broughton JQ, Abraham FF, Bernstein N, Kaxiras E. Concurrent coupling of length scales: methodology and application. Phys Rev B Condens Matter Mater Phys. 1999; 60(4): 2391-2403.

[13]

Budiansky B. On the elastic moduli of some heterogeneous materials. J Mech Phys Solids. 1965; 13(4): 223-227.

[14]

Buehler MJ, Van Duin ACT, Goddard WA. Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. Phys Rev Lett. 2006; 96(9):095505.

[15]

Buehler MJ, Gao H. Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature. 2006; 439(7074): 307-310.

[16]

Cai M, Kaiser PK, Morioka H, et al. FLAC/PFC coupled numerical simulation of AE in large-scale underground excavations. Int J Rock Mech Min Sci. 2007; 44: 550-564.

[17]

Castañeda P. The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids. 1995; 43(12): 1919-1951.

[18]

Celep Z, Bažant ZP. Spurious reflection of elastic waves due to gradually changing finite element size. Int J Numer Meth Eng. 1983; 19(5): 631-646.

[19]

Chen Q, Ma R, Jiang Z, et al. Differential scheme-based stochastic micromechanical framework for saturated concrete repaired by EDM. Acta Mech. 2019; 230(12): 4287-4301.

[20]

Chen Q, Nezhad MM, Fisher Q, Zhu HH. Multi-scale approach for modeling the transversely isotropic elastic properties of shale considering multi-inclusions and interfacial transition zone. Int J Rock Mech Min Sci. 2016; 84: 95-104.

[21]

Chen X, Yu H. A multiscale method coupling peridynamic and boundary element models for dynamic problems. Comput Methods Appl Mech Eng. 2022; 401:115669.

[22]

Cheng H, Thornton AR, Luding S, Hazel AL, Weinhart T. Concurrent multi-scale modeling of granular materials: role of coarse-graining in FEM-DEM coupling. Comput Methods Appl Mech Eng. 2023; 403:115651.

[23]

Chuzel-Marmot Y, Ortiz R, Combescure A. Three dimensional SPH–FEM gluing for simulation of fast impacts on concrete slabs. Comput Struct. 2011; 89(23/24): 2484-2494.

[24]

Dang HK, Meguid MA. An efficient finite-discrete element method for quasi-static nonlinear soil-structure interaction problems. Int J Numer Anal Methods Geomech. 2013; 37(2): 130-149.

[25]

Desrues J, Argilaga A, Caillerie D, et al. From discrete to continuum modelling of boundary value problems in geomechanics: an integrated FEM-DEM approach. Int J Numer Anal Methods Geomech. 2019; 43(5): 919-955.

[26]

Dhia HB, Rateau G. The Arlequin method as a flexible engineering design tool. Int J Numer Meth Eng. 2005; 62(11): 1442-1462.

[27]

Doll JD, Dion DR. Generalized Langevin equation approach for atom/solid–surface scattering: numerical techniques for Gaussian generalized Langevin dynamics. J Chem Phys. 1976; 65(65): 3762-3766.

[28]

Dostert P, Efendiev Y, Hou TY. Multiscale finite element methods for stochastic porous media flow equations and application to uncertainty quantification. Comput Methods Appl Mech Eng. 2008; 197(43/44): 3445-3455.

[29]

Durlofsky LJ, Efendiev Y, Ginting V. An adaptive local-global multiscale finite volume element method for two-phase flow simulations. Adv Water Res. 2007; 30(3): 576-588.

[30]

Eidel B, Stukowski A. A variational formulation of the quasicontinuum method based on energy sampling in clusters. J Mech Phys Solids. 2009; 57(1): 87-108.

[31]

Elmasry A, Azoti W, El-Safty SA, Elmarakbi A. A comparative review of multiscale models for effective properties of nano-and micro-composites. Prog Mater Sci. 2022; 132(5):101022.

[32]

Elmekati A, Shamy UE. A practical co-simulation approach for multiscale analysis of geotechnical systems. Comp Geotech. 2010; 37: 494-503.

[33]

Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Math Phys Eng Sci. 1957; 241(1226):376e96.

