Genesis and reservoir preservation mechanism of 10 000-m ultradeep dolomite in Chinese craton basin

Guangyou Zhu , Xi Li , Bin Zhao , Hua Jiang , Yinghui Cao , Yan Zhang , Weiyan Chen , Tingting Li , Jiakai Hou

Deep Underground Science and Engineering ›› 2025, Vol. 4 ›› Issue (3) : 354 -381.

PDF
Deep Underground Science and Engineering ›› 2025, Vol. 4 ›› Issue (3) : 354 -381. DOI: 10.1002/dug2.12112
REVIEW ARTICLE

Genesis and reservoir preservation mechanism of 10 000-m ultradeep dolomite in Chinese craton basin

Author information +
History +
PDF

Abstract

The 10 000-m ultradeep dolomite reservoir holds significant potential as a successor field for future oil and gas exploration in China's marine craton basin. However, major challenges such as the genesis of dolomite, the formation time of high-quality reservoirs, and the preservation mechanism of reservoirs have always limited exploration decision-making. This research systematically elaborates on the genesis and reservoir-forming mechanisms of Sinian–Cambrian dolomite, discussing the ancient marine environment where microorganisms and dolomite develop, which controls the formation of large-scale Precambrian–Cambrian dolomite. The periodic changes in Mg isotopes and sedimentary cycles show that the thick-layered dolomite is the result of different dolomitization processes superimposed on a spatiotemporal scale. Lattice defects and dolomite embryos can promote dolomitization. By simulating the dissolution of typical calcite and dolomite crystal faces in different solution systems and calculating their molecular weights, the essence of heterogeneous dissolution and pore formation on typical calcite and dolomite crystal faces was revealed, and the mechanism of dolomitization was also demonstrated. The properties of calcite and dolomite (104)/(110) grain boundaries and their dissolution mechanism in carbonate solution were revealed, showing the limiting factors of the dolomitization process and the preservation mechanism of deep buried dolomite reservoirs. The in situ laser U-Pb isotope dating technique has demonstrated the timing of dolomitization and pore formation in ancient carbonate rocks. This research also proposed that dolomitization occurred during the quasi-contemporaneous or shallow-burial periods within 50 Ma after deposition and pores formed during the quasi-contemporaneous to the early diagenetic periods. And it was clear that the quasi-contemporaneous dolomitization was the key period for reservoir formation. The systematic characterization of the spatial distribution of the deepest dolomite reservoirs in multiple sets of the Sinian and the Cambrian in the Chinese craton basins provides an important basis for the distribution prediction of large-scale dolomite reservoirs. It clarifies the targets for oil and gas exploration at depths over 10 000 m. The research on dolomite in this study will greatly promote China's ultradeep oil and gas exploration and lead the Chinese petroleum industry into a new era of 10 000-m deep oil exploration.

Keywords

10 000-m deep / Chinese craton basin / dolomite genesis / oil and gas exploration potential / reservoir distribution / reservoir preservation

Cite this article

Download citation ▾
Guangyou Zhu, Xi Li, Bin Zhao, Hua Jiang, Yinghui Cao, Yan Zhang, Weiyan Chen, Tingting Li, Jiakai Hou. Genesis and reservoir preservation mechanism of 10 000-m ultradeep dolomite in Chinese craton basin. Deep Underground Science and Engineering, 2025, 4(3): 354-381 DOI:10.1002/dug2.12112

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahm ASC, Maloof AC, Macdonald FA, et al. An early diagenetic deglacial origin for basal Ediacaran “cap dolostones”. Earth Planet Sci Lett. 2019; 506: 292-307.

[2]

Amthor JE, Grotzinger JP, Schröder S, et al. Extinction of Cloudina and Namacalathus at the Precambrian–Cambrian boundary in Oman. Geology. 2003; 31(5): 431-434.

[3]

Bialik OM, Wang X, Zhao S, Waldmann ND, Frank R, Li W. Mg isotope response to dolomitization in hinterland-attached carbonate platforms: outlook of δ26Mg as a tracer of basin restriction and seawater Mg/Ca ratio. Geochim Cosmochim Acta. 2018; 235: 189-207.

[4]

Bontognali TRR, McKenzie JA, Warthmann RJ, Vasconcelos C. Microbially influenced formation of Mg-calcite and Ca-dolomite in the presence of exopolymeric substances produced by sulphate-reducing bacteria. Terra Nova. 2014; 26(1): 72-77.

[5]

Bontognali TRR, Vasconcelos C, Warthmann RJ, Lundberg R, McKenzie JA. Dolomite-mediating bacterium isolated from the sabkha of Abu Dhabi (UAE). Terra Nova. 2012; 24(3): 248-254.

[6]

Bouissonnié A, Daval D, Marinoni M, Ackerer P. From mixed flow reactor to column experiments and modeling: upscaling of calcite dissolution rate. Chem Geol. 2018; 487: 63-75.

[7]

Brasier MD. Background to the Cambrian explosion. J Geol Soc. 1992; 149(4): 585-587.

[8]

Buatois LA, Mángano MG, Olea RA, Wilson MA. Decoupled evolution of soft and hard substrate communities during the Cambrian explosion and Great Ordovician Biodiversification Event. Proc Natl Acad Sci USA. 2016; 113(25): 6945-6948.

[9]

Cai WK, Liu JH, Zhou CH, Keeling J, Glasmacher UA. Structure, genesis and resources efficiency of dolomite: new insights and remaining enigmas. Chem Geol2021; 573:120191.

