Advances in networking droplets

Zhejun Chong , Yi Zeng , Youlong Kang , Ke Ding , Xin Du , Zhongze Gu

Droplet ›› 2025, Vol. 4 ›› Issue (2) : e173

PDF
Droplet ›› 2025, Vol. 4 ›› Issue (2) :e173 DOI: 10.1002/dro2.173
REVIEW ARTICLE

Advances in networking droplets

Author information +
History +
PDF

Abstract

Compartmentalization in living systems, where multiple reactions occur in parallel within confined spaces, has inspired the development of droplet networks in the past decade. These fascinating assemblies offer unique and versatile functions that are unattainable by single droplets and have shown their potential as advanced platforms for chemical and biological applications. This review highlights recent progress in the creation and application of droplet networks, covering strategies for generating the droplets and assembling them into functional networks. Key applications such as microreactors, signal conductors, actuators, and power sources are summarized. We also discuss the challenges and future trends in this field, aiming to narrow the gap between fundamental research and real applications.

Cite this article

Download citation ▾
Zhejun Chong, Yi Zeng, Youlong Kang, Ke Ding, Xin Du, Zhongze Gu. Advances in networking droplets. Droplet, 2025, 4(2): e173 DOI:10.1002/dro2.173

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agapakis CM, Boyle PM, Silver PA. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat Chem Biol. 2012; 8: 527-535.

[2]

Zhang H, Elbaum-Garfinkle S, Langdon EM, et al. RNA controls polyQ protein phase transitions. Mol Cell. 2015; 60: 220-230.

[3]

Ausländer S, Ausländer D, Fussenegger M. Synthetic biology—The synthesis of biology. Angew Chem Int Ed. 2017; 56: 6396-6419.

[4]

Gomes E, Shorter J. The molecular language of membrane-less organelles. J Biol Chem. 2019; 294: 7115-7127.

[5]

Reck-Peterson SL, Redwine WB, Vale RD, Carter AP. The cytoplasmic dynein transport machinery and its many cargoes. Nat Rev Mol Cell Biol. 2018; 19: 382-398.

[6]

Chen X, Sun Q, Lu Y. Creating a locally crowded environment with nanoclay hydrogels for cell-free biosynthesis. Soft Matter. 2020; 16: 5132-5138.

[7]

Alberty RA. Equilibrium concentrations for pyruvate dehydrogenase and the citric acid cycle at specified concentrations of certain coenzymes. Biophys Chem. 2004; 109: 73-84.

[8]

Bar-Peled L, Kory N. Principles and functions of metabolic compartmentalization. Nat Metab. 2022; 4: 1232-1244.

[9]

VanHouten JN, Wysolmerski JJ. Transcellular calcium transport in mammary epithelial cells. J Mammary Gland Biol Neoplasia. 2007; 12: 223-235.

[10]

Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials. 2017; 128: 69-83.

[11]

Holden MA. Chapter 11 - Building interconnected membrane networks. In: Ross J , Marshall WF , eds. Methods in Cell Biology. Vol. 128, Academic Press; 2015: 201-222.

[12]

Booth MJ, Restrepo Schild V, Downs FG, Bayley H. Functional aqueous droplet networks. Mol BioSyst. 2017; 13: 1658-1691.

[13]

Zeng Y, Li S, Chong Z, et al. Reconfigurable liquid devices from liquid building blocks. Nat Chem Eng. 2024; 1: 149-158.

[14]

Villar G, Graham AD, Bayley H. A Tissue-like printed material. Science. 2013; 340: 48-52.

[15]

Schroeder TBH, Guha A, Lamoureux A, et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature. 2017; 552: 214-218.

[16]

Daly AC, Davidson MD, Burdick JA. 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun. 2021; 12: 753.

[17]

Xu Y, Shen Y. The assembly of miniaturized droplets toward functional architectures. Small. 2024; 20:2404366.

[18]

Jiang W, Wu Z, Gao Z, et al. Artificial cells: past, present and future. ACS Nano. 2022; 16: 15705-15733.

[19]

Shang L, Zhao Y. Droplet-templated synthetic cells. Matter. 2021; 4: 95-115.

[20]

Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C-A, Palivan CG. Synthetic cells revisited: artificial cells construction using polymeric building blocks. Adv Sci. 2024; 11:2305837.

[21]

Bhattacharya A, Devaraj NK. Tailoring the shape and size of artificial cells. ACS Nano. 2019; 13: 7396-7401.