[34]

Eshelby JD. Elastic Inclusions and Heterogeneities: Progress in Solid. Vol 2. North-Holland Publishing Co; 1961.

[35]

Fu M, Zhao G. High-performance computing of 3D blasting wave propagation in underground rock cavern by using 4D-LSM on TianHe-3 prototype E class supercomputer. Deep Undergr Sci Eng. 2022; 1: 87-100.

[36]

Gan HK, Lai GW, Li YS. Construction process simulation and ultimate bearing capacity analysis of Xiaowan arch dam by 3D finite difference method. Chin J Rock Mech Eng. 2013; 32(Supp 2): 3918-3927.

[37]

Gehlen PC, Hahn GT, Kanninen MF. Crack extension by bond rupture in a model of bcc iron. Scripta Metallur. 1972; 6: 1087-1090.

[38]

Ghareeb A, Elbanna A. An adaptive quasicontinuum approach for modeling fracture in networked materials: application to modeling of polymer networks. J Mech Phys Solids. 2020; 137:103819.

[39]

Ghareeb A, Elbanna A. Modeling fracture in rate-dependent polymer networks: a quasicontinuum approach. J Appl Mech. 2021; 88(11):111007.

[40]

Gooneie A, Schuschnigg S, Holzer C. A review of multiscale computational methods in polymeric materials. Polymers. 2017; 9(1): 16.

[41]

Graham SP, Rouainia M, Aplin AC, Ireland MT, Charlton TS, Armitage PJ. New micromechanical data and modelling framework for the elastic response of calcareous mudstones. Int J Rock Mech Min Sci. 2022; 158:105181.

[42]

Gu YT, Zhang LC. A concurrent multiscale method based on the meshfree method and molecular dynamics analysis. Multiscale Model Simul. 2006; 5(4): 1128-1155.

[43]

Guo N, Yang Z, Yuan W, Zhao J. A coupled SPFEM/DEM approach for multiscale modeling of large-deformation geomechanical problems. Int J Numer Anal Methods Geomech. 2021; 45(5): 648-667.

[44]

Guo N, Zhao J. A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media. Int J Numer Meth Eng. 2014; 99(11): 789-818.

[45]

Guo N, Zhao J. Multiscale insights into classical geomechanics problems. Int J Numer Anal Methods Geomech. 2016a; 40(3): 367-390.

[46]

Guo N, Zhao J. Parallel hierarchical multiscale modelling of hydro-mechanical problems for saturated granular soils. Comput Methods Appl Mech Eng. 2016b; 305: 37-61.

[47]

Guo Z, Yang W. MPM/MD handshaking method for multiscale simulation and its application to high energy cluster impacts. Int J Mech Sci. 2006; 48(2): 145-159.

[48]

Ha YD, Bobaru F. Characteristics of dynamic brittle fracture captured with peridynamics. Eng Fract Mech. 2011; 78(6): 1156-1168.

[49]

Hashin Z. The differential scheme and its application to cracked materials. J Mech Phys Solids. 1988; 36(6): 719-734.

[50]

Hill R. A self-consistent mechanics of composite materials. J Mech Phys Solids. 1965; 13(4): 213-222.

[51]

Hou TY, Wu XH. A multiscale finite element method for elliptic problems in composite materials and porous media. J Comput Phys. 1997; 134(1): 169-189.

[52]

Hultman J, Kallander D. An SPH code for galaxy formation problems. Astron Astrophys. 1997; 324: 534-548.

[53]

Indraratna B, Ngo NT, Rujikiatkamjorn C, Sloan SW. Coupled discrete element–finite difference method for analysing the load-deformation behaviour of a single stone column in soft soil. Comp Geotech. 2015; 63: 267-278.

[54]

Jenny P, Lee SH, Tchelepi HA. Adaptive multiscale finite-volume method for multiphase flow and transport in porous media. Multiscale Model Simul. 2005; 3(1): 50-64.

[55]

Jenny P, Lee SH, Tchelepi HA. Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media. J Comput Phys. 2006; 217(2): 627-641.

[56]

Jia M, Yang Y, Liu B, Wu S. PFC/FLAC coupled simulation of dynamic compaction in granular soils. Granular Matter. 2018; 20(4): 76.