[10]

Carder EA, Galy A, McKenzie JA, Vasconcelos C, Elderfield HE. Magnesium isotopes in bacterial dolomites: a novel approach to the dolomite problem. Geochim Cosmochim Acta Suppl. 2005a; 69(10): A213.

[11]

Carder EA, Galy A, McKenzie JA, Vasconcelos C, Elderfield H. Magnesium isotopic evidence for widespread microbial dolomite precipitation in the geological record. In: American Geophysical Union Fall Meeting Abstracts, V41F. 2005b: 1527.

[12]

Chang B, Li C, Liu D, et al. Massive formation of early diagenetic dolomite in the Ediacaran ocean: constraints on the “dolomite problem”. Proc Natl Acad Sci USA. 2020; 117(25): 14005-14014.

[13]

Chen D, Qian Y. Deep or super-deep dolostone reservoirs: opportunities and challenges. J Palaeogeogr. 2017; 19(2): 187-196.

[14]

Chen Y, Shen A, Pan L, Zhang J, Wang X. Features, origin and distribution of microbial dolomite reservoirs: a case study of 4th Member of Sinian Dengying Formation in Sichuan Basin, SW China. Pet Explor Dev. 2017; 44(5): 745-757.

[15]

Chen ZQ, Tu C, Pei Y, et al. Biosedimentological features of major microbe-metazoan transitions (MMTs) from Precambrian to Cenozoic. Earth Sci Rev. 2019; 189: 21-50.

[16]

Chen ZQ, Zhao L, Wang X, Luo M, Guo Z. Great Paleozoic–Mesozoic biotic turnings and paleontological education in China: a tribute to the achievements of Professor Zunyi Yang. J Earth Sci. 2018; 29: 721-732.

[17]

Chen ZQ, Zhou C, Stanley GJ. Biosedimentary records of China from the Precambrian to present. Palaeogeogr Palaeoclimatol Palaeoecol. 2017; 474: 1-6.

[18]

Chu Z, Wang M, Liu D, et al. Re-Os dating of gas accumulation in Upper Ediacaran to Lower Cambrian dolostone reservoirs, Central Sichuan Basin, China. Chem Geol. 2023; 620:121342.

[19]

Cozzi A, Rea G, Craig J. From global geology to hydrocarbon exploration: Ediacaran–Early Cambrian petroleum plays of India, Pakistan and Oman. Geol Soc Spec Publ. 2012; 366(1): 131-162.

[20]

Davies GR, Smith LB. Structurally controlled hydrothermal dolomite reservoir facies: an overview. Am Assoc Pet Geol Bull. 2006; 90(11): 1641-1690.

[21]

Davis KJ, Dove PM, De Yoreo JJ. The role of Mg2+ as an impurity in calcite growth. Science. 2000; 290(5494): 1134-1137.

[22]

Debure M, Lerouge C, Warmont F, et al. On the interaction between calcite and dolomite: insights from gas and aqueous geochemistry and mineralogical characterization. Chem Geol. 2021; 559:119921.

[23]

Du JH, Wang ZC, Zou CN, et al. Geologic Theory and Exploration Practice of Ancient Large Carbonates Gas Field. Petroleum Industry Press; 2015.

[24]

Elisha B, Nuriel P, Kylander-Clark A, Weinberger R. Towards in situ U-Pb dating of dolomite. Geochronology. 2021; 3(1): 337-349.

[25]

Elstnerová P, Friák M, Fabritius HO, et al. Ab initio study of thermodynamic, structural, and elastic properties of Mg-substituted crystalline calcite. Acta Biomater. 2010; 6(12): 4506-4512.

[26]

Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science. 2011; 334(6059): 1091-1097.

[27]

Etschmann B, Brugger J, Pearce MA, et al. Grain boundaries as microreactors during reactive fluid flow: experimental dolomitization of a calcite marble. Contrib Mineral Petrol. 2014; 168: 1045.

[28]

Fairchild IJ, Kennedy MJ. Neoproterozoic glaciation in the Earth System. J Geol Soc. 2007; 164(5): 895-921.

[29]

Fan J, Shen S, Erwin DH, et al. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science. 2020; 367(6475): 272-277.

[30]

Fan M, Jiang X, Liu W, Zhang J, Chen H. Dissolution of carbonate rocks in CO2 solution under the different temperatures. Acta Sedimentol Sin. 2007; 25(6): 825-830.

[31]

Fan M, Xu L, Liu W, et al. Experiment geology research of carbonate dolomitization. Pet Geol Exp. 2012; 34(6): 635-640.

[32]

Fantle MS, Barnes BD, Lau KV. The role of diagenesis in shaping the geochemistry of the marine carbonate record. Annu Rev Earth Planet Sci. 2020; 48: 549-583.

[33]

Fantle MS, Higgins J. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: implications for the geochemical cycles of Ca and Mg. Geochim Cosmochim Acta. 2014; 142: 458-481.

[34]

Feng Z, Peng Y, Jin Z, et al. Lithofacies palaeogeography of Cambrian in South China. J Palaeogeogr. 2001; 3(1): 1-14.

[35]

Fenter P, Sturchio NC. Calcite (104)–water interface structure, revisited. Geochim Cosmochim Acta. 2012; 97: 58-69.

[36]

Ferry JM, Passey BH, Vasconcelos C, Eiler JM. Formation of dolomite at 40–80°C in the Latemar carbonate buildup, Dolomites, Italy, from clumped isotope thermometry. Geology. 2011; 39(6): 571-574.

[37]

Gaines AM. Dolomitization Kinetics: Recent Experimental Studies, Early Life on Earth. Columbia University Press; 1980: 426-438.