[22]

Morth JP, Pedersen BP, Buch-Pedersen MJ, et al. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol. 2011; 12: 60-70.

[23]

Xu Q, Zhang Z, Lui PPY, Lu L, Li X, Zhang X. Preparation and biomedical applications of artificial cells. Mater Today Bio. 2023; 23:100877.

[24]

Chang TMS. Haemoglobin corpuscles. Report of a research project for honours physiology, Medical Library, McGill University, 1957.

[25]

Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K. Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev. 2018; 47: 8572-8610.

[26]

Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022; 8:e09394.

[27]

Saha R, Verbanic S, Chen IA. Lipid vesicles chaperone an encapsulated RNA aptamer. Nat Commun. 2018; 9: 2313.

[28]

van der Koog L, Gandek TB, Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv Healthcare Mater. 2022; 11:2100639.

[29]

Matilla MA, Velando F, Martin-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev. 2022; 46:fuab043.

[30]

Stephenson EB, Korner JL, Elvira KS. Challenges and opportunities in achieving the full potential of droplet interface bilayers. Nat Chem. 2022; 14: 862-870.

[31]

Yuan W, Piao J, Dong Y. Advancements in the preparation methods of artificial cell membranes with lipids. Mater Chem Front. 2021; 5: 5233-5246.

[32]

Reeves JP, Dowben RM. Formation and properties of thin-walled phospholipid vesicles. J Cell Physiol. 1969; 73: 49-60.

[33]

Nourian Z, Roelofsen W, Danelon C. Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane. Angew Chem Int Ed. 2012; 51: 3114-3118.

[34]

Angelova MI, Dimitrov DS. Liposome electroformation. Faraday Discuss Chem Soc. 1986; 81: 303-311.

[35]

Zhou Y, Berry CK, Storer PA, Raphael RM. Peroxidation of polyunsaturated phosphatidyl-choline lipids during electroformation. Biomaterials. 2007; 28: 1298-1306.

[36]

Elani Y, Law RV, Ces O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways. Nat Commun. 2014; 5: 5305.

[37]

Elani Y, Gee A, Law RV, Ces O. Engineering multi-compartment vesicle networks. Chem Sci. 2013; 4: 3332-3338.

[38]

Zhang Y, Tan CMJ, Toepfer CN, Lu X, Bayley H. Microscale droplet assembly enables biocompatible multifunctional modular iontronics. Science. 2024; 386: 1024-1030.

[39]

Dupin A, Simmel FC. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nat Chem. 2019; 11: 32-39.

[40]

Deshpande S, Brandenburg F, Lau A, et al. Spatiotemporal control of coacervate formation within liposomes. Nat Commun. 2019; 10: 1800.

[41]

Tan S, Ai Y, Yin X, et al. Recent Advances in microfluidic technologies for the construction of artificial cells. Adv Funct Mater. 2023; 33:2305071.

[42]

Liao J, Wang C, Wang Y, Luo F, Qian Z. Recent advances in formation, properties, and applications of polymersomes. Curr Pharm Des. 2012; 18: 3432-3441.

[43]

Kamat NP, Katz JS, Hammer DA. Engineering polymersome protocells. J Phys Chem Lett. 2011; 2: 1612-1623.

[44]

Ahmed F, Photos PJ, Discher DE. Polymersomes as viral capsid mimics. Drug Dev Res. 2006; 67: 4-14.

[45]

Palivan CG, Goers R, Najer A, Zhang X, Car A, Meier W. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem Soc Rev. 2016; 45: 377-411.

[46]

Levine DH, Ghoroghchian PP, Freudenberg J, et al. Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. Methods. 2008; 46: 25-32.

[47]

Surovtseva EV, Johnston AH, Zhang W, et al. Prestin binding peptides as ligands for targeted polymersome mediated drug delivery to outer hair cells in the inner ear. Int J Pharm. 2012; 424: 121-127.

[48]

Ke W, Li J, Mohammed F, et al. Therapeutic polymersome nanoreactors with tumor-specific activable cascade reactions for cooperative cancer therapy. ACS Nano. 2019; 13: 2357-2369.

[49]

Shilagardi K, Li S, Luo F, et al. Actin-Propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion. Science. 2013; 340: 359-363.

