Liquid directional transport surface applied to the spacecraft fluid management system: Fundamentals and prospect analysis

Yifan He , Wenshuai Xu , Kuo Yan , Lingling Zhao , Jun Wang , Kai Li , Jingyuan Liu , Heng Jiang

Droplet ›› 2025, Vol. 4 ›› Issue (2) : e165

PDF
Droplet ›› 2025, Vol. 4 ›› Issue (2) :e165 DOI: 10.1002/dro2.165
REVIEW ARTICLE

Liquid directional transport surface applied to the spacecraft fluid management system: Fundamentals and prospect analysis

Author information +
History +
PDF

Abstract

Liquid directional transport surfaces have the ability to control the movement of liquids in specific directions, making them highly applicable in various fields such as heat transfer, fluid management, microfluidics, and chemical engineering. This review aims to summarize the research progress on liquid directional transport surfaces and spacecraft fluid management devices. Among the different liquid control technologies available, certain surface design methods based on principles of fluid dynamics under microgravity show remarkable potential for space fluid management. Precise fluid management is crucial for the in-orbit operation of spacecraft. Utilizing surface tension effects represents the most direct and effective approach to achieve directional liquid transport in space. The intrinsic flow characteristics of the two-dimensional plane of directional transport surfaces are advantageous for managing fluids in the confined spaces of spacecraft. By analyzing the functional characteristics of these liquid directional transport surfaces, we assess their feasibility for integration into spacecraft fluid management devices. Considering the features of the space environment, this review also provides design guidelines for liquid directional transport surfaces suitable for use in spacecraft fluid management devices, serving as a significant reference for future research.

Cite this article

Download citation ▾
Yifan He, Wenshuai Xu, Kuo Yan, Lingling Zhao, Jun Wang, Kai Li, Jingyuan Liu, Heng Jiang. Liquid directional transport surface applied to the spacecraft fluid management system: Fundamentals and prospect analysis. Droplet, 2025, 4(2): e165 DOI:10.1002/dro2.165

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Farshchi Heydari MJ, Tabatabaei N, Rezai P. Low-cost resistive microfluidic salinity sensor for high-precision detection of drinking water salt levels. ACS Omega. 2022; 7: 15529-15539.

[2]

Yang Y, Guo Z, Liu W. Special superwetting materials from bioinspired to intelligent surface for on-demand oil/water separation: a comprehensive review. Small. 2022; 18:2204624.

[3]

Yang Z, Jin S, Zhang C, Ren J, Jing W, Wei X. Microfluidics-assisted synthesis of hydrogel microparticles with acoustic-magnetic control. Chem Eng Sci. 2023; 281:119082.

[4]

Martin A, Lalanne P, Weber-Vax A, Mutschler A, Lecommandoux S. Controlling polymersome size through microfluidic-assisted self-assembly: enabling ‘ready to use’ formulations for biological applications. Int J Pharm. 2023; 642:123157.

[5]

Liu K, Yao X, Jiang L. Recent developments in bio-inspired special wettability. Chem Soc Rev. 2010; 39: 3240-3255.

[6]

Zhang S, Huang J, Chen Z, Yang S, Lai Y. Liquid mobility on superwettable surfaces for applications in energy and the environment. J Mater Chem A. 2019; 7: 38-63.

[7]

Wang S, Lee JS, Wahiduzzaman M, et al. A robust large-pore zirconium carboxylate metal-organic framework for energy-efficient water-sorption-driven refrigeration. Nature Energy. 2018; 3: 985-993.

[8]

Zhou W, Min S, Zhan T, et al. Highly durable janus fabrics based on transfer prints for personal moisture management. Small. 2023; 19:2302512.

[9]

Ahrar S, Raje M, Lee IC, Hui EE. Pneumatic computers for embedded control of microfluidics. Sci Adv. 2023; 9:eadg0201.