[38]

Gao Z, Li C, Sun W, Hu Y. Anisotropic surface properties of calcite: a consideration of surface broken bonds. Colloids Surf A. 2017; 520: 53-61.

[39]

Gasparrini M, Morad D, Mangenot X, et al. Dolomite recrystallization revealed by Δ47/U-Pb thermochronometry in the Upper Jurassic Arab Formation, United Arab Emirates. Geology. 2023; 51(5): 471-475.

[40]

Geske A, Goldstein RH, Mavromatis V, et al. The magnesium isotope (δ26Mg) signature of dolomites. Geochim Cosmochim Acta. 2015; 149: 131-151.

[41]

Geske A, Lokier S, Dietzel M, Richter DK, Buhl D, Immenhauser A. Magnesium isotope composition of sabkha porewater and related (sub-) recent stoichiometric dolomites, Abu Dhabi (UAE). Chem Geol2015; 393: 112-124.

[42]

Geske A, Zorlu J, Richter DK, Buhl D, Niedermayr A, Immenhauser A. Impact of diagenesis and low grade metamorphosis on isotope (δ26Mg, δ13C, δ18O and 87Sr/86Sr) and elemental (Ca, Mg, Mn, Fe and Sr) signatures of Triassic sabkha dolomites. Chem Geol. 2012; 332-333: 45-64.

[43]

Godeau N, Deschamps P, Guihou A, et al. U-Pb dating of calcite cement and diagenetic history in microporous carbonate reservoirs: case of the Urgonian Limestone, France. Geology. 2018; 46(3): 247-250.

[44]

Gong Z, Huang Q. Field corrosion rate tests on carbonate rocks. Carsolog Sin. 1984; 3: 17-26.

[45]

Guo X, Hu D, Li Y, et al. Theoretical progress and key technologies of onshore ultra-deep oil/gas exploration. Engineering. 2019; 5(3): 458-470.

[46]

Halverson GP, Hoffman PF, Schrag DP, Maloof AC, Rice AHN. Toward a Neoproterozoic composite carbon-isotope record. Geol Soc Am Bull. 2005; 117(9/10): 1181-1207.

[47]

Heberling F, Trainor TP, Lützenkirchen J, Eng P, Denecke MA, Bosbach D. Corrigendum to “structure and reactivity of the calcite–water interface” [J. Colloid Interface Sci. 354 (2011) 843–857]. J Colloid Interface Sci. 2013; 404: 230.

[48]

Higgins JA, Blättler CL, Lundstrom EA, et al. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochim Cosmochim Acta. 2018; 220: 512-534.

[49]

Higgins JA, Schrag DP. Constraining magnesium cycling in marine sediments using magnesium isotopes. Geochim Cosmochim Acta. 2010; 74(17): 5039-5053.

[50]

Hoefs J. Isotope fractionation processes of selected elements. In: Stable Isotope Geochemistry. Springer; 2015: 35-93.

[51]

Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP. A Neoproterozoic snowball earth. Science. 1998; 281(5381): 1342-1346.

[52]

Hong M, Xu J, Teng HH. Evolution of calcite growth morphology in the presence of magnesium: implications for the dolomite problem. Geochim Cosmochim Acta2016; 172: 55-64.

[53]

Hu A, Shen A, Liang F, et al. Application of laser in-situ U-Pb dating to reconstruct the reservoir porosity evolution in the Cambrian Xiaoerbulake Formation, Tarim Basin. Oil Gas Geol. 2020; 41(1): 37-49.

[54]

Hu Z, Hu W, Liu C, Sun F, Liu Y, Li W. Conservative behavior of Mg isotopes in massive dolostones: from diagenesis to hydrothermal reworking. Sediment Geol. 2019; 381: 65-75.

[55]

Hu Z, Hu W, Wang X, et al. Resetting of Mg isotopes between calcite and dolomite during burial metamorphism: outlook of Mg isotopes as geothermometer and seawater proxy. Geochim Cosmochim Acta. 2017; 208: 24-40.

[56]

Huang C, Wang H, Yang JH, et al. SA01—a proposed zircon reference material for microbeam U-Pb age and Hf-O isotopic determination. Geostand Geoanal Res. 2020; 44(1): 103-123.

[57]

Huang KJ, Shen B, Lang XG, et al. Magnesium isotopic compositions of the Mesoproterozoic dolostones: implications for Mg isotopic systematics of marine carbonates. Geochim Cosmochim Acta. 2015; 164: 333-351.

[58]

Huang S, Jiang H, Wang T, et al. Accumulation conditions and favorable exploration zones for natural gas in 8000 meters marine ultra-deepstrata in the Sichuan basin. Acta Geol Sin. 2023; 97(5): 1544-1560.

[59]

Ishikawa T, Ueno Y, Shu D, et al. The δ13C excursions spanning the Cambrian explosion to the Canglangpuian mass extinction in the Three Gorges area, South China. Gondwana Res. 2014; 25(3): 1045-1056.

[60]

Ivanishin IB, Nasr-El-Din HA. Effect of calcium content on the dissolution rate of dolomites in HCl acid. J Pet Sci Eng. 2021; 202:108463.

[61]

Jacobson AD, Zhang Z, Lundstrom C, Huang F. Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota. Earth Planet Sci Lett. 2010; 297(3/4): 446-452.

[62]

Jiang L, Cai C, Worden RH, et al. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north-west China. Sedimentology. 2016; 63(7): 2130-2157.

[63]

Jiang X, Wang S, Fan M, Zhang J, Guan H, Bao Y. Study of simulation experiment for carbonate rocks dissolution in burial diagenetic environment. Pet Geol Exp. 2008; 30(6): 643-646.