[50]

Zhang X, Tanner P, Graff A, Palivan CG, Meier W. Mimicking the cell membrane with block copolymer membranes. J Polym Sci, Part A: Polym Chem. 2012; 50: 2293-2318.

[51]

Wang X, Liu X, Huang X. Bioinspired protein-based assembling: toward advanced life-like behaviors. Adv Mater. 2020; 32:2001436.

[52]

Huang X, Li M, Green DC, Williams DS, Patil AJ, Mann S. Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells. Nat Commun. 2013; 4: 2239.

[53]

Duan L, He Q, Yan X, Cui Y, Wang K, Li J. Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique. Biochem Biophys Res Commun. 2007; 354: 357-362.

[54]

Mertz D, Cui J, Yan Y, et al. Protein Capsules assembled via isobutyramide grafts: sequential growth, biofunctionalization, and cellular uptake. ACS Nano. 2012; 6: 7584-7594.

[55]

Zhao C, Zhu M, Fang Y, et al. Engineering proteinosomes with renewable predatory behaviour towards living organisms. Mater Horiz. 2020; 7: 157-163.

[56]

Tang T-YD, Cecchi D, Fracasso G, et al. Gene-mediated chemical communication in synthetic protocell communities. ACS Synth Biol. 2018; 7: 339-346.

[57]

Zhao C, Zhu M, Fang Y, et al. Engineering proteinosomes with renewable predatory behaviour towards living organisms. Mater Horiz. 2020; 7: 157-163.

[58]

Li M, Huang X, Tang T-YD, Mann S. Synthetic cellularity based on non-lipid micro-compartments and protocell models. Curr Opin Chem Biol. 2014; 22: 1-11.

[59]

Park JH, Galanti A, Ayling I, Rochat S, Workentin MS, Gobbo P. Colloidosomes as a protocell model: engineering life-like behaviour through organic chemistry. Eur J Org Chem. 2022; 2022:e202200968.

[60]

Zhang Y, Bai P, Zhang M, Wei L, Zhang X, Yang H. Pickering droplet-derived silica microreactors with a biomimetic aqueous environment for continuous-flow enzymatic reactions. ACS Sustain Chem Eng. 2022; 10: 662-670.

[61]

Chandrawati R, van Koeverden MP, Lomas H, Caruso F. Multicompartment particle assemblies for bioinspired encapsulated reactions. J Phys Chem Lett. 2011; 2: 2639-2649.

[62]

Kim B, Jeon TY, Oh Y-K, Kim S-H. Microfluidic production of semipermeable microcapsules by polymerization-induced phase separation. Langmuir. 2015; 31: 6027-6034.

[63]

Liu Z, Yang T, Huang Y, et al. Electrocontrolled liquid marbles for rapid miniaturized organic reactions. Adv Funct Mater. 2019; 29:1901101.

[64]

Tang J, Quinlan PJ, Tam KC. Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter. 2015; 11: 3512-3529.

[65]

Geng Z, Cao Z, Liu J. Recent advances in targeted antibacterial therapy basing on nanomaterials. Exploration. 2023; 3:20210117.

[66]

Cai L, Li N, Zhang Y, Gu H, Zhu Y. Microfluidics-derived microcarrier systems for oral delivery. Biomed Technol. 2023; 1: 30-38.

[67]

Ding T, Zhu J, Guan H, et al. Photothermally triggered melting and perfusion: responsive colloidosomes for cytosolic delivery of membrane-impermeable drugs in tumor therapy. J Mater Chem B. 2022; 10: 1103-1115.

[68]

Kim J-W, Lee SS, Park J, Ku M, Yang J, Kim S-H. Smart microcapsules with molecular polarity- and temperature-dependent permeability. Small. 2019; 15:1900434.

[69]

Li M, Harbron RL, Weaver JVM, Binks BP, Mann S. Electrostatically gated membrane permeability in inorganic protocells. Nat Chem. 2013; 5: 529-536.

[70]

Frelichowska J, Bolzinger M-A, Pelletier J, Valour J-P, Chevalier Y. Topical delivery of lipophilic drugs from o/w Pickering emulsions. Int J Pharm. 2009; 371: 56-63.

[71]

Bollhorst T, Shahabi S, Wörz K, et al. Bifunctional submicron colloidosomes coassembled from fluorescent and superparamagnetic nanoparticles. Angew Chem Int Ed. 2015; 54: 118-123.