[10]

Xie D, Sun Y, Wu Y, et al. Engineered switchable-wettability surfaces for multi-path directional transportation of droplets and subaqueous bubbles. Adv Mater. 2023; 35:2208645.

[11]

Himuro T, Tsukamoto S, Saito Y. Fabrication of a deoxyribonuclease sensor based on the electrical characteristics of DNA molecules. ACS Omega. 2022; 7: 23549-23554.

[12]

Burg TP, Godin M, Knudsen SM, et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature. 2007; 446: 1066-1069.

[13]

Bendre A, Hegde V, Ajeya KV, et al. Microfluidic-Assisted synthesis of metal—organic framework —alginate micro-particles for sustained drug delivery. Biosensors. 2023; 13: 737.

[14]

Wigzell JM, Racovita RC, Stentiford BG, et al. Smart water channelling through dual wettability by leaves of the bamboo Phyllostachys aurea. Colloids Surf A. 2016; 506: 344-355.

[15]

Mayser MJ, Bohn HF, Reker M, Barthlott W. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces. Beilstein J Nanotechnol. 2014; 5: 812-821.

[16]

Feng S, Zhu P, Zheng H, et al. Three-dimensional capillary ratchet-induced liquid directional steering. Science. 2021; 373: 1344-1348.

[17]

Chen H, Zhang P, Zhang L, et al. Continuous directional water transport on the peristome surface of Nepenthesalata. Nature. 2016; 532: 85-89.

[18]

Zheng Y, Gao X, Jiang L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter. 2007; 3: 178-182.

[19]

Parker AR, Lawrence CR. Water capture by a desert beetle. Nature. 2001; 414: 33-34.

[20]

Chen H, Ran T, Gan Y, et al. Ultrafast water harvesting and transport in hierarchical microchannels. Nat Mater. 2018; 17: 935-942.

[21]

Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L. A multi-structural and multi-functional integrated fog collection system in cactus. Nat Commun. 2012; 3: 1247.

[22]

Zheng Y, Bai H, Huang Z, et al. Directional water collection on wetted spider silk. Nature. 2010; 463: 640-643.

[23]

Prakash M, Quéré D, Bush JWM. Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science. 2008; 320: 931-934.

[24]

Chen F, Wang Y, Tian Y, et al. Robust and durable liquid-repellent surfaces. Chem Soc Rev. 2022; 51: 8476-8583.

[25]

Gulfam R, Chen Y. Recent growth of wettability gradient surfaces: a review. Research. 2022; 2022:9873075.

[26]

Feng S, Wang Q, Xing Y, Hou Y, Zheng Y. Continuous directional water transport on integrating tapered surfaces. Advanced Materials Interfaces. 2020; 7:2000081.

[27]

Wu H, Zhu K, Cao B, et al. Smart design of wettability-patterned gradients on substrate-independent coated surfaces to control unidirectional spreading of droplets. Soft Matter. 2017; 13: 2995-3002.

[28]

Li C, Yu C, Zhou S, Dong Z, Jiang L. Liquid harvesting and transport on multiscaled curvatures. P Natl Acad Sci USA. 2020; 117: 23436-23442.

[29]

Lafuma A, Quéré D. Slippery pre-suffused surfaces. Europhys Lett. 2011; 96:56001.

[30]

Li J, Zhao H, Wang L. Bioinspired depletion-resistant lubricant-infused surfaces with self-replenishing lubrication through capillary filament. Adv Mater Interfaces. 2021; 8:2100561.

[31]

Li J, Li W, Tang X, Han X, Wang L. Lubricant-mediated strong droplet adhesion on lubricant-impregnated surfaces. Langmuir. 2021; 37: 8607-8615.

[32]

Villegas M, Zhang Y, Abu Jarad N, Soleymani L, Didar TF. Liquid-infused surfaces: a review of theory, design, and applications. Acs Nano. 2019; 13: 8517-8536.

