Fluid-rock interaction experiments with andesite at 100°C for potential carbon storage in geothermal reservoirs

Grace E. Belshaw , Elisabeth Steer , Yukun Ji , Herwin Azis , Benyamin Sapiie , Bagus Muljadi , Veerle Vandeginste

Deep Underground Science and Engineering ›› 2024, Vol. 3 ›› Issue (3) : 369 -382.

PDF
Deep Underground Science and Engineering ›› 2024, Vol. 3 ›› Issue (3) : 369 -382. DOI: 10.1002/dug2.12097
RESEARCH ARTICLE

Fluid-rock interaction experiments with andesite at 100°C for potential carbon storage in geothermal reservoirs

Author information +
History +
PDF

Abstract

•Geothermal energy production can release naturally occurring carbon dioxide.

•Calcic plagioclase-rich andesite samples release increased divalent ions.

•Higher plagioclase content in samples correlates with elevated buffering capacity.

•Occurrence of secondary Al-containing mineral formation is likely.

•Andesite dissolution rate is 10–100 times slower than that of basalt.

Keywords

andesite / carbon sequestration / geothermal reservoirs / plagioclase dissolution

Cite this article

Download citation ▾
Grace E. Belshaw, Elisabeth Steer, Yukun Ji, Herwin Azis, Benyamin Sapiie, Bagus Muljadi, Veerle Vandeginste. Fluid-rock interaction experiments with andesite at 100°C for potential carbon storage in geothermal reservoirs. Deep Underground Science and Engineering, 2024, 3(3): 369-382 DOI:10.1002/dug2.12097

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Addassi M, Hoteit H, Oelkers EH. The impact of secondary silicate mineral precipitation kinetics on CO2 mineral storage. Int J Greenhouse Gas Control. 2024;131:104020.

[2]

Alfredsson HA, Oelkers EH, Hardarsson BS, Franzson H, Gunnlaugsson E, Gislason SR. The geology and water chemistry of the Hellisheidi, SW-Iceland carbon storage site. Int J Greenhouse Gas Control. 2013;12:399-418.

[3]

Aradóttir ESP, Gunnarsson I, Sigfússon B, et al. Toward cleaner geothermal energy utilization: capturing and sequestering CO2 and H2S emissions from geothermal power plants. Transport Porous Med. 2015;108:61-84.

[4]

Balintova M, Petrilakova A. Study of pH influence on selective precipitation of heavy metals from acid mine drainage. In: Klemes J, Varbanov PS, Lam HL, eds. 14th International Conference on Progress Integration, Modelling and Optimisation for Energy. Vol. 25. 2011:10.

[5]

Barber AJ, Crow MJ, Milsom JS. Sumatra: Geology, Resources and Tectonic Evolution. The Geological Society; 2005.

[6]

Barnhisel RI, Rich CI. Gibbsite, bayerite, and nordstrandite formation as affected by anions, pH, and mineral surfaces. Soil Sci Soc Am J. 1965;29:531-534.

[7]

Biscaye PE. Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction. Am Mineral. 1964;49:1281-1289.

[8]

Blum AE. Feldspars in weathering. In: Parsons I, ed. Feldspars and Their Reactions. Springer; 2012:595-609.

[9]

Boedihardi M, Mulyonol A, Ginting A, Mosby M, Radja V. Geology, energy potential and development of Indonesia’s geothermal prospects. Geological Society of MaIaysia-Circum-Pacific Council for Energy and Mineral Resources Tectonic Framework and Energy Resources of the Western Margin of the Pacific Basin November 27-December 2, 1992, Kuala Lumpur, Malaysia. 1993;33:369-385.

[10]

Carroll SA, Knauss KG. Dependence of labradorite dissolution kinetics on CO2(aq), Al(aq), and temperature. Chem Geol. 2005;217:213-225.

[11]

Casey WH, Westrich HR, Holdren GR. Dissolution rates of plagioclase at pH = 2 and 3. Am Mineral. 1991;76:211-217.