[72]

Tenjimbayashi M, Mouterde T, Roy PK, Uto K. Liquid marbles: review of recent progress in physical properties, formation techniques, and lab-in-a-marble applications in microreactors and biosensors. Nanoscale. 2023; 15: 18980-18998.

[73]

Sivan V, Tang S-Y, O'Mullane AP, et al. Liquid metal marbles. Adv Funct Mater. 2013; 23: 144-152.

[74]

Xue Y, Wang H, Zhao Y, et al. Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater. 2010; 22: 4814-4818.

[75]

Zhao Z, Ling C, Wang D, et al. Liquid marbles in liquid. Small. 2020; 16:2002802.

[76]

Tenjimbayashi M, Yamamoto S, Uto K. Drycells: cell-suspension micro liquid marbles for single-cell picking. Adv Mater. 2023; 35:2300486.

[77]

Gomez JC, Vishnosky NS, Kim ST, Dinca SA, Finkelstein EB, Steinhardt RC. Robotic locomotion and piezo1 activity controlled with novel liquid marble-based soft actuators. Adv Funct Mater. 2023; 33:2214893.

[78]

Wang B, Chan KF, Ji F, et al. On-demand coalescence and splitting of liquid marbles and their bioapplications. Adv Sci. 2019; 6:1802033.

[79]

Saczek J, Yao X, Zivkovic V, et al. Long-lived liquid marbles for green applications. Adv Funct Mater. 2021; 31:2011198.

[80]

Brangwynne CP, Eckmann CR, Courson DS, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science. 2009; 324: 1729-1732.

[81]

Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017; 18: 285-298.

[82]

Brangwynne CP. Phase transitions and size scaling of membrane-less organelles. J Cell Biol. 2013; 203: 875-881.

[83]

Oparin AI. The origin of life. Sci Cult. 1969; 34: 4-9.

[84]

Astoricchio E, Alfano C, Rajendran L, Temussi PA, Pastore A. The wide world of coacervates: from the sea to neurodegeneration. Trends Biochem Sci. 2020; 45: 706-717.

[85]

Choi S, Meyer MO, Bevilacqua PC, Keating CD. Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles. Nat Chem. 2022; 14: 1110-1117.

[86]

Tang T-YD, Rohaida Che Hak C, Thompson AJ, et al. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat Chem. 2014; 6: 527-533.

[87]

Tian L, Li M, Patil AJ, Drinkwater BW, Mann S. Artificial morphogen-mediated differentiation in synthetic protocells. Nat Commun. 2019; 10: 3321.

[88]

Zhang C, Liu X, Gong J, Zhao Q. Liquid sculpture and curing of bio-inspired polyelectrolyte aqueous two-phase systems. Nat Commun. 2023; 14: 2456.

[89]

Zhang S, Contini C, Hindley JW, Bolognesi G, Elani Y, Ces O. Engineering motile aqueous phase-separated droplets via liposome stabilisation. Nat Commun. 2021; 12: 1673.

[90]

Drobot B, Iglesias-Artola JM, Le Vay KL, et al. Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nat Commun. 2018; 9: 3643.

[91]

Magdalena Estirado E, Mason AF, Alemán García , van Hest JCM, Brunsveld L. Supramolecular nanoscaffolds within cytometric protocells as signal localization hubs. JACS. 2020; 142: 9106-9111.

[92]

Deng N-N, Huck WTS. Microfluidic formation of monodisperse coacervate organelles in liposomes. Angew Chem Int Ed. 2017; 56: 9736-9740.

[93]

Poudyal RR, Guth-Metzler RM, Veenis AJ, Frankel EA, Keating CD, Bevilacqua PC. Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates. Nat Commun. 2019; 10: 490.

[94]

Yewdall NA, André AAM, Lu T, Spruijt E. Coacervates as models of membraneless organelles. Curr Opin Colloid Interface Sci. 2021; 52:101416.

[95]

Nakashima KK, André AAM, Spruijt E. Chapter thirteen—enzymatic control over coacervation. In: Keating CD , ed. Methods Enzymol. Academic Press; 2021: 353-389.

[96]

Kumar BVVSP, Fothergill J, Bretherton J, et al. Chloroplast-containing coacervate micro-droplets as a step towards photosynthetically active membrane-free protocells. Chem Commun. 2018; 54: 3594-3597.

[97]

Balakrishnan G, Nicolai T, Benyahia L, Durand D. Particles trapped at the droplet interface in water-in-water emulsions. Langmuir. 2012; 28: 5921-5926.

