Onsager relation for electrokinetics at surfactant-covered bubble film

Meng Yan , Yueke Niu , Miao Sun , Yanbo Xie

Droplet ›› 2025, Vol. 4 ›› Issue (3) : e70007

PDF
Droplet ›› 2025, Vol. 4 ›› Issue (3) : e70007 DOI: 10.1002/dro2.70007
RESEARCH ARTICLE

Onsager relation for electrokinetics at surfactant-covered bubble film

Author information +
History +
PDF

Abstract

We analytically describe the slip length of the surfactant-covered bubble film under the joint actions of pressure gradient and electric field. Considering the Marangoni effect, the slip length and consequent zeta potential of the liquid‒vapor interface significantly reduced compared to the Marangoni-free interface at low surfactant concentrations, due to the surfactant accumulation at downstream of the bubble liquid film. In addition, we discovered that the friction coefficient of the liquid‒vapor interface becomes field dependent in a regime of strong coupling among volume flow, surfactant transport, and ionic current at the liquid‒vapor interface. We use the Onsager reciprocal relationship to describe the electrokinetic effects within a bubble film, including flow velocity, ionic current, and surfactant transport, which can describe the Marangoni effects while considering multi-physical effects.

Cite this article

Download citation ▾
Meng Yan, Yueke Niu, Miao Sun, Yanbo Xie. Onsager relation for electrokinetics at surfactant-covered bubble film. Droplet, 2025, 4(3): e70007 DOI:10.1002/dro2.70007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Secchi E, Marbach S, Niguès A, Stein D, Siria A, Bocquet L. Massive radius-dependent flow slippage in carbon nanotubes. Nature. 2016; 537: 210-213.

[2]

Qin X, Yuan Q, Zhao Y, Xie S, Liu Z. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 2011; 11: 2173-2177.

[3]

Wang YF, Wang XW, Ma XY, Tang ZQ, Jiang N. Effects of the superhydrophobic surface on coherent structures in the turbulent boundary layer. Acta Mech Sin. 2022; 38:322022.

[4]

Zhang Z, Wen L, Jiang L. Nanofluidics for osmotic energy conversion. Nat Rev Mater. 2021; 6: 622-639.

[5]

Xu W, Zhou X, Hao C, et al. SLIPS-TENG: robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. Natl Sci Rev. 2019; 6: 540-550.

[6]

Falk K, Sedlmeier F, Joly L, Netz RR, Bocquet L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 2010; 10: 4067-4073.

[7]

Qu C, Wang K, Wang J, et al. Origin of friction in superlubric graphite contacts. Phys Rev Lett. 2020; 125:126102.

[8]

Pandey D, Hardt S. Thermo-osmotic flow in slit channels with boundary slip: giant flow amplification between polarized graphene surfaces. J Fluid Mech. 2023; 967: R5.

[9]

Zhang Z, Du Y, Huang S, et al. Macroscale superlubricity enabled by graphene-coated surfaces. Adv Sci. 2020; 7:1903239.

[10]

Eijkel JCT. Liquid slip in micro- and nanofluidics: recent research and its possible implications. Lab Chip. 2007; 7: 299.

[11]

Wang C, Wang S, Pan H, et al. Bioinspired liquid gating membrane-based catheter with anticoagulation and positionally drug release properties. Sci Adv. 2020; 6:eabb4700.

[12]

Feuillebois F, Bazant MZ, Vinogradova OI. Effective slip over superhydrophobic surfaces in thin channels. Phys Rev Lett. 2009; 102:026001.

[13]

Rothstein JP. Slip on superhydrophobic surfaces. Annu Rev Fluid Mech. 2010; 42: 89-109.

[14]

Lee A, Kim HY. Does liquid slippage within a rough channel always increase the flow rate? Phys Fluids. 2014; 26:072002.

[15]

Lohse D, Zhang X. Surface nanobubbles and nanodroplets. Rev Mod Phys. 2015; 87: 981-1035.

[16]

Verschoof RA, van der Veen RCA, Sun C, Lohse D. Bubble drag reduction requires large bubbles. Phys Rev Lett. 2016; 117:104502.

[17]

Philip JR. Flows satisfying mixed no-slip and no-shear conditions. Zeitschrift für Angew Math Phys. 1972; 23: 353-372.

[18]

Crowdy DG. Analytical formulae for longitudinal slip lengths over unidirectional superhydrophobic surfaces with curved menisci. J Fluid Mech. 2016; 791: R7.

[19]

Lee C, Choi CH, Kim CJ. Structured surfaces for a giant liquid slip. Phys Rev Lett. 2008; 101:064501.

[20]

Ou J, Perot B, Rothstein JP. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids. 2004; 16: 4635-4643.

[21]

Li H, Li Z, Tan X, et al. Three-dimensional backflow at liquid‒gas interface induced by surfactant. J Fluid Mech. 2020; 899: A8.