[12]

Clark DE, Galeczka IM, Dideriksen K, Voigt MJ, Wolff-Boenisch D, Gislason SR. Experimental observations of CO2-water-basaltic glass interaction in a large column reactor experiment at 50°C. Int J Greenhouse Gas Control. 2019;89:9-19.

[13]

Clark DE, Oelkers EH, Gunnarsson I, et al. CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250°C. Geochim Cosmochim Acta. 2020;279:45-66.

[14]

Deer WA, Howie RA, Zussman J. An Introduction to the Rock-Forming Minerals. 3rd ed. Mineralogical Society of Great Britain and Ireland; 2013.

[15]

Department of Energy and Climate Change. UK Energy Statistics, 2015 and Q4 2015. Statistical Press Release; 2016:116.

[16]

Edenhofer O, Pichs-Madruga R, Sokona Y, et al. Climate change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC. Cambridge University Press; 2014.

[17]

Erol S, Akin T, Akin S. Update for reactive transport modeling of the Kızıldere geothermal field to reduce uncertainties in the early inspections. Turk J Earth Sci. 2023;32(4):541-554.

[18]

Fridriksson T, Mateos-Merino A, Audinet P, Orucu AY. Greenhouse gases from geothermal power production. Proceedings, 42nd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 13-15, 2017, SGP-TR-212, 2016:1-12.

[19]

Galeczka IM, Stefánsson A, Kleine BI, et al. A pre-injection assessment of CO2 and H2S mineralization reactions at the Nesjavellir (Iceland) geothermal storage site. Int J Greenhouse Gas Control. 2022;115:103610.

[20]

Giggenbach WF. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta. 1988;52:2749-2765.

[21]

Gíslason SR, Sigurdardóttir H, Aradóttir ES, Oelkers EH. A brief history of CarbFix: challenges and victories of the project’s pilot phase. Energy Procedia. 2018;146:103-114.

[22]

Gislason SR, Wolff-Boenisch D, Stefansson A, et al. Mineral sequestration of carbon dioxide in basalt: a pre-injection overview of the CarbFix project. Int J Greenhouse Gas Control. 2010;4:537-545.

[23]

Gudbrandsson S, Wolff-Boenisch D, Gislason SR, Oelkers EH. An experimental study of crystalline basalt dissolution from 2 ≤ pH ≤ 11 and temperatures from 5 to 75°C. Geochim Cosmochim Acta. 2011;75:5496-5509.

[24]

Gysi AP, Stefánsson A. CO2–water–basalt interaction. Numerical simulation of low temperature CO2 sequestration into basalts. Geochim Cosmochim Acta. 2011;75:4728-4751.

[25]

Hangx SJT, Spiers CJ. Reaction of plagioclase feldspars with CO2 under hydrothermal conditions. Chem Geol. 2009;265:88-98.

[26]

Harlow GE. The anorthoclase structures: the effects of temperature and composition. Am Mineral. 1982;67:975-996.

[27]

Hellmann R. The albite-water system: part I. The kinetics of dissolution as a function of pH at 100, 200, and 300°C. Geochim Cosmochim Acta. 1994;58:595-611.

[28]

Holloway S. An overview of the underground disposal of carbon dioxide. Energy Convers Manage. 1997;38: S193-S198.

[29]

Intergovernmental Panel on Climate Change (IPCC). Summary for policymakers. In: Masson-Delmotte V, Zhai P, PortnerH-O. et al. eds. Global Warming of 1.5°C. IPCC; 2018.

[30]

International Centre for Diffraction Data (ICDD). PDF-4, 2018.

[31]

Kleeberg R, Monecke T, Hillier S. Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: how random are powder samples? Clays Clay Miner. 2008;56:404-415.

[32]

Knauss KG, Wolery TJ. The dissolution kinetics of quartz as a function of pH and time at 70°C. Geochim Cosmochim Acta. 1988;52:43-53.

[33]

Levien L, Prewitt CT, Weidner DJ. Structure and elastic properties of quartz at pressure. Am Mineral. 1980;65:920-930.