[33]

Peppou-Chapman S, Hong JK, Waterhouse A, Neto C. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem Soc Rev. 2020; 49: 3688-3715.

[34]

Howell C, Grinthal A, Sunny S, Aizenberg M, Aizenberg J. Designing liquid-infused surfaces for medical applications: a review. Adv Mater. 2018; 30:1802724.

[35]

Launay G, Sadullah MS, McHale G, Ledesma-Aguilar R, Kusumaatmaja H, Wells GG. Self-propelled droplet transport on shaped-liquid surfaces. Sci Rep. 2020; 10:14987.

[36]

Liu Q, Zhang J, Sun P, et al. Achieving ultralong directional liquid transportation spontaneously with a high velocity. J Mater Chem A. 2023; 11: 10164-10173.

[37]

Hu B, Duan Z, Xu B, et al. Ultrafast self-propelled directional liquid transport on the pyramid-structured fibers with concave curved surfaces. J Am Chem Soc. 2020; 142: 6111-6116.

[38]

Yang C, Yang K, Li M, Chen F, Yang Z. The investigation of droplet directional self-transport ability on the slippery liquid-infused surface with anisotropic structure. Prog Org Coat. 2022; 168:106857.

[39]

Yang C, Yang K, Li M, et al. Controllable droplet self-transport on multi-bioinspired slippery liquid-infused microstructure surface. Colloids Surf A. 2023; 656:130429.

[40]

Hou L, Liu X, Ge X, et al. Designing of anisotropic gradient surfaces for directional liquid transport: fundamentals, construction, and applications. Innovation. 2023; 4:100508.

[41]

Yang C, Zeng Q, Huang J, Guo Z. Droplet manipulation on superhydrophobic surfaces based on external stimulation: a review. Adv Colloid Interface Sci. 2022; 306:102724.

[42]

Li J, Han X, Li W, Yang L, Li X, Wang L. Nature-inspired reentrant surfaces. Prog Mater Sci. 2023; 133:101064.

[43]

Fan J, De Coninck J, Wu H, Wang F. Microscopic origin of capillary force balance at contact line. Phys Rev Lett. 2020; 124:125502.

[44]

Seo D, Chen S-Y, Lee DW, et al. The shape and dynamics of deformations of viscoelastic fluids by water droplets. J Colloid Interface Sci. 2020; 580: 776-784.

[45]

Style RW, Hyland C, Boltyanskiy R, Wettlaufer JS, Dufresne ER. Surface tension and contact with soft elastic solids. Nat Commun. 2013; 4: 2728.

[46]

Shanahan MER, Carré A. Spreading and dynamics of liquid drops involving nanometric deformations on soft substrates. Colloids Surf A. 2002; 206: 115-123.

[47]

Yu Y-s. Substrate elastic deformation due to vertical component of liquid-vapor interfacial tension. Appl Math Mech. 2012; 33: 1095-1114.

[48]

Patra N, Wang B, Král P. Nanodroplet activated and guided folding of graphene nanostructures. Nano Lett. 2009; 9: 3766-3771.

[49]

Yuan Q, Zhao Y-P. Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Phys Rev Lett. 2010; 104:246101.

[50]

Kim D, Pugno NM, Ryu S. Wetting theory for small droplets on textured solid surfaces. Sci Rep. 2016; 6:37813.

[51]

Ozcelik HG, Satiroglu E, Barisik M. Size dependent influence of contact line pinning on wetting of nano-textured/patterned silica surfaces. Nanoscale. 2020; 12: 21376-21391.

[52]

Cai T-m, Jia Z-h, Yang H-n, Wang G. Investigation of Cassie-Wenzel Wetting transitions on microstructured surfaces. Colloid Polym Sci. 2016; 294: 833-840.

[53]

Forsberg PSH, Priest C, Brinkmann M, Sedev R, Ralston J. Contact line pinning on microstructured surfaces for liquids in the Wenzel state. Langmuir. 2010; 26: 860-865.

