Orbital electrowetting for versatile droplet maneuvering on slippery surfaces

Jie Tan , Haolan Li , Xiaotong Yan , Mingfei Zhou , Shulan Sun , Dongyue Jiang

Droplet ›› 2025, Vol. 4 ›› Issue (3) : e70001

PDF
Droplet ›› 2025, Vol. 4 ›› Issue (3) : e70001 DOI: 10.1002/dro2.70001
RESEARCH ARTICLE

Orbital electrowetting for versatile droplet maneuvering on slippery surfaces

Author information +
History +
PDF

Abstract

Contactless, spatiotemporal droplet maneuvering plays a critical role in a wide array of applications, including drug delivery, microfluidics, and water harvesting. Despite considerable advancements, challenges persist in the precise transportation, splitting, controlled steering, and functional adaptability of droplets when manipulated by electrical means. Here, we propose the use of orbital electrowetting (OEW) on slippery surfaces to enable versatile droplet maneuvering under a variety of conditions. The asymmetric electrowetting force that is generated allows highly efficient droplet manipulation on these surfaces. Our results demonstrate that droplets can be split, merged, and steered with exceptional flexibility, precision, and high velocity, even against gravity. Additionally, the OEW technique facilitates the manipulation of droplets across different compositions, volumes, and arrays in complex environments, leaving no residue. This novel droplet maneuvering mechanism and control strategy are poised to impact a range of applications, from chemical reactions and self-cleaning to efficient condensation and water harvesting.

Cite this article

Download citation ▾
Jie Tan, Haolan Li, Xiaotong Yan, Mingfei Zhou, Shulan Sun, Dongyue Jiang. Orbital electrowetting for versatile droplet maneuvering on slippery surfaces. Droplet, 2025, 4(3): e70001 DOI:10.1002/dro2.70001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wong T-S, Kang SH, Tang SKY, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature. 2011; 477: 443-447.

[2]

Fang D, Zhou W, Jin Y, et al. Programmable droplet manipulation enabled by charged-surface pattern reconfiguration. Droplet. 2023; 2:e74.

[3]

Xu W, Zheng H, Liu Y, et al. A droplet-based electricity generator with high instantaneous power density. Nature. 2020; 578: 392-396.

[4]

Zhang S, Chi M, Mo J, et al. Bioinspired asymmetric amphiphilic surface for triboelectric enhanced efficient water harvesting. Nat Commun. 2022; 13: 4168.

[5]

Tan J, Sun S, Jiang D, et al. Advances in triboelectric nanogenerator powered electrowetting-on-dielectric devices: mechanism, structures, and applications. Mater Today. 2022; 58: 201-220.

[6]

Xu W, Jin Y, Li W, et al. Triboelectric wetting for continuous droplet transport. Sci Adv. 2022; 8:eade2085.

[7]

Tan J, Fan Z, Sun S, Xu M, Jiang D. A periodic wetting surface driven by triboelectric nanogenerator for efficient postimpact droplet collection. Adv Mater Interfaces. 2023; 10:2202037.

[8]

Abdelgawad M, Freire SLS, Yang H, Wheeler AR. All-terrain droplet actuation. Lab Chip. 2008; 8: 672-677.

[9]

Jones TB, Wang K-L, Yao D-J. Frequency-dependent electromechanics of aqueous liquids: electrowetting and dielectrophoresis. Langmuir. 2004; 20: 2813-2818.

[10]

McHale G, Brown CV, Newton MI, Wells GG, Sampara N. Dielectrowetting driven spreading of droplets. Phys Rev Lett. 2011; 107:186101.

[11]

Mugele F, Baret J-C. Electrowetting: from basics to applications. J Phys Condens Matter. 2005; 17: R705.

[12]

Li J, Kim C-J. Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics. Lab Chip. 2020; 20: 1705-1712.

[13]

Tan J, Tian P, Sun M, et al. A transparent electrowetting-on-dielectric device driven by triboelectric nanogenerator for extremely fast anti-fogging. Nano Energy. 2022; 92:106697.