[57]

Jiang B, Zhao GF, Gong Q, Zhao XB. Three-dimensional coupled numerical modelling of lab-level full-scale TBM disc cutting tests. Tunnel Undergr Space Technol. 2021; 114:103997.

[58]

Jiang Z, Yang X, Yan Z, et al. A stochastic micromechanical framework for hybrid fiber reinforced concrete. Cement Concr Compos. 2019; 102: 39-54.

[59]

Jin J, Yang F, Jing L, She C, Song Z. New accelerated rock creep model considering nonstationary viscosity coefficient. Int J Nonlin Mech. 2024; 159:104628.

[60]

Kachanov M. Elastic solid with many cracks and related problems. Adv Appl Mech. 1994; 30: 259-445.

[61]

Kim YR, Souza FV, Teixeira JESL. A two-way coupled multiscale model for predicting damage-associated performance of asphaltic roadways. Comput Mech. 2013; 51(2): 187-201.

[62]

Knap J, Ortiz M. An analysis of the quasicontinuum method. J Mech Phys Solids. 2001; 49(9): 1899-1923.

[63]

Kohlhoff S, Gumbsch P, Fischmeister HF. Crack propagation in bcc crystals studied with a combined finite-element and atomistic model. Philos Magaz A. 1991; 64(4): 851-878.

[64]

Li G, Wang K, Tang C, et al. Modelling local failure around hard-rock tunnels based on a linked multiscale mesh strategy. Tunnel Undergr Space Technol. 2022; 127:104588.

[65]

Li M, Yu H, Wang J, Xia X, Chen J. A multiscale coupling approach between discrete element method and finite difference method for dynamic analysis. Int J Numer Meth Eng. 2015; 102(1): 1-21.

[66]

Li QM, Meng H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int J Solids Struct. 2003; 40(2): 343-360.

[67]

Li X, Ming P. On the effect of ghost force in the quasicontinuum method: dynamic problems in one dimension. Commun Comput Phys. 2014; 15(3): 647-676.

[68]

Li X, Wan K. A bridging scale method for granular materials with discrete particle assembly-cosserat continuum modeling. Comp Geotech. 2011; 38(8): 1052-1068.

[69]

Li X, Zou Y, Zhou Z. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method. Rock Mech Rock Eng. 2014; 47: 1693-1709.

[70]

Li XF, Zhang QB, Li HB, Zhao J. Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading. Rock Mech Rock Eng. 2018; 51(12): 3785-3817.

[71]

Liang HY, Liu GR, Han X. Multiscale coupling of meshless method and molecular dynamics. In Liu G, Tan V, Han X, eds. Comput Methods. Springer; 2006; 1601-1606. https://doi.org/10.1007/978-1-4020-3953-9_89

[72]

Liang W, Wu H, Zhao S, Zhou W, Zhao J. Scalable three-dimensional hybrid continuum-discrete multiscale modeling of granular media. Int J Numer Meth Eng. 2022; 123(12): 2872-2893.

[73]

Liang W, Zhao J. Multiscale modeling of large deformation in geomechanics. Int J Numer Anal Methods Geomech. 2019; 43(5): 1080-1114.

[74]

Liang W, Zhao J, Wu H, Soga K. Multiscale modeling of anchor pullout in sand. J Geotech Geoenviron Eng. 2021; 147(9):04021091.

[75]

Liang W, Zhao S, Wu H, Zhao J. Bearing capacity and failure of footing on anisotropic soil: a multiscale perspective. Comp Geotech. 2021; 137:104279.

[76]

Liu C, Sun Q, Yang Y. Multi-scale modelling of granular pile collapse by using material point method and discrete element method. Procedia Eng. 2017; 175: 29-35.

[77]

Liu GR, Liu MB. Coupling SPH with molecular dynamics for multiple scale simulations. In Liu GR, Liu MB, eds. Chapter 9: Smoothed Particle Hydrodynamics: A Meshfree Particle Method. World Scientific; 2003: 341-364.

[78]

Lorig LJ, Brady BGH. A hybrid computational scheme for excavation and support design in jointed rock media. In Lorig LJ, Brady BGH, eds. Design and Performance of Underground Excavations. Thomas Telford Publishing; 1984: 105-112.

