Applications of artificial intelligence in geothermal resource exploration: A review

Mahmoud AlGaiar , Mamdud Hossain , Andrei Petrovski , Aref Lashin , Nadimul Faisal

Deep Underground Science and Engineering ›› 2024, Vol. 3 ›› Issue (3) : 269 -285.

PDF
Deep Underground Science and Engineering ›› 2024, Vol. 3 ›› Issue (3) : 269 -285. DOI: 10.1002/dug2.12122
REVIEW ARTICLE

Applications of artificial intelligence in geothermal resource exploration: A review

Author information +
History +
PDF

Abstract

•Progress in the use of Artificial intelligence (AI) methodologies is presented in detail.

•Geophysical data analysis is the most notable AI application.

•Neural networks are the most-used AI technique across geothermal exploration groups.

•Challenges and recommendations for future research using AI are provided.

•Large-scale AI applications are reasonably novel in geothermal exploration.

Keywords

artificial intelligence / geothermal energy / geothermal exploration / geothermometry / hidden/blind geothermal resources / machine learning

Cite this article

Download citation ▾
Mahmoud AlGaiar, Mamdud Hossain, Andrei Petrovski, Aref Lashin, Nadimul Faisal. Applications of artificial intelligence in geothermal resource exploration: A review. Deep Underground Science and Engineering, 2024, 3(3): 269-285 DOI:10.1002/dug2.12122

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abubakar AJA, Hashim M, Pour AB. Remote sensing satellite imagery for prospecting geothermal systems in an aseismic geologic setting: Yankari Park, Nigeria. Int J Appl Earth Obs Geoinf. 2019;80:157-172.

[2]

Acevedo-Anicasio A, Santoyo E, Pérez-Zárate D, Pandarinath K, Guevara M, Díaz-González L. GaS_GeoT: a computer program for an effective use of newly improved gas geothermometers in predicting reliable geothermal reservoir temperatures. Geothermal Energy. 2021;9:1-41.

[3]

Ahmmed B, Vesselinov VV, Mudunuru MM, Middleton RS, Karra S. Geochemical Characteristics of Low-, Medium-, and Hot-Temperature Geothermal Resources of the Great Basin, USA (No. LA-UR-20-28011). Los Alamos National Laboratory; 2020.

[4]

Akpan AE, Narayanan M, Harinarayana T. Estimation of subsurface temperatures in the Tattapani geothermal field, Central India, from limited volume of magnetotelluric data and borehole thermograms using a constructive back-propagation neural network. Earth Interact. 2014;18:1-26.

[5]

Aljubran J, Nwosu C, Okoroafor E, Smith C, Gudmundsdottir H. Recent trends in artificial intelligence for subsurface geothermal applications. In 47th Workshop on Geothermal Reservoir Engineering. Stanford University of California; 2022:8. https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2022/Aljubran1.pdf

[6]

Bassam A, Santoyo E, Andaverde J, Hernández JA, Espinoza-Ojeda OM. Estimation of static formation temperatures in geothermal wells by using an artificial neural network approach. Comput Geosci. 2010;36(9):1191-1199.

[7]

Brown S, Coolbaugh MF, Deangelo J, et al. Machine learning for natural resource assessment: an application to the blind geothermal systems of Nevada. Trans Geotherm Resour Counc. 2020;44:920-932.

[8]

Brown S, Rodi WL, Gu C, et al. Bayesian neural networks for geothermal resource assessment: prediction with uncertainty. arXiv preprint arXiv. 2022;2209:15543.

[9]

Can I. A new improved Na/K geothermometer by artificial neural networks. Geothermics. 2002;31(6):751-760.

[10]

Craig JW, Faulds JE, Hinz NH, et al. Discovery and analysis of a blind geothermal system in southeastern Gabbs Valley, western Nevada, USA. Geothermics. 2021;97:102177.

[11]

Diaz-Gonzalez L, Santoyo E, Reyes-Reyes J. Three new improved Na/K geothermometers using computational and geochemiometrical tools: application to the temperature prediction of geothermal systems. Rev Mex Cienc Geológicas. 2008;25:465-482.

[12]

Espinoza-Ojeda OM, Santoyo E. A new empirical method based on log-transformation regressions for the estimation of static formation temperatures of geothermal, petroleum and permafrost boreholes. J Geophys Eng. 2016;13:559-596.