[64]

Jing Y, Chen ZQ, Tu C. A late Paleoproterozoic microfossil community from siliceous granules, Dahongyu Formation, North China. Precambrian Res. 2022; 377:106723.

[65]

Jiu B, Huang W, Mu N, He M. Effect of hydrothermal fluids on the ultra-deep Ordovician carbonate rocks in Tarim Basin, China. J Pet Sci Eng. 2020; 194:107445.

[66]

Kaczmarek SE, Sibley DF. On the evolution of dolomite stoichiometry and cation order during high-temperature synthesis experiments: an alternative model for the geochemical evolution of natural dolomites. Sediment Geol. 2011; 240(1/2): 30-40.

[67]

Kaczmarek SE, Thornton BP. The effect of temperature on stoichiometry, cation ordering, and reaction rate in high-temperature dolomitization experiments. Chem Geol. 2017; 468: 32-41.

[68]

Kell-Duivestein IJ, Baldermann A, Mavromatis V, Dietzel M. Controls of temperature, alkalinity and calcium carbonate reactant on the evolution of dolomite and magnesite stoichiometry and dolomite cation ordering degree: an experimental approach. Chem Geol. 2019; 529:119292.

[69]

Kelts K, McKenzie J. A comparison of anoxic dolomite from deep-sea sediments: Quaternary Gulf of California and Messinian Tripoli Formation of Sicily. In: Garrison RE, Kastner M, Zenger DH, eds. Dolomites of the Monterey Formation and Other Organic-Rich Units. Vol 41. Society of Exonomic Paleontologists and Mineralogists; 1984: 119-140.

[70]

Knoll AH, Carroll SB. Early animal evolution: emerging views from comparative biology and geology. Science. 1999; 284(5423): 2129-2137.

[71]

Koeshidayatullah A, Corlett H, Stacey J, Swart PK, Boyce A, Hollis C. Origin and evolution of fault-controlled hydrothermal dolomitization fronts: a new insight. Earth Planet Sci Lett. 2020; 541:116291.

[72]

Lai J, Liu S, Xin Y, et al. Geological–petrophysical insights in the deep Cambrian dolostone reservoirs in Tarim Basin, China. Am Assoc Pet Geol Bull. 2021; 105(11): 2263-2296.

[73]

Lan JH, Chai ZF, Shi WQ. A combined DFT and molecular dynamics study of U (VI)/calcite interaction in aqueous solution. Sci Bull. 2017; 62(15): 1064-1073.

[74]

Land LS. Failure to precipitate dolomite at 25°C from dilute solution despite 1000-fold oversaturation after 32 years. Aquat Geochem. 1998; 4(3/4): 361-368.

[75]

Lardge JS, Duffy DM, Gillan MJ. Investigation of the interaction of water with the calcite (10.4) surface using ab initio simulation. J Phys Chem C. 2009; 113(17): 7207-7212.

[76]

Lavoie D, Jackson S, Girard I. Magnesium isotopes in high-temperature saddle dolomite cements in the lower Paleozoic of Canada. Sediment Geol. 2014; 305: 58-68.

[77]

Li B, Peng J, Xia Q, Yang S, Hao R. Dolomitization model of Lower Qiulitage Group in Tabei Area. J Jilin Univ, Earth Sci Ed. 2019; 49(2): 310-322.

[78]

Li F, Deng J, Kershaw S, et al. Microbialite development through the Ediacaran–Cambrian transition in China: distribution, characteristics, and paleoceanographic implications. Glob Planet Change. 2021; 205:103586.

[79]

Li FB, Teng FZ, Chen JT, et al. Constraining ribbon rock dolomitization by Mg isotopes: implications for the ‘dolomite problem’. Chem Geol. 2016; 445: 208-220.

[80]

Li J, Tao X, Bai B, et al. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China. Pet Explor Dev. 2021; 48(1): 60-79.

[81]

Li W, Beard BL, Li C, Xu H, Johnson CM. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochim Cosmochim Acta. 2015; 157: 164-181.

[82]

Li W, Bialik OM, Wang X, et al. Effects of early diagenesis on Mg isotopes in dolomite: the roles of Mn (IV)-reduction and recrystallization. Geochim Cosmochim Acta. 2019; 250: 1-17.

[83]

Li W, Fan R, Jia P, et al. Sequence stratigraphy and lithofacies paleogeography of the middle–upper Cambrian Xixiangchi Group in the Sichuan Basin and its adjacent area, SW China. Pet Explor Dev. 2019; 46(2): 238-252.

[84]

Li W, Yu H, Deng H. Stratigraphic division and correlation and sedimentary characteristics of the Cambrian in central-southern Sichuan Basin. Pet Explor Dev. 2012; 39(6): 725-735.

[85]

Li X, Zhu G, Chen Z, et al. Mg isotopic geochemistry and origin of Early Ordovician dolomite and implications for the formation of high-quality reservoir in the Tabei area, Tarim Basin, NW China. J Asian Earth Sci. 2023; 255:105757.

[86]

Li X, Zhu G, Li T, et al. Genesis of dolostone of the Yingshan Formation in Tarim Basin and Mg isotope evidence. Earth Sci Front. 2023a; 30(4): 352.

[87]

Li X, Zhu G, Li T, et al. Conservative behavior of Mg isotopes in dolomite during diagenesis and hydrothermal alteration: a case study in the Lower Cambrian Qiulitage Formation, Gucheng area, Tarim Basin. Appl Geochem. 2023b; 148:105540.