[79]

Lu M, Zhang H, Zheng Y, Zhang L. A multiscale finite element method with embedded strong discontinuity model for the simulation of cohesive cracks in solids. Comput Methods Appl Mech Eng. 2016; 311: 576-598.

[80]

Lu M, Zhang H, Zheng Y, Zhang L. A multiscale finite element method for the localization analysis of homogeneous and heterogeneous saturated porous media with embedded strong discontinuity model. Int J Numer Meth Eng. 2017; 112(10): 1439-1472.

[81]

Lu M, Zheng Y, Du J, Zhang L, Zhang H. An adaptive multiscale finite element method for strain localization analysis with the Cosserat continuum theory. Eur J Mech A Solids. 2022; 92:104450.

[82]

Meng QX, Wang HL, Xu WY, Cai M, Xu J, Zhang Q. Multiscale strength reduction method for heterogeneous slope using hierarchical FEM/DEM modeling. Comp Geotech. 2019; 115:103164.

[83]

Mikeš K, Jirásek M. Quasicontinuum method combined with microplane model. Int J Solids Struct. 2022; 238:111369.

[84]

Militzer B, Wenk HR, Stackhouse S, Stixrude L. First-principles calculation of the elastic moduli of sheet silicates and their application to shale anisotropy. Am Mineral. 2010; 96(1): 125-137.

[85]

Miller R, Ortiz M, Phillips R, Shenoy V, Tadmor EB. Quasicontinuum models of fracture and plasticity. Eng Fract Mech. 1998; 61(3/4): 427-444.

[86]

Miller R, Tadmor EB, Phillips R, Ortiz M. Quasicontinuum simulation of fracture at the atomic scale. Modell Simul Mater Sci Eng. 1998; 6(5): 607.

[87]

Miller RE, Tadmor EB. A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Modell Simul Mater Sci Eng. 2009; 17(5):053001.

[88]

Mori T, Tanaka K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973; 21(5): 571-574.

[89]

Moslemzadeh H, Alizadeh O, Mohammadi S. Quasicontinuum multiscale modeling of the effect of rough surface on nanoindentation behavior. Meccanica. 2019; 54(3): 411-427.

[90]

Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. Int J Numer Meth Eng. 1999; 46(1): 131-150.

[91]

Munjiza A, Owen DRJ, Bicanic N. A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput. 1995; 12: 145-174.

[92]

Mura T. Micromechanics of Defects in Solids. 2nd ed. Martinus Nijhoff Publishers; 1987.

[93]

Nguyen LH, Schillinger D. The multiscale finite element method for nonlinear continuum localization problems at full fine-scale fidelity, illustrated through phase-field fracture and plasticity. J Comput Phys. 2019; 396: 129-160.

[94]

Ning Y, Yang J, Ma G, Chen P. Modelling rock blasting considering explosion gas penetration using discontinuous deformation analysis. Rock Mech Rock Eng. 2011; 44(4): 483-490.

[95]

Nordendale NA, Heard WF, Sherburn JA, Basu PK. A comparison of finite element analysis to smooth particle hydrodynamics for application to projectile impact on cementitious material. Comp Particle Mech. 2016; 3: 53-68.

[96]

Oñate E, Rojek J. Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng. 2004; 193(27/29): 3087-3128.

[97]

Ortner C, Zhang L. Atomistic/continuum blending with ghost force correction. SIAM J Sci Comput. 2016; 38(1): A346-A375.

[98]

Peng Y, Zhou W, Lu W, Chen W, Zhou C. Simulation of bench blasting considering fragmentation size distribution. Int J Impact Eng. 2016; 90: 132-145.

[99]

Qu T, Feng Y, Wang M. An adaptive granular representative volume element model with an evolutionary periodic boundary for hierarchical multiscale analysis. Int J Numer Meth Eng. 2021; 122(9): 2239-2253.

[100]

Qu T, Wang S, Hu Q. Coupled discrete element-finite difference method for analysing effects of cohesionless soil conditioning on tunneling behaviour of EPB shield. KSCE J Civil Eng. 2019; 23(10): 4538-4552.