[13]

Faulds J, Craig J, Coolbaugh M, Hinz N, Glen J, Deoreo S. Searching for blind geothermal systems utilizing play fairway analysis, western Nevada. GRC Bullet. 2018;47:10. https://www.osti.gov/servlets/purl/1724102

[14]

Faulds J, Hinz N, Coolbaugh M, et al. Integrated geologic and geophysical approach for establishing geothermal play fairways and discovering blind geothermal systems in the Great Basin region, western USA: a progress report. GRC Trans. 2015;39:691-700. https://www.osti.gov/servlets/purl/1724089

[15]

Faulds J, Hinz N, Coolbaugh M, et al. Progress report on the Nevada play fairway project: integrated geological, geochemical, and geophysical analyses of possible new geothermal systems in the Great Basin region. In Proceedings, 42nd Workshop on Geothermal Reservoir Engineering. Stanford University, Nevada Bureau of Mines and Geology, University of Nevada; 2017.

[16]

Faulds J, Hinz N, Coolbaugh M, et al. Vectoring into potential blind geothermal systems in the Granite Springs Valley Area, western Nevada: application of the play fairway analysis at multiple scales. In Proceedings, 44th Workshop on Geothermal Reservoir Engineering. Stanford University, Nevada Bureau of Mines and Geology, University of Nevada; 2019:11. https://www.osti.gov/servlets/purl/1724085

[17]

Faulds J, Brown S, Coolbaugh M, et al. Preliminary report on applications of machine learning techniques to the Nevada geothermal play fairway analysis. In 45th Workshop on Geothermal Reservoir Engineering. Stanford University, Nevada Bureau of Mines and Geology, University of Nevada; 2020:229-234. https://pubs.usgs.gov/publication/70211874

[18]

Faulds JE, Hinz NH, Coolbaugh M, et al. Discovering Blind Geothermal Systems in the Great Basin Region: An Integrated Geologic and Geophysical Approach for Establishing Geothermal Play Fairways: All Phases. University of Nevada; ATLAS Geosciences, Inc.; United States Geological Survey; Hi-Q Geophysical, Inc.; Innovate Geothermal Ltd; Utah Geological Survey; 2021. https://doi.org/10.2172/1724080

[19]

Ferhat Bayram A. Application of an artificial neural network model to a Na–K geothermometer. J Volcanol Geother Res. 2001;112:75-81.

[20]

Gao K, Huang L, Lin R, Hu H, Zheng Y, Cladohous T. Delineating faults at the Soda Lake geothermal field using machine learning. In Proceedings of the 46th Workshop on Geothermal Reservoir Engineering. Stanford University; 2021:8.https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2021/Gao2.pdf

[21]

Gehringer M, Loksha V. Geothermal Handbook: Planning and Financing Power Generation: ESMAP Technical Report No. 002/12. World Bank; 2012.

[22]

Haklidir FST, Haklidir M. The fluid temperature prediction with hydro-geochemical indicators using a deep learning model: a case study western Anatolia (Turkey). In 43rd Workshop on Geothermal Reservoir Engineering, 2019:6. https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2019/Tut.pdf

[23]

He Y, Bai Y, Tian D, Yao L, Fan R, Chen P. A review of geoanalytical databases. Acta Geochimica. 2019;38(5):718-733.

[24]

Hokstad K, Tanavasuu-Milkeviciene K. Temperature prediction by multigeophysical inversion: application to the iddp-2 well at Reykjanes. Iceland. Trans Geotherm Resour Counc. 2017;41:1141-1152.

[25]

Holmes RC, Fournier A. Machine learning-enhanced play fairway analysis for uncertainty characterization and decision support in geothermal exploration. Energies. 2022;15:1929.

[26]

International Renewable Energy Agency. Geothermal, international renewable energy agency 2023. Accessed March 18, 2023. https://www.irena.org/Energy-Transition/Technology/Geothermal-energy

[27]

Ishitsuka K, Kobayashi Y, Watanabe N, et al. Bayesian and neural network approaches to estimate deep temperature distribution for assessing a supercritical geothermal system: evaluation using a numerical model. Nat Resour Res. 2021;30:3289-3314.

[28]

Ishitsuka K, Mogi T, Sugano K, Yamaya Y, Uchida T, Kajiwara T. Resistivity-based temperature estimation of the Kakkonda Geothermal Field, Japan, using a neural network and neural kriging. IEEE Geosci Remote Sens Lett. 2018;15:1154-1158.