[88]

Li X, Zhu G, Li T, Zhou L, Wu Y, Tian L. Mg isotopic characteristics and genetic mechanism of dolomite of Cambrian Xixiangchi Formation in central Sichuan Basin. Acta Petrol Sin. 2022; 43(11): 1585.

[89]

Li Y, He D, Wen Z. Palaeogeography and tectonic-depositional environment evolution of the Late Sinian in Sichuan Basin and adjacent areas. J Palaeogeogr. 2013; 15(2): 231-245.

[90]

Lippmann F. Stable and metastable solubility diagrams for the system CaCO3-MgCO3-H2O at ordinary temperature. Bull Minéral. 1982; 105: 273-279.

[91]

Liu D, Cai C, Hu Y, Peng Y, Jiang L. Multistage dolomitization and formation of ultra-deep lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China. Mar Pet Geol. 2021; 123:104752.

[92]

Liu D, Xu Y, Papineau D, et al. Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals. Geochim Cosmochim Acta. 2019; 247: 83-95.

[93]

Liu D, Yu N, Papineau D, et al. The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation: results from Lake Jibuhulangtu Nuur, Inner Mongolia, China. Geochim Cosmochim Acta. 2019; 263: 31-49.

[94]

Liu J, Li Z, Yan M, Swart PK, Yang L, Lu C. Diagenetic fluid evolution of dolomite from the Lower Ordovician in Tazhong area, Tarim Basin: clumped isotopic evidence. Oil Gas Geol. 2020; 41(1): 68-82.

[95]

Liu XM, Teng FZ, Rudnick RL, McDonough WF, Cummings ML. Massive magnesium depletion and isotope fractionation in weathered basalts. Geochim Cosmochim Acta. 2014; 135: 336-349.

[96]

Lttge A, Winkler U, Lasaga AC. Interferometric study of the dolomite dissolution: a new conceptual model for mineral dissolution. Geochim Cosmochim Acta. 2003; 67(6): 1099-1116.

[97]

Lucia FJ. Origin and petrophysics of dolostone pore space. Geol Soc Spec Publ. 2004; 235(1): 141-155.

[98]

Lund K, Fogler HS, McCune CC. Acidization—I. The dissolution of dolomite in hydrochloric acid. Chem Eng Sci. 1973; 28(3): 691-700.

[99]

Luquot L, Gouze P, Niemi A, Bensabat J, Carrera J. CO2-rich brine percolation experiments through Heletz reservoir rock samples (Israel): role of the flow rate and brine composition. Int J Greenhouse Gas Control. 2016; 48: 44-58.

[100]

Luttge A, Arvidson RS, Fischer C. A stochastic treatment of crystal dissolution kinetics. Elements. 2013; 9(3): 183-188.

[101]

Ma Y, Cai X, Li H, et al. New insights into the formation mechanism of deep-ultra-deep carbonate reservoirs and the direction of oil and gas exploration in extra-deep strata. Earth Sci Front. 2023; 30(6): 1-13.

[102]

Machel HG. Concepts and models of dolomitization: a critical reappraisal. Geol Soc Spec Publ. 2004; 235(1): 7-63.

[103]

Mángano MG, Buatois LA. Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: evolutionary and geobiological feedbacks. Proc R Soc Ser B. 2014; 281(1780):20140038.

[104]

Mángano GM, Buatois LA. The Cambrian revolutions: trace-fossil record, timing, links and geobiological impact. Earth Sci Rev. 2017; 173: 96-108.

[105]

Mavromatis V, Meister P, Oelkers EH. Using stable Mg isotopes to distinguish dolomite formation mechanisms: a case study from the Peru Margin. Chem Geol. 2014; 385: 84-91.

[106]

McKenzie JA, Vasconcelos C. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives. Sedimentology. 2009; 56(1): 205-219.

[107]

Mehmood M, Yaseen M, Khan EU, Khan MJ. Dolomite and dolomitization model: a short review. Int J Hydrol. 2018; 2(5): 549-553.

[108]

Mei M. Brief introduction of “dolostone problem” in sedimentology according to three scientific ideas. J Palaeogeogr Chin Ed. 2012; 14(1): 1-12.

[109]

Millán MI, Machel H, Bernasconi SM. Constraining temperatures of formation and composition of dolomitizing fluids in the Upper Devonian Nisku Formation (Alberta, Canada) with clumped isotopes. J Sediment Res. 2016; 86(1): 107-112.

[110]

Morse JW, Arvidson RS, Lüttge A. Calcium carbonate formation and dissolution. Chem Rev. 2007; 107(2): 342-381.

[111]

Murray ST, Arienzo MM, Swart PK. Determining the Δ47 acid fractionation in dolomites. Geochim Cosmochim Acta. 2016; 174: 42-53.

[112]

Murray ST, Higgins JA, Holmden C, Lu C, Swart PK. Geochemical fingerprints of dolomitization in Bahamian carbonates: evidence from sulphur, calcium, magnesium and clumped isotopes. Sedimentology. 2021; 68(1): 1-29.

[113]

Ning M, Lang X, Huang K, et al. Towards understanding the origin of massive dolostones. Earth Planet Sci Lett. 2020; 545:116403.

[114]

Offeddu FG, Cama J, Soler JM, Putnis CV. Direct nanoscale observations of the coupled dissolution of calcite and dolomite and the precipitation of gypsum. Beilstein J Nanotechnol. 2014; 5(1): 1245-1253.

[115]

Peng B, Li Z, Li G, et al. Multiple dolomitization and fluid flow events in the Precambrian Dengying Formation of Sichuan Basin, Southwestern China. Acta Geol Sin Engl Ed. 2018; 92(1): 311-332.