[101]

Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Meth Eng. 2004; 61(13): 2316-2343.

[102]

Rabczuk T, Eibl J. Simulation of high velocity concrete fragmentation using SPH/MLSPH. Int J Numer Meth Eng. 2003; 56: 1421-1444.

[103]

Rabczuk T, Xiao SP, Sauer M. Coupling of mesh-free methods with finite elements: basic concepts and test results. Commun Numer Methods Eng. 2006; 22(10): 1031-1065.

[104]

Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng. 2010; 199(37/40): 2437-2455.

[105]

Rojek J, Onate E. Multiscale analysis using a coupled discrete/finite element model. Interact Multiscale Mech. 2008; 1(1): 1-31.

[106]

Rudd RE, Broughton JQ. Concurrent coupling of length scales in solid state systems. Comp Simulat Mater Atomic Level. 2000; 217(1): 251-291.

[107]

Shenoy VB, Miller R, Tadmor E, Rodney D, Phillips R, Ortiz M. An adaptive finite element approach to atomic-scale mechanics: the quasicontinuum method. J Mech Phys Solids. 1999; 47(3): 611-642.

[108]

Shi Y, Zhang B, Zhang S, Zhang H. On numerical earthquake prediction. Earthquake Sci. 2014; 27: 319-335.

[109]

Shilkrot LE, Miller RE, Curtin WA. Coupled atomistic and discrete dislocation plasticity. Phys Rev Lett. 2002; 89(2):025501.

[110]

Shilkrot LE, Miller RE, Curtin WA. Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics. J Mech Phys Solids. 2004; 52(4): 755-787.

[111]

Sun B. A combined discrete element-finite difference model for simulation of double shield TBM excavation in jointed rocks. Rock Mech Rock Eng. 2021; 54: 5867-5883.

[112]

Sun Y, Du C, Zhou C, Zhu X, Chen J. Analysis of load-induced top-down cracking initiation in asphalt pavements using a two-dimensional microstructure-based multiscale finite element method. Eng Fract Mech. 2019; 216:106497.

[113]

Tabarraei A, Wang X, Sadeghirad A, Song JH. An enhanced bridging domain method for linking atomistic and continuum domains. Finite Elements Anal Design. 2014; 92: 36-49.

[114]

Tadmor EB, Miller R. Quasicontinuum Method. 2022. www.qcmethod.com

[115]

Tadmor EB, Miller R, Phillips R, Ortiz M. Nanoindentation and incipient plasticity. J Mater Res. 1999; 14(6): 2233-2250.

[116]

Tadmor EB, Ortiz M, Phillips R. Quasicontinuum analysis of defects in solids. Philos Magaz A. 1996; 73(6): 1529-1563.

[117]

Tang C. Numerical simulation of progressive rock failure and associated seismicity. Int J Rock Mech Min Sci. 1997; 34(2): 249-261.

[118]

Tang CA, Webb AAG, Moore WB, Wang YY, Ma TH, Chen TT. Breaking earth's shell into a global plate network. Nat Commun. 2020; 11(1): 3621.

[119]

Tang X, Zhang Y, Xu J, et al. Determining Young's modulus of granite using accurate grain-based modeling with microscale rock mechanical experiments. Int J Rock Mech Min Sci. 2022; 157:105167.

[120]

Tong Q, Li S. Multiscale coupling of molecular dynamics and peridynamics. J Mech Phys Solids. 2016; 95: 169-187.

[121]

Tu F, Jiao Y, Chen Z, Zou J, Zhao Z. Stress continuity in DEM-FEM multiscale coupling based on the generalized bridging domain method. Appl Math Model. 2020; 83: 220-236.

[122]

Tu F, Ling D, Bu L, Yang Q. Generalized bridging domain method for coupling finite elements with discrete elements. Comput Methods Appl Mech Eng. 2014; 276: 509-533.

[123]

Wagner GJ, Liu WK. Coupling of atomistic and continuum simulations using a bridging scale decomposition. J Comput Phys. 2003; 190(1): 249-274.

[124]

Walsh JB. The effect of cracks on the compressibility of rock. J Geophys Res. 1965; 70: 381-389.