[14]

Nelson WC, Kim C-J. Droplet actuation by electrowetting-on-dielectric (EWOD): a review. J Adhes Sci Technol. 2012; 26: 1747-1771.

[15]

Narahari T, Dahmer J, Sklavounos A, et al. Portable sample processing for molecular assays: application to Zika virus diagnostics. Lab Chip. 2022; 22: 1748-1763.

[16]

Shen R, Am LV, Yi S, et al. Nucleic acid analysis on electrowetting-based digital microfluidics. Trends Anal Chem. 2023; 158:116826.

[17]

Yang C, Gan X, Zeng Y, et al. Advanced design and applications of digital microfluidics in biomedical fields: an update of recent progress. Biosens Bioelectron. 2023; 242:115723.

[18]

Shen J, Liao J, Liu H, et al. A low-temperature digital microfluidic system used for protein–protein interaction detection. Lab Chip. 2023; 23: 4390-4399.

[19]

Tan J, Wang H, Sun M, et al. Regulating droplet impact on a solid hydrophobic surface through alternating current electrowetting-on-dielectric. Phys Fluids. 2021; 33:042101.

[20]

Tan J, Fan Z, Zhou M, et al. Orbital electrowetting-on-dielectric for droplet manipulation on superhydrophobic surfaces. Adv Mater. 2024; 36:2314346.

[21]

Hao C, Liu Y, Chen X, et al. Electrowetting on liquid-infused film (EWOLF): complete reversibility and controlled droplet oscillation suppression for fast optical imaging. Sci Rep. 2014; 4: 6846.

[22]

Geng H, Cho SK. Antifouling digital microfluidics using lubricant infused porous film. Lab Chip. 2019; 19: 2275-2283.

[23]

Zhu Y, McHale G, Dawson J, et al. Slippery liquid-like solid surfaces with promising antibiofilm performance under both static and flow conditions. ACS Appl Mater Interfaces. 2022; 14: 6307-6319.

[24]

Liu E, Wang C, Zheng H, Song S, Riaud A, Zhou J. Two-dimensional manipulation of droplets on a single-sided continuous optoelectrowetting digital microfluidic chip. Sens Actuators B. 2022; 368:132231.

[25]

Zhang K, Wang W, Li C, Riaud A, Zhou J. 2D large-scale EWOD devices with honeycomb electrodes for multiplexed multidirectional driving of micro-droplets. AIP Adv. 2020; 10:055227.

[26]

Yang T-J, Lin Z-H, Lu Y-W. Self-powered digital microfluidics driven by rotational triboelectric nanogenerator. Nano Energy. 2023; 110:108376.

[27]

Yamamoto K, Takagi S, Ichikawa Y, Motosuke M. Lubrication effects on droplet manipulation by electrowetting-on-dielectric (EWOD). J Appl Phys. 2022; 132:204701.

[28]

Von der Ecken S, Sklavounos AA, Wheeler AR. Vertical addressing of 1-plane electrodes for digital microfluidics. Adv Mater Technol. 2022; 7:2101251.

[29]

Park K-C, Kim P, Grinthal A, et al. Condensation on slippery asymmetric bumps. Nature. 2016; 531: 78-82.

[30]

Prakash M, Quéré D, Bush JWM. Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science. 2008; 320: 931-934.

[31]

Liu Y, Xia Y, Zhan H, Lu C, Yuan Z, Zhao L. An electrothermal platform for active droplet manipulation. RSC Adv. 2023; 13: 14041-14047.

[32]

Yang X, Zhuang K, Lu Y, Wang X. Creation of topological ultraslippery surfaces for droplet motion control. ACS Nano. 2021; 15: 2589-2599.

[33]

Zhuang K, Lu Y, Wang X, Yang X. Architecture-driven fast droplet transport without mass loss. Langmuir. 2021; 37: 12519-12528.

[34]

Zhang X, Sun L, Wang Y, Bian F, Wang Y, Zhao Y. Multibioinspired slippery surfaces with wettable bump arrays for droplets pumping. Proc Natl Acad Sci U S A. 2019; 116: 20863-20868.