[98]

Nguyen BT, Wang W, Saunders BR, Benyahia L, Nicolai T. pH-responsive water-in-water Pickering emulsions. Langmuir. 2015; 31: 3605-3611.

[99]

Perro A, Coudon N, Chapel J-P, Martin N, Béven L, Douliez J-P. Building micro-capsules using water-in-water emulsion droplets as templates. J Colloid Interface Sci. 2022; 613: 681-696.

[100]

Garenne D, Beven L, Navailles L, Nallet F, Dufourc EJ, Douliez J-P. Sequestration of proteins by fatty acid coacervates for their encapsulation within vesicles. Angew Chem Int Ed. 2016; 55: 13475-13479.

[101]

Liu J, Tian L, Qiao Y, et al. Hydrogel-immobilized coacervate droplets as modular microreactor assemblies. Angew Chem Int Ed. 2020; 59: 6853-6859.

[102]

Tan H, Guo S, Dinh N-D, Luo R, Jin L, Chen C-H. Heterogeneous multi-compartmental hydrogel particles as synthetic cells for incompatible tandem reactions. Nat Commun. 2017; 8: 663.

[103]

Hu X, Tong Z, Lyon LA. Multicompartment core/shell microgels. JACS. 2010; 132: 11470-11472.

[104]

He F, Wang W, He X-H, et al. Controllable multicompartmental capsules with distinct cores and shells for synergistic release. ACS Appl Mater Interfaces. 2016; 8: 8743-8754.

[105]

Feng Y, Zhang Z, Tang W, Dai Y. Gel/hydrogel-based in situ biomaterial platforms for cancer postoperative treatment and recovery. Exploration. 2023; 3:20220173.

[106]

Zhu Z, Yang CJ. Hydrogel droplet microfluidics for high-throughput single molecule/cell analysis. Acc Chem Res. 2017; 50: 22-31.

[107]

Luby-Phelps K. The physical chemistry of cytoplasm and its influence on cell function: an update. Mol Biol Cell. 2013; 24: 2593-2596.

[108]

Buenger D, Topuz F, Groll J. Hydrogels in sensing applications. Prog Polym Sci. 2012; 37: 1678-1719.

[109]

Galanti A, Moreno-Tortolero RO, Azad R, Cross S, Davis S, Gobbo P. A floating mold technique for the programmed assembly of protocells into protocellular materials capable of non-equilibrium biochemical sensing. Adv Mater. 2021; 33:2100340.

[110]

Cazimoglu I, Booth MJ, Bayley H. A Lipid-based droplet processor for parallel chemical signals. ACS Nano. 2021; 15: 20214-20224.

[111]

Wauer T, Gerlach H, Mantri S, Hill J, Bayley H, Sapra KT. Construction and manipulation of functional three-dimensional droplet networks. ACS Nano. 2014; 8: 771-779.

[112]

Downs FG, Lunn DJ, Booth MJ, et al. Multi-responsive hydrogel structures from patterned droplet networks. Nat Chem. 2020; 12: 363-371.

[113]

Holden MA, Needham D, Bayley H. Functional bionetworks from nanoliter water droplets. JACS. 2007; 129: 8650-8655.

[114]

Villar G, Heron AJ, Bayley H. Formation of droplet networks that function in aqueous environments. Nat Nanotechnol. 2011; 6: 803-808.

[115]

Shetty SC, Yandrapalli N, Pinkwart K, et al. Directed signaling cascades in monodisperse artificial eukaryotic cells. ACS Nano. 2021; 15: 15656-15666.

[116]

Li J, Baxani DK, Jamieson WD, et al. Formation of polarized, functional artificial cells from compartmentalized droplet networks and nanomaterials, using one-step, dual-material 3D-printed microfluidics. Adv Sci. 2020; 7:1901719.

[117]

Baxani DK, Morgan AJL, Jamieson WD, Allender CJ, Barrow DA, Castell OK. Bilayer networks within a hydrogel shell: a Robust chassis for artificial cells and a platform for membrane studies. Angew Chem Int Ed. 2016; 55: 14240-14245.

[118]

Elani Y, Solvas XCI, Edel JB, Law RV, Ces O. Microfluidic generation of encapsulated droplet interface bilayer networks (multisomes) and their use as cell-like reactors. Chem Commun. 2016; 52: 5961-5964.