[54]

Xu W, Choi C-H. From sticky to slippery droplets: dynamics of contact line depinning on superhydrophobic surfaces. Phys Rev Lett. 2012; 109:024504.

[55]

Li D, Xue Y, Lv P, Huang S, Lin H, Duan H. Receding dynamics of contact lines and size-dependent adhesion on microstructured hydrophobic surfaces. Soft Matter. 2016; 12: 4257-4265.

[56]

Paxson AT, Varanasi KK. Self-similarity of contact line depinning from textured surfaces. Nat Commun. 2013; 4: 1492.

[57]

Ma B, Shan L, Dogruoz B, Agonafer D. Evolution of microdroplet morphology confined on asymmetric micropillar structures. Langmuir. 2019; 35: 12264-12275.

[58]

Mori YH, van de Ven TGM, Mason SG. Resistance to spreading of liquids by sharp edged microsteps. Colloids Surf. 1982; 4: 1-15.

[59]

Oliver JF, Huh C, Mason SG. Resistance to spreading of liquids by sharp edges. J Colloid Interface Sci. 1977; 59: 568-581.

[60]

Wang Z, Lin K, Zhao Y-P. The effect of sharp solid edges on the droplet wettability. J Colloid Interface Sci. 2019; 552: 563-571.

[61]

Wang Z, Li B, Luo Q-Q, Zhao W. Effect of wall roughness by the bionic structure of dragonfly wing on microfluid flow and heat transfer characteristics. Int J Heat Mass Transfer. 2021; 173:121201.

[62]

Khezerloo M, Djenidi L, Tardu S. Combined effect of roughness and suction on heat transfer in a laminar channel flow. Int Commun Heat Mass Transfer. 2021; 126:105377.

[63]

Black WB, Graham MD. Slip, concentration fluctuations, and flow instability in sheared polymer solutions. Macromolecules. 2001; 34: 5731-5733.

[64]

Tenjimbayashi M, Manabe K. A review on control of droplet motion based on wettability modulation: principles, design strategies, recent progress, and applications. Sci Technol Adv Mater. 2022; 23: 473-497.

[65]

Concus P. Static menisci in a vertical right circular cylinder. J Fluid Mech. 1968; 34: 481-495.

[66]

Reynolds WC, Saad MA, Satterlee HM. Capillary Hydrostatics and Hydrodynamics at Low g. Technical report. Department of Mechanical Engineering, Stanford University; 1964.

[67]

Hastings LJ, Rutherford III R. Low Gravity Liquid-vapor Interface Shapes in Axisymmetric Containers and a Computer Solution. Technical report; 1968.

[68]

Finn R. A subsidiary variational problem and existence criteria for capillary surfaces. J für die Reine und Angew Math. 1984; 1984: 196-214.

[69]

Finn R, Leise T. On the canonical proboscis. Z für Anal ihre Anwend. 1994; 13: 443-462.

[70]

Chen S, Duan L, Kang Q. Study on propellant management device in plate surface tension tanks. Acta Mech Sin. 2021; 37: 1498-1508.

[71]

Mukherjee R, Berrier A, Murphy K, Vieitez J, Boreyko J. How surface orientation affects jumping-droplet condensation. Joule. 2019; 3: 1360-1376.

[72]

McCraney J, Ludwicki J, Bostwick J, Daniel S, Steen P. Coalescence-induced droplet spreading: experiments aboard the International Space Station. Phys Fluids. 2022; 34:122110.

[73]

Li W, Lan D, Sun H, Wang Y. Drop capturing based on patterned substrate in space. Langmuir. 2018; 34: 4715-4721.

[74]

Langbein D. Liquid surfaces in polyhedral containers. Microgravity Sci Technol. 1995; 8: 148-154.

[75]

Dreyer M, Rosendahl U, Rath H. Experimental investigation on flow rate limitations in open capillary vanes. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, USA, 1998:AIAA-98-3165.