[29]

Ishitsuka K, Yamaya Y, Watanabe N, et al. Constraining temperature at depth of the Kakkonda Geothermal Field, Japan, using Bayesian rock-physics modelling of resistivity: implications to the deep hydrothermal system. Geothermics. 2022;100:102316.

[30]

Koike K, Matsuda S, Gu B. Evaluation of interpolation accuracy of neural kriging with application to temperature-distribution analysis. Math Geol. 2001;33:421-448.

[31]

Liu R, Misra S. Machine Learning Assisted Recovery of Subsurface Energy: A Review. ESS Open Archive; 2022.

[32]

Maryadi M, Mizunaga H. Subsurface temperature estimation in a geothermal field based on audio-frequency magnetotelluric data. Explor Geophys. 2022;53:275-288.

[33]

Matzel E, Magana-Zook S, Mellors RJ, Pullimmanappallil S, Gasperikova E. Looking for permeability on combined 3d seismic and magnetotelluric datasets with machine learning. In Proceedings of the 46th Workshop on Geothermal Reservoir Engineering. Stanford University; 2021:5. https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2021/Matzel.pdf

[34]

Meshalkin Y, Shakirov A, Popov E, Koroteev D, Gurbatova I. Robust well-log based determination of rock thermal conductivity through machine learning. Geophys J Int. 2020;222:978-988.

[35]

Moraga J, Duzgun HS, Cavur M, Soydan H. The geothermal artificial intelligence for geothermal exploration. Renew Energy. 2022;192:134-149.

[36]

Mudunuru MK, Vesselinov VV, Ahmmed B. GeoThermalCloud: machine learning for geothermal resource exploration. J Mach Learn Model Comp. 2022;3:57-72.

[37]

Muther T, Syed FI, Lancaster AT, Salsabila FD, Dahaghi AK, Negahban S. Geothermal 4.0: AI-enabled geothermal reservoir development-current status, potentials, limitations, and ways forward. Geothermics. 2022;100:102348.

[38]

Namaswa S, Githiri J, Mariita N, K’Orowe M, Njiru N. Application of data-driven discovery machine learning algorithms in predicting geothermal reservoir temperature from geophysical resistivity method. Trans Mach Learn Artif Intell. 2021;9:1-12.

[39]

Okoroafor ER, Smith CM, Ochie KI, Nwosu CJ, Gudmundsdottir H, (Jabs) Aljubran M. Machine learning in subsurface geothermal energy: two decades in review. Geothermics. 2022;102:102401.

[40]

Open EI. Linked energy information on hundreds of topics crowdsourced from industry and government agencies; 2023. Accessed March 18, 2023. https://openei.org/wiki/Main_Page

[41]

Pandey SN, Vishal V, Chaudhuri A. Geothermal reservoir modeling in a coupled thermo-hydro-mechanical-chemical approach: a review. Earth Sci Rev. 2018;185:1157-1169.

[42]

Pérez-Zárate D, Santoyo E, Acevedo-Anicasio A, Díaz-González L, García-López C. Evaluation of artificial neural networks for the prediction of deep reservoir temperatures using the gas-phase composition of geothermal fluids. Comput Geosci. 2019;129:49-68.

[43]

Perozzi L, Guglielmetti L, Moscariello A. Geothermal reservoir characterization using seismic and machine learning: a case study from the Geneva Basin. In Proceedings of the World Geothermal Congress, Reykjavik, Iceland. 2021:8. https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2020/32007.pdf

[44]

Porkhial S, Salehpour M, Ashraf H, Jamali A. Modeling and prediction of geothermal reservoir temperature behavior using evolutionary design of neural networks. Geothermics. 2015;53:320-327.

[45]

Sadeghi B, Khalajmasoumi M. A futuristic review for evaluation of geothermal potentials using fuzzy logic and binary index overlay in GIS environment. Renew Sustain Energy Rev. 2015;43:818-831.

[46]

Serpen G, Palabiyik Y, Serpen U. An artificial neural network model for Na/K geothermometer. In Proceedings of the 34th Workshop on Geothermal Reservoir Engineering. Stanford University; 2009:12. https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2009/serpen.pdf

[47]

Shahdi A, Lee S, Karpatne A, Nojabaei B. Exploratory analysis of machine learning methods in predicting subsurface temperature and geothermal gradient of Northeastern United States. Geothermal Energy. 2021;9:18.