[35]

Wang F, Liu M, Liu C, et al. Light-induced charged slippery surfaces. Sci Adv. 2022; 8:eabp9369.

[36]

Gao C, Wang L, Lin Y, et al. Droplets manipulated on photothermal organogel surfaces. Adv Funct Mater. 2018; 28:1803072.

[37]

Han K, Wang Z, Han X, et al. Active manipulation of functional droplets on slippery surface. Adv Funct Mater. 2022; 32:2207738.

[38]

Lei W, Hou G, Liu M, et al. High-speed transport of liquid droplets in magnetic tubular microactuators. Sci Adv. 2018; 4:eaau8767.

[39]

Oh I, Keplinger C, Cui J, et al. Dynamically actuated liquid-infused poroelastic film with precise control over droplet dynamics. Adv Funct Mater. 2018; 28:1802632.

[40]

Bjelobrk N, Girard H-L, Subramanyam SB, Kwon H-M, Quéré D, Varanasi KK. Thermocapillary motion on lubricant-impregnated surfaces. Phys Rev Fluids. 2016; 1:063902.

[41]

Ni Q, Capecci DE, Crane NB. Electrowetting force and velocity dependence on fluid surface energy. Microfluid Nanofluid. 2015; 19: 181-189.

[42]

Han X, Li W, Zhao H, Li J, Tang X, Wang L. Slippery damper of an overlay for arresting and manipulating droplets on nonwetting surfaces. Nat Commun. 2021; 12: 3154.

[43]

Yi U-C, Kim C-J. Characterization of electrowetting actuation on addressable single-side coplanar electrodes. J Micromech Microeng. 2006; 16: 2053-2059.

[44]

Baratian D, Dey R, Hoek H, van den Ende D, Mugele F. Breath figures under electrowetting: electrically controlled evolution of drop condensation patterns. Phys Rev Lett. 2018; 120:214502.

[45]

Li X, Bista P, Stetten AZ, et al. Spontaneous charging affects the motion of sliding drops. Nat Phys. 2022; 18: 713-719.

[46]

Daniel D, Timonen JVI, Li R, Velling SJ, Aizenberg J. Oleoplaning droplets on lubricated surfaces. Nat Phys. 2017; 13: 1020-1025.

[47]

He X, Yang B, Li J, Zhang X, Deng Y. Experimental and theoretical study of electrowetting dynamics on slippery lubricant-infused porous surfaces. Sens Actuators A. 2022; 344:113734.

[48]

Sun Q, Wang D, Li Y, et al. Surface charge printing for programmed droplet transport. Nat Mater. 2019; 18: 936-941.

[49]

Jin Y, Liu X, Xu W, et al. Charge-powered electrotaxis for versatile droplet manipulation. ACS Nano. 2023; 17: 10713-10720.

[50]

Yuan Z, Lu C, Liu C, et al. Ultrasonic tweezer for multifunctional droplet manipulation. Sci Adv. 2023; 9:eadg2352.

[51]

Tang X, Li W, Wang L. Furcated droplet motility on crystalline surfaces. Nat Nanotechnol. 2021; 16: 1106-1112.

[52]

Jin Y, Xu W, Zhang H, et al. Electrostatic tweezer for droplet manipulation. Proc Natl Acad Sci U S A. 2022; 119:e2105459119.

[53]

Manabe K, Saito K, Nakano M, Ohzono T, Norikane Y. Light-driven liquid conveyors: manipulating liquid mobility and transporting solids on demand. ACS Nano. 2022; 16: 16353-16362.

[54]

Hoek H, Dey R, Mugele F. Electrowetting-controlled dropwise condensation with patterned electrodes: physical principles, modeling, and application perspectives. Adv Mater Interfaces. 2021; 8:2001317.

[55]

Dai X, Sun N, Nielsen SO, et al. Hydrophilic directional slippery rough surfaces for water harvesting. Sci Adv. 2018; 4:eaaq0919.

RIGHTS & PERMISSIONS

2025 The Author(s). Droplet published by Jilin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/