[76]

de Lazzer A, Langbein D, Dreyer M, Rath HJ. Mean curvature of liquid surfaces in cylindrical containers of arbitrary cross-section. Microgravity Sci Technol. 1996; 9: 208-219.

[77]

Kulev N, Dreyer M. Drop tower experiments on non-isothermal reorientation of cryogenic liquids. Microgravity Sci Technol. 2010; 22: 463-474.

[78]

Rosendahl U, Grah A, Dreyer ME. Convective dominated flows in open capillary channels. Phys Fluids. 2010; 22:052102.

[79]

Washburn EW. The dynamics of capillary flow. Phys Rev. 1921; 17: 273.

[80]

Lucas R. Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid-Zeitschrift. 1918; 23: 15-22.

[81]

Weislogel MM, Lichter S. Capillary flow in an interior corner. J Fluid Mech. 1998; 373: 349-378.

[82]

Chen Y, Weislogel MM, Nardin CL. Capillary-driven flows along rounded interior corners. J Fluid Mech. 2006; 566: 235-271.

[83]

Li Y, Hu M, Liu L, Su Y-Y, Duan L, Kang Q. Study of capillary driven flow in an interior corner of rounded wall under microgravity. Microgravity Sci Technol. 2015; 27: 193-205.

[84]

Wu Z, Huang Y, Chen X, Zhang X. Capillary-driven flows along curved interior corners. Int J Multiph Flow. 2018; 109: 14-25.

[85]

Naidich YV, Gab II, Stetsyuk TV, Kostyuk BD. Simulation of the microgravity effect on wettability of solids with different liquids. Powder Metall Met Ceram. 2017; 55: 726-731.

[86]

Baghel V, Ranjan M. Numerical estimation of droplet motion on linear wettability gradient surface in microgravity environment. Mater Today Commun. 2022; 32:103916.

[87]

Subramanian RS, Moumen N, McLaughlin JB. Motion of a drop on a solid surface due to a wettability gradient. Langmuir. 2005; 21: 11844-11849.

[88]

Greenspan HP. On the motion of a small viscous droplet that wets a surface. J Fluid Mech. 1978; 84: 125-143.

[89]

Liu C, Sun J, Li J, et al. Long-range spontaneous droplet self-propulsion on wettability gradient surfaces. Sci Rep. 2017; 7: 7552.

[90]

Daniel S, Chaudhury MK, Chen JC. Fast drop movements resulting from the phase change on a gradient surface. Science. 2001; 291: 633-636.

[91]

Shastry A, Case MJ, Böhringer KF. Directing droplets using microstructured surfaces. Langmuir. 2006; 22: 6161-6167.

[92]

Li J, Tian X, Perros AP, Franssila S, Jokinen V. Self-Propelling and positioning of droplets using continuous topography gradient surface. Adv Mater Interfaces. 2014; 1:1400001.

[93]

Yu X, Wang Z, Jiang Y, Zhang X. Surface gradient material: from superhydrophobicity to superhydrophilicity. Langmuir. 2006; 22: 4483-4486.

[94]

Li J, Li J, Sun J, Feng S, Wang Z. Biological and engineered topological droplet rectifiers. Adv Mater. 2019; 31:1806501.

[95]

Liu Z, Liu H, Li W, Song J. Optimization of bioinspired surfaces with enhanced water transportation capacity. Chem Eng J. 2022; 433:134568.

[96]

Lv C, Chen C, Chuang Y-C, et al. Substrate curvature gradient drives rapid droplet motion. Phys Rev Lett. 2014; 113:026101.

[97]

Liang Y-E, Tsao H-K, Sheng Y-J. Drops on hydrophilic conical fibers: gravity effect and coexistent states. Langmuir. 2015; 31: 1704-1710.

[98]

Hou Y, Gao L, Feng S, et al. Temperature-triggered directional motion of tiny water droplets on bioinspired fibers in humidity. Chem Commun. 2013; 49: 5253-5255.