[34]

Lo Ré C, Kaszuba JP, Moore JN, McPherson BJ. Fluid-rock interactions in CO2-saturated, granite-hosted geothermal systems: implications for natural and engineered systems from geochemical experiments and models. Geochim Cosmochim Acta. 2014;141:160-178.

[35]

Lowson RT, Comarmond M-CJ, Rajaratnam G, Brown PL. The kinetics of the dissolution of chlorite as a function of pH and at 25°C. Geochim Cosmochim Acta. 2005;69:1687-1699.

[36]

MacKenzie WS, Adams AE. A Colour Atlas of Rocks and Minerals in Thin Section. 2nd ed. Manson Publishing Ltd; 1994.

[37]

Matter JM, Broecker WS, Gislason SR, et al. The CarbFix pilot project—storing carbon dioxide in basalt. Energy Procedia. 2011;4:5579-5585.

[38]

Matter JM, Stute M, Snæbjörnsdottir , et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science. 2016;352:1312-1314.

[39]

Matter JM, Takahashi T, Goldberg D. Experimental evaluation of in situ CO2 water rock reactions during CO2 injection in basaltic rocks: implications for geological CO2 sequestration. Geochem Geophys Geosystems. 2007;8:Q02001.

[40]

McCarthy JJ, Canziani OF, Leary NA, Dokken D, White KS. Climate Change 2001: Impacts, Adaptation, and Vulnerability. Cambridge University Press; 2001.

[41]

McGrail BP, Schaef HT, Ho AM, Chien Y-J, Dooley JJ, Davidson CL. Potential for carbon dioxide sequestration in flood basalts. J Geophys Res Solid Earth. 2006;111:B12201.

[42]

McGrail BP, Schaef HT, Spane FA, et al. Wallula basalt pilot demonstration project: post-injection results and conclusions. Energy Procedia. 2017;114:5783-5790.

[43]

McGrail BP, Spane FA, Sullivan EC, Bacon DH, Hund G. The Wallula basalt sequestration pilot project. Energy Procedia. 2011;4:5653-5660.

[44]

Muraoka H, Takahashi M, Sundhoro H, et al. Geothermal systems constrained by the Sumatran fault and its pull-apart basins in Sumatra, Western Indonesia. Proceedings World Geothermal Congress 2010Bali, Indonesia, 2-29 April 2010 GV Tomarov and AA Shipkov. Vol. 57. 2010.

[45]

Na J, Xu T, Yuan Y, Feng B, Tian H, Bao X. An integrated study of fluid-rock interaction in a CO2-based enhanced geothermal system: a case study of Songliao basin, China. Appl Geochem. 2015;59:166-177.

[46]

Oelkers EH, Arkadakskiy S, Afifi AM, et al. The subsurface carbonation potential of basaltic rocks from the Jizan region of southwest Saudi Arabia. Int J Greenhouse Gas Control. 2022;120:103772.

[47]

Oelkers EH, Gislason SR, Matter J. Mineral carbonation of CO2. Elements. 2008;4:333-337.

[48]

Oelkers EH, Schott J. Experimental study of anorthite dissolution and the relative mechanism of feldspar hydrolysis. Geochim Cosmochim Acta. 1995;59:5039-5053.

[49]

Peng C, Crawshaw JP, Maitland GC, Trusler JPM. Kinetics of calcite dissolution in CO2-saturated water at temperatures between 323 and 373 K and pressures up to 13.8 MPa. Chem Geol. 2015;403:74-85.

[50]

Phillips TL, Loveless JK, Bailey SW. Cr3+ coordination in chlorites: a structural study of ten chromian chlorites. Am Mineral. 1980;65:112-122.

[51]

Pogge von Strandmann PAE, Burton KW, Snæbjörnsdóttir SO, et al. Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes. Nat Commun. 2019;10:1983.

[52]

Purnomo BJ, Pichler T. Geothermal systems on the island of Java, Indonesia. J Volcanol Geotherm Res. 2014;285:47-59.

[53]

Ratouis TMP, Snæbjörnsdóttir , Voigt MJ, et al. CarbFix 2: a transport model of long-term CO2 and H2S injection into basaltic rocks at Hellisheidi, SW-Iceland. Int J Greenhouse Gas Control. 2022;114:103586.