[116]

Peng Y, Shen B, Lang XG, et al. Constraining dolomitization by Mg isotopes: a case study from partially dolomitized limestones of the middle Cambrian Xuzhuang Formation, North China. Geochem Geophys Geosyst. 2016; 17(3): 1109-1129.

[117]

Perez-Fernandez A, Berninger UN, Mavromatis V, Pogge von Strandmann PAE, Oelkers EH. Ca and Mg isotope fractionation during the stoichiometric dissolution of dolomite at temperatures from 51 to 126°C and 5 bars CO2 pressure. Chem Geol. 2017; 467: 76-88.

[118]

Petrash DA, Bialik OM, Bontognali TRR, et al. Microbially catalyzed dolomite formation: from near-surface to burial. Earth Sci Rev. 2017; 171: 558-582.

[119]

Pinilla C, Blanchard M, Balan E, Natarajan SK, Vuilleumier R, Mauri F. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: insights from path integral molecular dynamics. Geochim Cosmochim Acta. 2015; 163: 126-139.

[120]

Pinto H, Haapasilta V, Lokhandwala M, Öberg S, Foster AS. Adsorption and migration of single metal atoms on the calcite (10.4) surface. J Phys Condens Matter. 2017; 29(13):135001.

[121]

Pokrovsky BG, Mavromatis V, Pokrovsky OS. Co-variation of Mg and C isotopes in late Precambrian carbonates of the Siberian Platform: a new tool for tracing the change in weathering regime? Chem Geol. 2011; 290(1/2): 67-74.

[122]

Pokrovsky OS, Golubev SV, Schott J, Castillo A. Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO2: new constraints on CO2 sequestration in sedimentary basins. Chem Geol. 2009; 265(1/2): 20-32.

[123]

Qian Y, Wu H, Zhou L, et al. Characteristic and origin of dolomites in the third and fourth members of Leikoupo Formation of the Middle Triassic in NW Sichuan Basin: constraints in mineralogical, petrographic and geochemical data. Acta Petrol Sin. 2019; 35(4): 1161-1180.

[124]

Riechelmann S, Mavromatis V, Buhl D, Dietzel M, Immenhauser A. Controls on formation and alteration of early diagenetic dolomite: a multi-proxy δ44/40Ca, δ26Mg, δ18O and δ13C approach. Geochim Cosmochim Acta. 2020; 283: 167-183.

[125]

Roberts JA, Bennett PC, González LA, Macpherson GL, Milliken KL. Microbial precipitation of dolomite in methanogenic groundwater. Geology. 2004; 32(4): 277-280.

[126]

Roberts JA, Kenward PA, Fowle DA, Goldstein RH, González LA, Moore DS. Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proc Natl Acad Sci USA. 2013; 110(36): 14540-14545.

[127]

Rodriguez-Blanco JD, Shaw S, Benning LG. A route for the direct crystallization of dolomite. Am Mineral2015; 100(5/6): 1172-1181.

[128]

Ruiz-Agudo E, Kowacz M, Putnis CV, Putnis A. The role of background electrolytes on the kinetics and mechanism of calcite dissolution. Geochim Cosmochim Acta. 2010; 74(4): 1256-1267.

[129]

Schusteritsch G, Ishikawa R, Elmaslmane AR, et al. Anataselike grain boundary structure in rutile titanium dioxide. Nano Lett. 2021; 21(7): 2745-2751.

[130]

Shalev N, Bontognali TRR, Vance D. Sabkha dolomite as an archive for the magnesium isotope composition of seawater. Geology. 2021; 49(3): 253-257.

[131]

Shenton BJ, Grossman EL, Passey BH, et al. Clumped isotope thermometry in deeply buried sedimentary carbonates: the effects of bond reordering and recrystallization. Bull Am Assoc Hist Nurs. 2015; 127(7/8): 1036-1051.

[132]

Shou JF, She M, Shen AJ. Experimental simulation of dissolution effect of carbonate rock under deep burial condition. Bull Mineral Petrol Geochem. 2016; 35(5): 860-867+806.

[133]

Sorai M. Effects of calcite dissolution on Caprock's sealing performance under geologic CO2 storage. Transp Porous Media. 2021; 136(2): 569-585.

[134]

Stephenson AE, DeYoreo JJ, Wu L, Wu KJ, Hoyer J, Dove PM. Peptides enhance magnesium signature in calcite: insights into origins of vital effects. Science. 2008; 322(5902): 724-727.

[135]

Stipp SL, Hochella Jr., MF. Structure and bonding environments at the calcite surface as observed with X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED). Geochim Cosmochim Acta. 1991; 55(6): 1723-1736.

[136]

Tang H, Xian H, He H, et al. Kinetics and mechanisms of the interaction between the calcite (10.4) surface and Cu2+-bearing solutions. Sci Total Environ. 2019; 668: 602-616.

[137]

Taylor KC, Al-Ghamdi AH, Nasr-El-Din HA. Measurement of acid reaction rates of a deep dolomitic gas reservoir. J Can Pet Technol. 2004; 43(10): 49-56.

[138]

Teng FZ. Magnesium isotope geochemistry. Rev Mineral Geochem. 2017; 82(1): 219-287.

[139]

Urosevic M, Rodriguez-Navarro C, Putnis CV, Cardell C, Putnis A, Ruiz-Agudo E. In situ nanoscale observations of the dissolution of dolomite cleavage surfaces. Geochim Cosmochim Acta. 2012; 80: 1-13.