[99]

Mahmood A, Chen S, Chen C, Weng D, Wang J. Directional motion of water droplet on nanocone surface driven by curvature gradient: a molecular dynamics simulation study. J Phys Chem C. 2018; 122: 14937-14944.

[100]

Hanumanthu R, Stebe KJ. Equilibrium shapes and locations of axisymmetric, liquid drops on conical, solid surfaces. Colloids Surf A. 2006; 282-283: 227-239.

[101]

Liu J, Feng Z, Ouyang W, Shui L, Liu Z. Spontaneous movement of a droplet on a conical substrate: theoretical analysis of the driving force. ACS Omega. 2022; 7: 20975-20982.

[102]

Luo C, Heng X, Xiang M. Behavior of a liquid drop between two nonparallel plates. Langmuir. 2014; 30: 8373-8380.

[103]

Ataei M, Chen H, Amirfazli A. Behavior of a liquid bridge between nonparallel hydrophobic surfaces. Langmuir. 2017; 33: 14674-14683.

[104]

Chu K-H, Xiao R, Wang EN. Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat Mater. 2010; 9: 413-417.

[105]

Liu Y, Zhan H, He X, et al. Excellent liquid unidirectional transport inner tilted-sector arrayed tubes. Adv Mater Interfaces. 2023; 10:2300239.

[106]

Meng Q, Xu B, Tang Z, Wei Y, Jiang L, Liu H. Controlling directional liquid transport on dual cylindrical fibers with oriented open-wedges. Adv Mater Interfaces. 2022; 9:2101749.

[107]

Kubyshkina V, Orejon D, Dover CM, Sefiane K. Geometrical deposits on microstructured surfaces. J Bionic Eng. 2020; 17: 851-865.

[108]

Kim J, Ryu Y, Kim CH, Heo SG, Yoo K-Y, Yoon H. Robust superomniphobic micro-hyperbola structures formed by capillary wrapping of a photocurable liquid around micropillars. Adv Funct Mater. 2021; 31:2010053.

[109]

Wang G, Jia Z-h, Yang H-n. Stability of a water droplet on micropillared hydrophobic surfaces. Colloid Polym Sci. 2016; 294: 851-858.

[110]

Brown PS, Bhushan B. Durable, superoleophobic polymer–nanoparticle composite surfaces with re-entrant geometry via solvent-induced phase transformation. Sci Rep. 2016; 6:21048.

[111]

Liu TL, Kim C-JC. Turning a surface superrepellent even to completely wetting liquids. Science. 2014; 346: 1096-1100.

[112]

Song J, Pan W, Wang K, Chen F, Sun Y. Fabrication of micro-reentrant structures by liquid/gas interface shape-regulated electrochemical deposition. Int J Mach Tools Manuf. 2020; 159:103637.

[113]

Domingues EM, Arunachalam S, Nauruzbayeva J, Mishra H. Biomimetic coating-free surfaces for long-term entrapment of air under wetting liquids. Nat Commun. 2018; 9: 3606.

[114]

Kim S, Cheung E, Sitti M. Wet self-cleaning of biologically inspired elastomer mushroom shaped microfibrillar adhesives. Langmuir. 2009; 25: 7196-7199.

[115]

Arunachalam S, Das R, Nauruzbayeva J, Domingues EM, Mishra H. Assessing omniphobicity by immersion. J Colloid Interface Sci. 2019; 534: 156-162.

[116]

Kim DH, Kim S, Park SR, Fang NX, Cho YT. Shape-Deformed mushroom-like reentrant structures for robust liquid-repellent surfaces. ACS Appl Mater Interfaces. 2021; 13: 33618-33626.

[117]

Domingues EM, Arunachalam S, Mishra H. Doubly reentrant cavities prevent catastrophic wetting transitions on intrinsically wetting surfaces. ACS Appl Mater Interfaces. 2017; 9: 21532-21538.