[125]

Wan K, Li X. Multiscale hydro-mechanical analysis of unsaturated granular materials using bridging scale method. Eng Comput. 2015; 32: 935-955.

[126]

Wang D, Wang B, Jiang Q, Guo N, Zhang W, He K. Large deformation slope failure-a perspective from multiscale modelling. Comp Geotech. 2022; 150:104886.

[127]

Wang M, Zhang DZ. Deformation accommodating periodic computational domain for a uniform velocity gradient. Comput Methods Appl Mech Eng. 2021; 374:113607.

[128]

Wang X, Kulkarni SS, Tabarraei A. Concurrent coupling of peridynamics and classical elasticity for elastodynamic problems. Comput Methods Appl Mech Eng. 2019; 344: 251-275.

[129]

Wang ZH, Li X. Numerical analysis of fragmentation of granular materials using bridging scale method. Chin J Comp Mech. 2015; 32(5): 656-661.

[130]

Wu H, Guo N, Zhao J. Multiscale modeling and analysis of compaction bands in high-porosity sandstones. Acta Geotech. 2018; 13(3): 575-599.

[131]

Wu H, Liu H, Zhao J, Xiao Y. Multiscale analyses of failure pattern transition in high-porosity sandstones. Chin J Geotech Eng. 2020; 42(12): 2222-2229.

[132]

Wu H, Papazoglou A, Viggiani G, Dano C, Zhao J. Compaction bands in Tuffeau de Maastricht: insights from X-ray tomography and multiscale modeling. Acta Geotech. 2020; 15(1): 39-55.

[133]

Wu H, Zhao J, Guo N. Multiscale modeling of compaction bands in saturated high-porosity sandstones. Eng Geol. 2019; 261:105282.

[134]

Wu H, Zhao J, Liang W. The signature of deformation bands in porous sandstones. Rock Mech Rock Eng. 2020a; 53(7): 3133-3147.

[135]

Wu H, Zhao J, Liang W. Pattern transitions of localized deformation in high-porosity sandstones: insights from multiscale analysis. Comp Geotech. 2020b; 126:103733.

[136]

Xiao SP, Belytschko T. A bridging domain method for coupling continua with molecular dynamics. Comput Methods Appl Mech Eng. 2004; 193(17-20): 1645-1669.

[137]

Xu F, Hajibeygi H, Sluys LJ. Multiscale extended finite element method for deformable fractured porous media. J Comput Phys. 2021; 436:110287.

[138]

Xu JJ, Zhang YH, Rutqvist J, Hu MS, Wang ZZ, Tang XH. Thermally induced microcracks in granite and their effect on the macroscale mechanical behavior. J Geophys Res Solid Earth. 2023; 128(1):e2022JB024920.

[139]

Xu T, Fu TF, Heap MJ, Meredith PG, Mitchell TM, Baud P. Mesoscopic damage and fracturing of heterogeneous brittle rocks based on three-dimensional polycrystalline discrete element method. Rock Mech Rock Eng. 2020; 53: 5389-5409.

[140]

Xu Z, Zhang L, Zhou S. Influence of encasement length and geosynthetic stiffness on the performance of stone column: 3D DEM-FDM coupled numerical investigation. Comp Geotech. 2021; 132:103993.

[141]

Yan Z, Chen Q, Zhu H, Woody Ju J, Zhou S, Jiang Z. A multi-phase micromechanical model for unsaturated concrete repaired using the electrochemical deposition method. Int J Solids Struct. 2013; 50(24): 3875-3885.

[142]

Yang S, Cheng B, McGeough JA, Woldu YT, Yang X. Multi-scale numerical analysis and experimental verification for nano-cutting. J Manuf Process. 2021; 71: 260-268.

[143]

Yu H, Chen Z. Influence mechanism of tunnel excavation on adjacent fault based on FDM-DEM coupling method. Hazard Control Tunnel Undergr Eng. 2021; 3(3): 20-28.

[144]

Yu HT, Yuan Y, Bobet A. Multiscale method for long tunnels subjected to seismic loading. Int J Numer Anal Methods Geomech. 2013; 37(4): 374-398.