[119]

Bachler S, Haidas D, Ort M, Duncombe TA, Dittrich PS. Microfluidic platform enables tailored translocation and reaction cascades in nanoliter droplet networks. Commun Biol. 2020; 3: 769.

[120]

Deng N-N, Yelleswarapu M, Zheng L, Huck WTS. Microfluidic assembly of monodisperse vesosomes as artificial cell models. JACS. 2017; 139: 587-590.

[121]

Kim S-H, Shum HC, Kim JW, Cho J-C, Weitz DA. Multiple polymersomes for programmed release of multiple components. JACS. 2011; 133: 15165-15171.

[122]

Ramsay K, Levy J, Gobbo P, Elvira KS. Programmed assembly of bespoke prototissues on a microfluidic platform. Lab Chip. 2021; 21: 4574-4585.

[123]

Wang H, Zhao Z, Liu Y, Shao C, Bian F, Zhao Y. Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci Adv. 2018; 4:eaat2816.

[124]

Chu L-Y, Utada AS, Shah RK, Kim J-W, Weitz DA. Controllable Monodisperse multiple emulsions. Angew Chem Int Ed. 2007; 46: 8970-8974.

[125]

Ugrinic M, deMello A, Tang T-YD. Microfluidic tools for bottom-up synthetic cellularity. Chem. 2019; 5: 1727-1742.

[126]

Ivanov T, Cao S, Doan-Nguyen TP, Bremm Madalosso H, Caire da Silva L, Landfester K. Assembly of multi-compartment cell mimics by droplet-based microfluidics. ChemSystemsChem. 2023; 5:e202300034.

[127]

Dupin A, Aufinger L, Styazhkin I, et al. Synthetic cell–based materials extract positional information from morphogen gradients. Sci Adv. 2022; 8:eabl9228.

[128]

Booth MJ, Restrepo Schild V, Box SJ, Bayley H. Light-patterning of synthetic tissues with single droplet resolution. Sci Rep. 2017; 7: 9315.

[129]

Yang Z, Wei J, Sobolev YI, Grzybowski BA. Systems of mechanized and reactive droplets powered by multi-responsive surfactants. Nature. 2018; 553: 313-318.

[130]

Bolognesi G, Friddin MS, Salehi-Reyhani A, et al. Sculpting and fusing biomimetic vesicle networks using optical tweezers. Nat Commun. 2018; 9: 1882.

[131]

Li J, Jamieson WD, Dimitriou P, et al. Building programmable multicompartment artificial cells incorporating remotely activated protein channels using microfluidics and acoustic levitation. Nat Commun. 2022; 13: 4125.

[132]

Wang X, Tian L, Ren Y, et al. Chemical information exchange in organized protocells and natural cell assemblies with controllable spatial positions. Small. 2020; 16:1906394.

[133]

Friddin MS, Bolognesi G, Elani Y, et al. Optically assembled droplet interface bilayer (OptiDIB) networks from cell-sized microdroplets. Soft Matter. 2016; 12: 7731-7734.

[134]

Qi C, Ma X, Zeng Q, et al. Multicompartmental coacervate-based protocell by spontaneous droplet evaporation. Nat Commun. 2024; 15: 1107.

[135]

Gobbo P, Patil AJ, Li M, Harniman R, Briscoe WH, Mann S. Programmed assembly of synthetic protocells into thermoresponsive prototissues. Nat Mater. 2018; 17: 1145-1153.

[136]

McMullen A, Muñoz Basagoiti M, Zeravcic Z, Brujic J. Self-assembly of emulsion droplets through programmable folding. Nature. 2022; 610: 502-506.

[137]

Mu W, Jia L, Zhou M, et al. Superstructural ordering in self-sorting coacervate-based protocell networks. Nat Chem. 2024; 16: 158-167.

[138]

Zhang Y, Riexinger J, Yang X, et al. A microscale soft ionic power source modulates neuronal network activity. Nature. 2023; 620: 1001-1006.

[139]

Helm CA, Israelachvili JN, McGuiggan PM. Role of hydrophobic forces in bilayer adhesion and fusion. Biochemistry. 1992; 31: 1794-1805.

[140]

Sapra KT, Bayley H. Lipid-coated hydrogel shapes as components of electrical circuits and mechanical devices. Sci Rep. 2012; 2: 848.

[141]

Shang L, Cheng Y, Zhao Y. Emerging droplet microfluidics. Chem Rev. 2017; 117: 7964-8040.