[140]

Usdowski E. Reactions and equilibria in the systems CO2-H2O and CaCO3–CO2–H2O (0–50°C)—a review. Neu Jb Mineral Abh. 1982; 144: 148-171.

[141]

Usdowski E. Synthesis of dolomite and magnesite at 60°C in the system Ca2+–Mg2+–CO32−–C122−–H2O. Naturwissenschaften. 1989; 76(8): 374-375.

[142]

Usdowski E. Synthesis of dolomite and geochemical implications. In: Purser B, Tucker M, Zenger D, eds. Dolomites: A Volume in Honour of Dolomieu. Vol 21. International Association of Sedimentologists Special Publication; 1994: 345-360.

[143]

Vasconcelos C, McKenzie JA. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sediment Res. 1997; 67(3): 378-390.

[144]

Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tiens AJ. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature. 1995; 377(6546): 220-222.

[145]

Wanas HA, Sallam E. Abiotically-formed, primary dolomite in the mid-Eocene lacustrine succession at Gebel El-Goza El-Hamra, NE Egypt: an approach to the role of smectitic clays. Sediment Geol. 2016; 343: 132-140.

[146]

Wang K, Hu S, Liu W, et al. The formation mechanism and distribution prediction of the hydrothermal reformed reservoir of the Upper Cambrian in Gucheng area, Tarim Basin, China. Nat Gas Geosci. 2017; 28(6): 939-951.

[147]

Wang P, Wang G, Chen Y, et al. Formation and preservation of ultra-deep high-quality dolomite reservoirs under the coupling of sedimentation and diagenesis in the central Tarim Basin, NW China. Mar Pet Geol. 2023; 149:106084.

[148]

Wang S, LI W, Zhang F, Wang X. Developmental mechanism of advantageous Xixiangchi Group reservoirs in Leshan–Longnüsi palaeohigh. Pet Explor Dev. 2008; 35(2): 170-174.

[149]

Wang X, Hu Z, Li W. Genesis of the Albian dolomite in Levant Basin, East Mediterranean: a case study of the Givat Ye'arim Formation and Soreq Formation near Jerusalem, Israel. Geol J China Univ. 2018; 24(5): 681.

[150]

Wang Z, Jiang H, Wang T, et al. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation. Pet Explor Dev. 2014; 41(3): 338-345.

[151]

Wang Z, Zhao W, Huang S, et al. Structural differentitation of China's small-craton and hydrocarbon enrichment of ancient marine carbonate reservoirs. Acta Geol Sin. 2023; 97: 1-17.

[152]

Warren J. Dolomite: occurrence, evolution and economically important associations. Earth Sci Rev. 2000; 52(1/3): 1-81.

[153]

Warthmann R, Van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology. 2000; 28(12): 1091-1094.

[154]

Wei G, Yang W, Du J, et al. Tectonic features of Gaoshiti–Moxi paleo-uplift and its controls on the formation of a giant gas field, Sichuan Basin, SW China. Pet Explor Dev. 2015; 42(3): 283-292.

[155]

Wei G, Yang W, Xie W, et al. Formation mechanisms, potentials and exploration practices of large lithologic gas reservoirs in and around an intracratonic rift: taking the Sinian–Cambrian of Sichuan Basin as an example. Pet Explor Dev. 2022; 49(3): 530-545.

[156]

Whitaker FF, Xiao Y. Reactive transport modeling of early burial dolomitization of carbonate platforms by geothermal convection. Am Assoc Pet Geol Bull. 2010; 94(6): 889-917.

[157]

Wu L, Zhu G, Yan L, Feng X, Zhang Z. Late Ediacaran to early Cambrian tectonic–sedimentary controls on lower Cambrian black shales in the Tarim Basin, northwest China. Glob Planet Change. 2021; 205:103612.

[158]

Wu S, Chen ZQ, Fang Y, Pei Y, Foster WJ. Benthic pleurocapsales (Cyanobacteria) blooms catalyzing carbonate precipitation and dolomitization following the end-Permian mass extinction. Geophys Res Lett. 2022; 49(24):e2022GL100819.

[159]

Wu ZZ, Zhang XL, Niu ZZ, et al. Identification of Cu (100)/Cu (111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J Am Chem Soc2022; 144(1): 259-269.

[160]

Xiong L, Yao G, Xiong S, et al. Origin of dolomite in the middle Devonian Guanwushan Formation of the western Sichuan Basin, western China. Palaeogeogr Palaeoclim Palaeoecol. 2018; 495: 113-126.

[161]

Yan L, Zhu G, Wang S, et al. Accumulation conditions and favorable areas for natural gas accumulation in the 10 000 meters ultra-deep Sinian–Cambrian in Tarim Basin. Acta Petrol Sin. 2021; 42(11): 1446.

[162]

Yang H, Chen ZQ, Papineau D. Cyanobacterial spheroids and other biosignatures from microdigitate stromatolites of Mesoproterozoic Wumishan Formation in Jixian, North China. Precambrian Res. 2022; 368:106496.

[163]

Yang L, Xu T, Yang B, Tian H, Lei H. Effects of mineral composition and heterogeneity on the reservoir quality evolution with CO2 intrusion. Geochem Geophys Geosyst. 2014; 15(3): 605-618.

[164]

Yang L, Yu L, Liu K, Jia J, Zhu G, Liu Q. Coupled effects of temperature and solution compositions on metasomatic dolomitization: significance and implication for the formation mechanism of carbonate reservoir. J Hydrol. 2022; 604:127199.

[165]

Yang L, Zhu G, Li X, Liu K, Yu L, Gao Z. Influence of crystal nucleus and lattice defects on dolomite growth: geological implications for carbonate reservoirs. Chem Geol. 2022; 587:120631.