[145]

Yu P, Ren Z, Chen Z, Bordas SPA. A multiscale finite element model for prediction of tensile strength of concrete. Finite Elements Anal Design. 2023; 215:103877.

[146]

Zhang H, Lu M, Zheng Y, Zhang S. General coupling extended multiscale FEM for elasto-plastic consolidation analysis of heterogeneous saturated porous media. Int J Numer Anal Methods Geomech. 2015; 39(1): 63-95.

[147]

Zhang HW, Fu ZD, Wu JK. Coupling multiscale finite element method for consolidation analysis of heterogeneous saturated porous media. Adv Water Resources. 2009; 32(2): 268-279.

[148]

Zhang K, Zhao LY, Ni T, Zhu QZ, Shen J, Fan YH. Experimental investigation and multiscale modeling of reactive powder cement pastes subject to triaxial compressive stresses. Constr Build Mater. 2019; 224: 242-254.

[149]

Zhang W, Zhao J, Zhang D. Construction and validation of the upscaling model of organic-rich shale by considering water-sensitivity effects. J Petrol Sci Eng. 2022; 216:110718.

[150]

Zhang Y, Gao Z, Li Y, Zhuang X. On the crack opening and energy dissipation in a continuum based disconnected crack model. Finite Elements Anal Design. 2020; 170:103333.

[151]

Zhang Y, Huang J, Yuan Y, Mang HA. Cracking elements method with a dissipation-based arc-length approach. Finite Elements Anal Design. 2021; 195:103573.

[152]

Zhang Y, Ju JW, Zhu H, Yan Z. A novel multi-scale model for predicting the thermal damage of hybrid fiber-reinforced concrete. Int J Damage Mech. 2020; 29(1): 19-44.

[153]

Zhang Y, Lackner R, Zeiml M, Mang HA. Strong discontinuity embedded approach with standard SOS formulation: element formulation, energy-based crack-tracking strategy, and validations. Comput Methods Appl Mech Eng. 2015; 287: 335-366.

[154]

Zhang Y, Mang HA. Global cracking elements: a novel tool for Galerkin-based approaches simulating quasi-brittle fracture. Int J Numer Meth Eng. 2020; 121(11): 2462-2480.

[155]

Zhang Y, Yang X, Wang X, Zhuang X. A micropolar peridynamic model with non-uniform horizon for static damage of solids considering different nonlocal enhancements. Theor Appl Fract Mech. 2021; 113:102930.

[156]

Zhang Y, Zhao GF. A multiphysics method for long-term deformation analysis of reservoir rock considering thermal damage in deep geothermal engineering. Renew Energy. 2023; 204: 432-448.

[157]

Zhang Y, Zhuang X. Cracking elements: a self-propagating strong discontinuity embedded approach for quasi-brittle fracture. Finite Elements Anal Design. 2018; 144: 84-100.

[158]

Zhang Y, Zhuang X. Cracking elements method for dynamic brittle fracture. Theor Appl Fract Mech. 2019; 102: 1-9.

[159]

Zhao GF. Development of Micro-Macro Continuum-Discontinuum Coupled Numerical Method. Doctoral thesis. EPFL; 2010.

[160]

Zhao GF, Fang J, Zhao J. A 3D distinct lattice spring model for elasticity and dynamic failure. Int J Numer Anal Methods Geomech. 2011; 35(8): 859-885.

[161]

Zhao GF, Khalili N, Fang J, Zhao J. A coupled distinct lattice spring model for rock failure under dynamic loads. Comp Geotech. 2012; 42: 1-20.

[162]

Zhao GF, Russell AR, Zhao X, Khalili N. Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the distinct lattice spring model with X-ray micro CT. Int J Solids Struct. 2014; 51: 1587-1600.

[163]

Zhao J, Guo N. Bridging the micro and macro for granular media: a computational multi-scale paradigm. In Kenichi S, Krishna K, Giovanna B, Matthew K, eds. Geomechanics from Micro to Macro. CRC Press, Taylor & Francis; 2014; 1: 747-752.

[164]

Zhao LY, Lai YM, Niu FJ, Li PF, Zhu QZ. Multi-scale damage creep model and long-term strength for hard brittle rocks. J Central South Univ. 2022; 53(8): 3071-3080.