[22]

Mishchuk NA, Fainerman VB, Kovalchuk VI, Miller R, Dukhin SS. Studies of concentrated surfactant solutions using the maximum bubble pressure method. Colloids Surf A. 2000; 175: 207-216.

[23]

Yekeen N, Manan MA, Idris AK, Samin AM. Influence of surfactant and electrolyte concentrations on surfactant adsorption and foaming characteristics. J Pet Sci Eng. 2017; 149: 612-622.

[24]

Min F, Zhou P, Huang Z, et al. A bubble-assisted approach for patterning nanoscale molecular aggregates. Angew Chem Int Ed. 2021; 60: 16547-16553.

[25]

Tagashira H, Takata Y, Hyono A, Ohshima H. Adsorption of surfactant ions and binding of their counterions at an air/water interface. J Oleo Sci. 2009; 58: 285-293.

[26]

Joly L, Ybert C, Trizac E, Bocquet L. Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics. J Chem Phys. 2006; 125:204716.

[27]

Jing D, Bhushan B. The coupling of surface charge and boundary slip at the solid‒liquid interface and their combined effect on fluid drag: a review. J Colloid Interface Sci. 2015; 454: 152-179.

[28]

Joly L, Detcheverry F, Biance AL. Anomalous ζ potential in foam films. Phys Rev Lett. 2014; 113:088301.

[29]

Bolognesi G, Cottin-Bizonne C, Pirat C. Experimental evidence of slippage breakdown for a superhydrophobic surface in a microfluidic device. Phys Fluids. 2014; 26:082004.

[30]

Steinberger A, Cottin-Bizonne C, Kleimann P, Charlaix E. High friction on a bubble mattress. Nat Mater. 2007; 6: 665-668.

[31]

Manikantan H, Squires TM. Surfactant dynamics: hidden variables controlling fluid flows. J Fluid Mech. 2020; 892: P1.

[32]

Song D, Song B, Hu H, et al. Effect of a surface tension gradient on the slip flow along a superhydrophobic air‒water interface. Phys Rev Fluids. 2018; 3:033303.

[33]

Peaudecerf FJ, Landel JR, Goldstein RE, Luzzatto-Fegiz P. Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces. Proc Natl Acad Sci U S A. 2017; 114: 7254-7259.

[34]

Landel JR, Peaudecerf FJ, Temprano-Coleto F, Gibou F, Goldstein RE, Luzzatto-Fegiz P. A theory for the slip and drag of superhydrophobic surfaces with surfactant. J Fluid Mech. 2020; 883: A18.

[35]

Ma Y, Sun M, Duan X, van den Berg A, Eijkel JCT, Xie Y. Dimension-reconfigurable bubble film nanochannel for wetting based sensing. Nat Commun. 2020; 11: 814.

[36]

Zhang P, Chen C, Feng M, Sun C, Xu X. Hydroxide and hydronium ions modulate the dynamic evolution of nitrogen nanobubbles in water. J Am Chem Soc. 2024; 146: 19537-19546.

[37]

Bretherton FP. The motion of long bubbles in tubes. J Fluid Mech. 1961; 10: 166-188.

[38]

Chen J-D. Measuring the film thickness surrounding a bubble inside a capillary. J Colloid Interface Sci. 1986; 109: 341-349.

[39]

Chaudhury K, Acharya PV, Chakraborty S. Influence of disjoining pressure on the dynamics of steadily moving long bubbles inside narrow cylindrical capillaries. Phys Rev E. 2014; 89:053002.

[40]

Erickson D, Li D, Werner C. An improved method of determining the ζ-potential and surface conductance. J Colloid Interface Sci. 2000; 232: 186-197.

[41]

Schoch RB, Han J, Renaud P. Transport phenomena in nanofluidics. Rev Mod Phys. 2008; 80: 839-883.

[42]

Mala GM, Li D, Werner C, Jacobasch H-J, Ning YB. Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects. Int J Heat Fluid Flow. 1997; 18: 489-496.

[43]

Maali A, Bhushan B. Measurement of slip length on superhydrophobic surfaces. Philos Trans R Soc A. 2012; 370: 2304-2320.

[44]

Sundin J, Bagheri S. Slip of submerged two-dimensional liquid-infused surfaces in the presence of surfactants. J Fluid Mech. 2022; 950: A35.

[45]

Groot SRD, Mazur P. Non Equilibrium Thermodynamics. Dover Publications; 1984.

[46]

Sharp KV, Adrian RJ, Santiago JG, Molho JI. Liquid flows in microchannels. In: Gad-el-Hak M , ed. The MEMS Handbook. Vol 20013566. CRC Press; 2001.

RIGHTS & PERMISSIONS

2025 The Author(s). Droplet published by Jilin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/