[48]

Shakirov A, Chekhonin E, Popov Y, et al. Rock thermal properties from well-logging data accounting for thermal anisotropy. Geothermics. 2021;92:102059.

[49]

Siratovich PA, Blair A, Gooml WJ. Geothermal operational optimization with machine learning. GRC Trans. 2020;44:955-964. https://cdn.prod.website-files.com/63db257f39a0ee46cb665e15/64582b4633d41e090d50dfc2_1034265%20GRC%202020%20Siratovich.pdf

[50]

Smith CM, Faulds JE, Brown S, et al. Characterizing signatures of geothermal exploration data with machine learning techniques: an application to the Nevada play fairway analysis. In Proceedings of the 46th Workshop on Geothermal Reservoir Engineering. Stanford University of California; 2021:13. https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2021/Smith1.pdf

[51]

Smith CM, Faulds JE, Brown S, et al. Exploratory analysis of machine learning techniques in the Nevada geothermal play fairway analysis. Geothermics. 2023;111:102693.

[52]

Spichak VV. Estimating temperature distributions in geothermal areas using a neuronet approach. Geothermics. 2006;35:181-197.

[53]

Spichak VV, Geiermann J, Zakharova OK, Calcagno P, Genter A, Schill E. Deep temperature extrapolation in the Soultz-sous-Forêts geothermal area using magnetotelluric data. In Expanded Abstracts, 35th Workshop on Geothermal Reservoir Engineering. Stanford University; 2010:9. https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2010/spichak.pdf

[54]

Spichak VV, Zakharova OK. The application of an indirect electromagnetic geothermometer to temperature extrapolation in depth. Geophys Prospect. 2009a;57:653-664.

[55]

Spichak VV, Zakharova OK. Electromagnetic temperature extrapolation in depth in the Hengill geothermal area, Iceland. In Expanded Abstracts, 34th Workshop on Geothermal Reservoir Engineering. Stanford University; 2009b.

[56]

Spichak VV, Zakharova OK, Rybin AK. Methodology of the indirect temperature estimation basing on magnetotelluric data: Northern Tien shan case study. J Appl Geophys. 2011;73:164-173.

[57]

Sutarmin S, Daud Y. Subsurface temperature prediction in geothermal field with neural network using 3D MT data inversion and borehole temperature data. In AIP Conference of Proceedings. AIP Publishing; 2021:2320.

[58]

The World Bank. International bank for reconstruction and development. Project appraisal document. Report no: pad2932. Energy & Extractives Global Practice, East Asia and Pacific Region. Accessed March 10, 2023. https://documents1.worldbank.org/curated/pt/972941569608786496/pdf/Indonesia-Geothermal-Resource-Risk-Mitigation-Project.pdf

[59]

Vesselinov VV, Ahmmed B, Frash L, Mudunuru MK. GeoThermalCloud: machine learning for discovery, exploration, and development of hidden geothermal resources. In Proceedings, 47th Workshop on Geothermal Reservoir Engineering. 2022;2022. Stanford University.

[60]

Vesselinov VV, Ahmmed B, Mudunuru MM, Karra S, Middleton RS. Hidden Geothermal Signatures of the Southwest New Mexico. In World Geothermal Congress, Los Alamos National Laboratory; 2020. https://www.osti.gov/servlets/purl/1673337

[61]

Wang L, Yu Z, Zhang Y, Yao P. Review of machine learning methods applied to enhanced geothermal systems. Environ Earth Sci. 2023;82:69.

[62]

Xiong Y, Zhu M, Li Y, Huang K, Chen Y, Liao J. Recognition of geothermal surface manifestations: a comparison of machine learning and deep learning. Energies. 2022;15:2913.

[63]

Yang F, Zhu R, Zhou X, et al. Artificial neural network based prediction of reservoir temperature: a case study of Lindian geothermal field, Songliao Basin, NE China. Geothermics. 2022;106:102547.

[64]

Zheng Y, Li J, Lin R, Hu H, Gao K, Huang L. Physics-guided machine learning approach to characterizing small-scale fractures in geothermal fields. In Proceedings, 46th Workshop on Geothermal Reservoir Engineering. Stanford University; 2021:9. https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2021/Zheng.pdf

RIGHTS & PERMISSIONS

2024 The Author(s). Deep Underground Science and Engineering published by John Wiley & Sons Australia, Ltd on behalf of China University of Mining and Technology.

AI Summary AI Mindmap
PDF

1284

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/