[142]

Nisisako T, Torii T, Takahashi T, Takizawa Y. Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater. 2006; 18: 1152-1156.

[143]

Zhao Y, Gu H, Xie Z, Shum HC, Wang B, Gu Z. Bioinspired multifunctional Janus particles for droplet manipulation. JACS. 2013; 135: 54-57.

[144]

Nisisako T, Portonovo SA, Schmidt JJ. Microfluidic passive permeability assay using nanoliter droplet interface lipid bilayers. Analyst. 2013; 138: 6793-6800.

[145]

Schlicht B, Zagnoni M. Droplet-interface-bilayer assays in microfluidic passive networks. Sci Rep. 2015; 5: 9951.

[146]

Deng N-N, Yelleswarapu M, Huck WTS. Monodisperse uni- and multicompartment liposomes. JACS. 2016; 138: 7584-7591.

[147]

Moragues T, Arguijo D, Beneyton T, et al. Droplet-based microfluidics. Nat Rev Methods Primers. 2023; 3: 32.

[148]

Graham AD, Olof SN, Burke MJ, et al. High-resolution patterned cellular constructs by droplet-based 3D printing. Sci Rep. 2017; 7: 7004.

[149]

Alcinesio A, Meacock OJ, Allan RG, et al. Controlled packing and single-droplet resolution of 3D-printed functional synthetic tissues. Nat Commun. 2020; 11: 2105.

[150]

Li Z, Li H, Li A, et al. Self-driven droplet vehicle for material patterning. Adv Funct Mater. 2021; 8:2101309.

[151]

Paven M, Mayama H, Sekido T, Butt H-J, Nakamura Y, Fujii S. Light-driven delivery and release of materials using liquid marbles. Adv Funct Mater. 2016; 26: 3199-3206.

[152]

Zhao Y, Xu Z, Niu H, Wang X, Lin T. Magnetic liquid marbles: toward “lab in a droplet”. Adv Funct Mater. 2015; 25: 437-444.

[153]

Makhoul-Mansour MM, El-Beyrouthy JB, Mao L, Freeman EC. Enhancing membrane-based soft materials with magnetic reconfiguration events. Sci Rep. 2022; 12: 1703.

[154]

Li Q, Li S, Zhang X, Xu W, Han X. Programmed magnetic manipulation of vesicles into spatially coded prototissue architectures arrays. Nat Commun. 2020; 11: 232.

[155]

Jonchhe S, Pan W, Pokhrel P, Mao H. Small molecules modulate liquid-to-solid transitions in phase-separated tau condensates. Angew Chem Int Ed. 2022; 61:e202113156.

[156]

Nichols MK, Kumar RK, Bassindale PG, et al. Fabrication of micropatterned dipeptide hydrogels by acoustic trapping of stimulus-responsive coacervate droplets. Small. 2018; 14:1800739.

[157]

Tian L, Martin N, Bassindale PG, et al. Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning. Nat Commun. 2016; 7:13068.

[158]

Bruus H. Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip. 2012; 12: 1014-1021.

[159]

Jeon B-J, Nguyen DT, Saleh OA. Sequence-controlled adhesion and microemulsification in a two-phase system of DNA liquid droplets. J Phys Chem B. 2020; 124: 8888-8895.

[160]

Sato Y, Sakamoto T, Takinoue M. Sequence-based engineering of dynamic functions of micrometer-sized DNA droplets. Sci Adv. 2020; 6:eaba3471.

[161]

Merindol R, Loescher S, Samanta A, Walther A. Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nat Nanotechnol. 2018; 13: 730-738.

[162]

Nuti N, Verboket PE, Dittrich PS. Multivesicular droplets: a cell model system to study compartmentalised biochemical reactions. Lab Chip. 2017; 17: 3112-3119.

[163]

Peters RJRW, Marguet M, Marais S, Fraaije MW, van Hest JCM, Lecommandoux S. Cascade reactions in multicompartmentalized polymersomes. Angew Chem Int Ed. 2014; 53: 146-150.

[164]

Sun S, Li S, Feng W, Luo J, Russell TP, Shi S. Reconfigurable droplet networks. Nat Commun. 2024; 15: 1058.

[165]

Booth MJ, Schild VR, Graham AD, Olof SN, Bayley H. Light-activated communication in synthetic tissues. Sci Adv. 2016; 2:e1600056.