[54]

Rimstidt JD, Brantley SL, Olsen AA. Systematic review of forsterite dissolution rate data. Geochim Cosmochim Acta. 2012;99:159-178.

[55]

Santoso D, Suparka ME, Sudarman S, Sauri S. The geothermal fields in central part of the Sumatra fault zone as derived from geophysical data. In: Barbier E, ed. Proceedings of the Wolrd Geothermal Congress. International Geothermal Association; 1995:1363-1366.

[56]

Sawin J, Seyboth K, Sverrisson F. Renewables 2017 Global Status Report. REN21: Renewable Energy Policy Network for the 21st Century; 2017.

[57]

Schoen R, Roberson CE. Structures of aluminum hydroxide and geochemical implications. Am Mineral. 1970;55:43-77.

[58]

Shibuya T, Yoshizaki M, Masaki Y, Suzuki K, Takai K, Russell MJ. Reactions between basalt and CO2-rich seawater at 250 and 350°C, 500bars: implications for the CO2 sequestration into the modern oceanic crust and the composition of hydrothermal vent fluid in the CO2-rich early ocean. Chem Geol. 2013;359:1-9.

[59]

Siegel DI, Pfannkuch HO. Silicate mineral dissolution at pH 4 and near standard temperature and pressure. Geochim Cosmochim Acta. 1984;48:197-201.

[60]

Sieh K, Natawidjaja D. Neotectonics of the Sumatran fault, Indonesia. J Geophys Res Solid Earth. 2000;105:28295-28326.

[61]

Snæbjörnsdóttir , Sigfússon B, Marieni C, Goldberg D, Gislason SR, Oelkers EH. Carbon dioxide storage through mineral carbonation. Nat Rev Earth Environ. 2020;1:90-102.

[62]

Suharmanto P, Fitria AN, Ghaliyah S. Indonesian geothermal energy potential as source of alternative energy power plant. Renewable Energy and Energy Conversion Conference and Exhibition. Knowledge E; 2015:119-124.

[63]

Utomo GP, Güleç N. Preliminary geochemical investigation of a possible CO2 injection in the Ungaran geothermal field, Indonesia: equilibrium and kinetic modeling. Greenhouse Gases Sci Technol. 2021;11(1):3-18.

[64]

Vandeginste V, Cowan C, Gomes RL, Hassan T, Titman J. Natural fluorapatite dissolution kinetics and Mn2+ and Cr3+ metal removal from sulfate fluids at 35°C. J Hazard Mater. 2020;389:122150.

[65]

Vandeginste V, Siska A, Belshaw G, Kilpatrick A. Effect of salinity on the kinetics of pyrite dissolution in oxygenated fluids at 60°C and implications for hydraulic fracturing. J Nat Gas Sci Eng. 2021;86:103722.

[66]

Wenk H-R, Joswig W, Tagai T, Korekawa M, Smith BK. The average structure of An 62-66 labradorite. Am Mineral. 1980;65:81-95.

[67]

Wolff-Boenisch D, Gislason SR, Oelkers EH. The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates. Geochim Cosmochim Acta. 2006;70:858-870.

[68]

Wolff-Boenisch D, Gislason SR, Oelkers EH, Putnis CV. The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74°C. Geochim Cosmochim Acta. 2004;68:4843-4858.

[69]

Wu Y, Li P, Hao Y, Wanniarachchi A, Zhang Y, Peng S. Experimental research on carbon storage in a CO2-based enhanced geothermal system. Renew Energy. 2021;175:68-79.

[70]

Zhang R, Zhang X, Hu S. Basalt-water interactions at high temperatures:1. Dissolution kinetic experiments of basalt in water and NaCl-H2O at temperatures up to 400°C, 23MPa and implications. J Asian Earth Sci. 2015;110:189-200.

RIGHTS & PERMISSIONS

2024 The Authors. Deep Underground Science and Engineering published by John Wiley & Sons Australia, Ltd on behalf of China University of Mining and Technology.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/