[165]

Zhao LY, Lai YM, Shao JF, Zhang WL, Zhu QZ, Niu FJ. Friction-damage coupled models and macroscopic strength criteria for ice-saturated frozen silt with crack asperity variation by a micromechanical approach. Eng Geol. 2021; 294:106405.

[166]

Zhao LY, Zhu QZ, Shao JF. A micro-mechanics based plastic damage model for quasi-brittle materials under a large range of compressive stress. Int J Plast. 2018; 100: 156-176.

[167]

Zhao S, Chen H, Zhao J. Multiscale modeling of freeze-thaw behavior in granular media. Acta Mech Sin. 2022; 39:722195.

[168]

Zhao S, Zhao J, Liang W. A thread-block-wise computational framework for large-scale hierarchical continuum-discrete modeling of granular media. Int J Numer Meth Eng. 2021; 122(2): 579-608.

[169]

Zhao S, Zhao J, Liang W, Niu F. Multiscale modeling of coupled thermo-mechanical behavior of granular media in large deformation and flow. Comp Geotech. 2022; 149:104855.

[170]

Zhao YS. Retrospection on the development of rock mass mechanics and the summary of some unsolved centennial problems. Chin J Rock Mech Eng. 2021; 40(7): 1297-1336.

[171]

Zheng QS, Du DX. An explicit and universally applicable estimate for the effective properties of multiphase composites which accounts for inclusion distribution. J Mech Phys Solids. 2001; 49(11): 2765-2788.

[172]

Zhou X, Xie Y, Long G, et al. Multi-scale modeling of the concrete SHPB test based on DEM-FDM coupling method. Constr Build Mater. 2022; 356:129157.

[173]

Zhou XP, Yang HQ. Multiscale numerical modeling of propagation and coalescence of multiple cracks in rock masses. Int J Rock Mech Min Sci. 2012; 55: 15-27.

[174]

Zhu A, He D, He R, Zou C. Nanoindentation simulation on single crystal copper by quasi-continuum method. Mater Sci Eng A. 2016; 674: 76-81.

[175]

Zhu Q. Strength prediction of dry and saturated brittle rocks by unilateral damage-friction coupling analyses. Comp Geotech. 2016; 73: 16-23.

[176]

Zhu Q, Shao J. Micromechanics of rock damage: advances in the quasi-brittle field. J Rock Mech Geotech Eng. 2017; 9(1): 29-40.

[177]

Zhu QZ. A new rock strength criterion from microcracking mechanisms which provides theoretical evidence of hybrid failure. Rock Mech Rock Eng. 2017; 50(2): 341-352.

[178]

Zhu QZ, Hu DW, Zhou H, Xie SY, Shao JF. Research on homogenization-based mesomechanical damage model and its application. Chin J Rock Mech Eng. 2008; 27(2): 262-272.

[179]

Zhu QZ, Kondo D, Shao JF. Micromechanical analysis of coupling between anisotropic damage and friction in quasi brittle materials: role of the homogenization scheme. Int J Solids Struct. 2008; 45(5): 1385-1405.

[180]

Zhu QZ, Liu HX, Wang W, Shao JF. A micromechanical constitutive damage model for beishan granite. Chin J Rock Mech Eng. 2015; 34(3): 433-439.

[181]

Zhu QZ, Shao JF. A refined micromechanical damage-friction model with strength prediction for rock-like materials under compression. Int J Solids Struct. 2015; 60/61: 75-83.

[182]

Zhu QZ, Wang YN, Qiu JJ, Zhao LY, Shao JF. Multiscale hydro-mechanical constitutive model for quasi-brittle rocks under undrained condition. J Hohai Univ. 2018; 46(2): 165-170.

[183]

Zhu QZ, Zhao LY, Shao JF. Analytical and numerical analysis of frictional damage in quasi brittle materials. J Mech Phys Solids. 2016; 92: 137-163.

RIGHTS & PERMISSIONS

2024 The Author(s). Deep Underground Science and Engineering published by John Wiley & Sons Australia, Ltd on behalf of China University of Mining and Technology.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/