[166]

Frallicciardi J, Melcr J, Siginou P, Marrink SJ, Poolman B. Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nat Commun. 2022; 13: 1605.

[167]

Awoonor-Williams E, Rowley CN. Molecular simulation of nonfacilitated membrane permeation. Biochim Biophys Acta Biomembr. 2016; 1858: 1672-1687.

[168]

Martinotti C, Ruiz-Perez L, Deplazes E, Mancera RL. Molecular dynamics simulation of small molecules interacting with biological membranes. ChemPhysChem. 2020; 21: 1486-1514.

[169]

Kiil F. Mechanism of osmosis. Kidney Int. 1982; 21: 303-308.

[170]

Melcr J, Bonhenry D, Timr Š, Jungwirth P. Transmembrane potential modeling: comparison between methods of constant electric field and ion imbalance. J Chem Theory Comput. 2016; 12: 2418-2425.

[171]

Alves-Gomes JA. The evolution of electroreception and bioelectrogenesis in teleost fish: a phylogenetic perspective. J Fish Biol. 2001; 58: 1489-1511.

[172]

Zhang Y, Sun T, Yang X, et al. A microscale soft lithium-ion battery for tissue stimulation. Nat Chem Eng. 2024;1:691-701.

[173]

Wiedmann JJ, Demirdögen YN, Schmidt S, et al. Nanoliter scale parallel liquid–liquid extraction for high-throughput purification on a droplet microarray. Small. 2023; 19:2204512.

[174]

Yang H, Fu L, Wei L, Liang J, Binks BP. Compartmentalization of incompatible reagents within Pickering emulsion droplets for one-pot cascade reactions. JACS. 2015; 137: 1362-1371.

[175]

Ng LS, Chong C, Lok XY, et al. Dynamic liquid–liquid interface: applying a spinning interfacial microreactor to actively converge biphasic reactants for the enhanced interfacial reaction. ACS Appl Mater Interfaces. 2022; 14: 45005-45012.

[176]

Liu X, Kent N, Ceballos A, et al. Reconfigurable ferromagnetic liquid droplets. Science. 2019; 365: 264-267.

[177]

Sun M, Sun B, Park M, et al. Individual and collective manipulation of multifunctional bimodal droplets in three dimensions. Sci Adv. 2024; 10:eadp1439.

[178]

Findlay HE, Harris NJ, Booth PJ. In vitro synthesis of a major facilitator transporter for specific active transport across droplet interface bilayers. Sci Rep. 2016; 6:39349.

[179]

Syeda R, Holden MA, Hwang WL, Bayley H. Screening blockers against a potassium channel with a droplet interface bilayer array. JACS. 2008; 130: 15543-15548.

[180]

Barriga HMG, Booth P, Haylock S, Bazin R, Templer RH, Ces O. Droplet interface bilayer reconstitution and activity measurement of the mechanosensitive channel of large conductance from Escherichia coli. J R Soc Interface. 2014; 11:20140404.

[181]

Tian J-Q, Chang M-Y, Chen C, Luo Z-H, Huck WTS, Deng N-N. Interfacial energy-mediated bulk transport across artificial cell membranes. Nat Chem Eng. 2024; 1: 450-461.

[182]

Yang C, Suo Z. Hydrogel ionotronics. Nat Rev Mater. 2018; 3: 125-142.

[183]

Zhang H, Li X, Hou J, Jiang L, Wang H. Angstrom-scale ion channels towards single-ion selectivity. Chem Soc Rev. 2022; 51: 2224-2254.

[184]

Shen J, Liu G, Han Y, Jin W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat Rev Mater. 2021; 6: 294-312.

[185]

Zhu TF, Szostak JW. Coupled growth and division of model protocell membranes. JACS. 2009; 131: 5705-5713.

[186]

Qiao Y, Li M, Booth R, Mann S. Predatory behaviour in synthetic protocell communities. Nat Chem. 2017; 9: 110-119.

[187]

Rodríguez-Arco L, Li M, Mann S. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects. Nat Mater. 2017; 16: 857-863.

[188]

Martin N, Douliez J-P, Qiao Y, Booth R, Li M, Mann S. Antagonistic chemical coupling in self-reconfigurable host–guest protocells. Nat Commun. 2018; 9: 3652.

RIGHTS & PERMISSIONS

2025 The Author(s). Droplet published by Jilin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

200

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/