[166]

Yang LL, Chen DH, Yu LJ, Liu JL. Effect of atmospheric freshwater leaching on carbonate reservoirs during the Early Diagenetic Stage—acase study of carbonates in the Shunnan Area, Tarim Basin. Bull Mineral Petrol Chem. 2020; 39(4): 843-852+870.

[167]

Yang LL, Li XW, Wei G, et al. Effects of deep alkaline and acidic fluids on reservoir developed in fault belt of saline lacustrine basin. Pet Sci. 2023; 20(2): 776-786.

[168]

Zhang F, Xu H, Konishi H, Roden EE. A relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series. Am Mineral. 2010; 95(11/12): 1650-1656.

[169]

Zhang JY, Liu WH, Jiang XQ, Ma FL, Qing Y. Whether TSR products can meliorate reservoir property of carbonate rock or not: an evidence from experimental geology. Mar Origin Pet Geol. 2008; 13(2): 57-61.

[170]

Zhang L, Algeo TJ, Zhao L, Chen ZQ, Zhang Z, Li C. Linkage of the late Cambrian microbe–metazoan transition (MMT) to shallow-marine oxygenation during the SPICE event. Glob Planet Change. 2022; 213:103798.

[171]

Zhang P, Tweheyo MT, Austad T. Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: impact of the potential determining ions Ca2+, Mg2+, and SO42−. Colloids Surf A. 2007; 301(1/3): 199-208.

[172]

Zhang S, Liu H, Wang M, et al. Pore evolution of shale oil reservoirs in Dongying Sag. Acta Petrol Sin. 2018; 39(7): 754-766.

[173]

Zhang S, Nahi O, Chen L, et al. Magnesium ions direct the solid-state transformation of amorphous calcium carbonate thin films to aragonite, magnesium-calcite, or dolomite. Adv Funct Mater. 2022; 32(25):2201394.

[174]

Zhang TF, Bao ZY, Ma M. Dissolution kinetic characteristics and morphology evolution of oolitic limestone. Acta Sedimentol Sin. 2009; 27(6): 1033-1042.

[175]

Zhang W, Guan P, Jian X, Feng F, Zou C. In situ geochemistry of lower Paleozoic dolomites in the northwestern Tarim Basin: implications for the nature, origin, and evolution of diagenetic fluids. Geochem Geophys Geosyst. 2014; 15(7): 2744-2764.

[176]

Zhang X, Glasser FP, Scrivener KL. Reaction kinetics of dolomite and portlandite. Cem Concr Res. 2014; 66: 11-18.

[177]

Zhao W, Wang Z, Hu S, Pan W, Yang Y, Bao H. Large-scale hydrocarbon accumulation factors and characteristics of marine carbonate reservoirs in three large onshore cratonic basins in China. Acta Petrol Sin. 2012; 33(Supp 2): 1.

[178]

Zhao X, An Z, Qiu X, Hu Z. Redefinition of Meso-Neoproterozoic stratigraphy in the Shennongjia–Kongling area on the northern margin of Yangtze Craton—discussion on the bottom of the Shennongjia Group. South China Geol. 2022; 38(1): 46-55.

[179]

Zheng JF, Li J, Ji HC, Huang LL, Hu AP, Ma MX. Clumped isotope thermometry and its application in dolomite reservoir: a case study of the middle-lower Cambrian in Traim Basin. Mar Origin Pet Geol. 2017; 22(2): 1-7.

[180]

Zheng W, Liu D, Yang S, et al. Transformation of protodolomite to dolomite proceeds under dry-heating conditions. Earth Planet Sci Lett. 2021; 576:117249.

[181]

Zhou M, Luo T, Huff WD, et al. Timing the termination of the Doushantuo negative carbon isotope excursion: evidence from U-Pb ages from the Dengying and Liuchapo formations, South China. Sci Bull. 2018; 63(21): 1431-1438.

[182]

Zhu G, Li X. Progress in genetic types and research methods of dolomite. Acta Petrol Sin. 2023; 44(7): 1167.

[183]

Zhu G, Li X, Li T, et al. Genesis mechanism and Mg isotope difference between the Sinian and Cambrian dolomites in Tarim Basin. Sci China Earth Sci. 2023; 66(2): 334-357.

[184]

Zhu G, Wei Z, Li W, et al. Interface dissolution kinetics and porosity formation of calcite and dolomite (110) and (104) planes: an implication to the stability of geologic carbon sequestration. J Colloid Interface Sci. 2023; 650: 1003-1012.

[185]

Zhu G, Wei Z, Wu X, Li Y. New insights into the dolomitization and dissolution mechanisms of dolomite-calcite (104)/(110) crystal boundary: an implication to geologic carbon sequestration process. Sci Total Environ. 2023; 904:166273.

[186]

Zhu GY, Li X, Li TT, et al. Magnesium isotope trace dolomitization fluid migration path: a case study of the Carboniferous Huanglong Formation in the Sichuan basin. Acta Geol Sin. 2022; 97(3): 753-771.

[187]

Zhu WH, Qu XY, Qiu LW, Chen Y, Gong FX, Wu SX. Characteristics and erosion mechanism of carbonate in acetic acid and hydrochloride solutions, an example from the Nanpu depression. Bull Mineral Petrol Geochem. 2015; 34(3): 619-625.

RIGHTS & PERMISSIONS

2024 The Author(s). Deep Underground Science and Engineering published by John Wiley & Sons Australia, Ltd on behalf of China University of Mining and Technology.

AI Summary AI Mindmap
PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/