[118]

Lin Y, Zhou R, Xu J. Superhydrophobic surfaces based on fractal and hierarchical microstructures using two-photon polymerization: toward flexible superhydrophobic films. Adv Mater Interfaces. 2018; 5:1801126.

[119]

Davoudinejad A, Cai Y, Pedersen DB, Luo X, Tosello G. Fabrication of micro-structured surfaces by additive manufacturing, with simulation of dynamic contact angle. Mater Design. 2019; 176:107839.

[120]

Kang B, Hyeon J, So H. Facile microfabrication of 3-dimensional (3D) hydrophobic polymer surfaces using 3D printing technology. Appl Surf Sci. 2020; 499:143733.

[121]

Lee C, Kim C-JC. Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir. 2009; 25: 12812-12818.

[122]

Credi C, Levi M, Turri S, Simeone G. Stereolithography of perfluoropolyethers for the microfabrication of robust omniphobic surfaces. Appl Surf Sci. 2017; 404: 268-275.

[123]

Zhao H, Park K-C, Law K-Y. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and “robustness”. Langmuir. 2012; 28: 14925-14934.

[124]

Si Y, Wang T, Li C, et al. Liquids unidirectional transport on dual-scale arrays. ACS Nano. 2018; 12: 9214-9222.

[125]

Yang XM, Zhong ZW, Li EQ, et al. Asymmetric liquid wetting and spreading on surfaces with slanted micro-pillar arrays. Soft Matter. 2013; 9: 11113-11119.

[126]

Lin Y, Hu Z, Gao C, Guo Z, Li C, Zheng Y. Directional droplet spreading transport controlled on tilt-angle pillar arrays. Adv Mater Interfaces. 2018; 5:1800962.

[127]

Buchberger G, Baumgartner R, Kogler A, Fritz T, Bauer S, Baumgartner W. Bio-inspired “fluidic diode” for large-area unidirectional passive water transport even against gravity. Sens Actuators, A. 2018; 283: 375-385.

[128]

Li J, Wang L. Coalescence-induced transition between unidirectional and bidirectional propagation of droplets. Mater Horiz. 2020; 7: 2078-2084.

[129]

Li X, Li J, Dong G. Bioinspired topological surface for directional oil lubrication. ACS Appl Mater Interfaces. 2020; 12: 5113-5119.

[130]

Chen X, Li X, Zuo P, et al. Three-dimensional maskless fabrication of bionic unidirectional liquid spreading surfaces using a phase spatially shaped femtosecond laser. ACS Appl Mater Interfaces. 2021; 13: 13781-13791.

[131]

Chen H, Zhang L, Zhang P, Zhang D, Han Z, Jiang L. A novel bioinspired continuous unidirectional liquid spreading surface structure from the peristome surface of nepenthes alata. Small. 2017; 13:1601676.

[132]

Zhang Y, Gan Y, Zhang L, Zhang D, Chen H. Surface-tension-confined channel with biomimetic microstructures for unidirectional liquid spreading. Micromachines. 2020; 11: 978.

[133]

Chen H, Zhang L, Zhang Y, Zhang P, Zhang D, Jiang L. Uni-directional liquid spreading control on a bio-inspired surface from the peristome of Nepenthes alata. J Mater Chem A. 2017; 5: 6914-6920.

[134]

Zhou S, Yu C, Li C, Jiang L, Dong Z. Droplets crawling on peristome-mimetic surfaces. Adv Funct Mater. 2020; 30:1908066.

[135]

Li C, Li N, Zhang X, Dong Z, Chen H, Jiang L. Uni-directional transportation on peristome-mimetic surfaces for completely wetting liquids. Angew Chem Int Ed. 2016; 55: 14988-14992.

[136]

Yu C, Li C, Gao C, Dong Z, Wu L, Jiang L. Time-dependent liquid transport on a biomimetic topological surface. ACS Nano. 2018; 12: 5149-5157.

[137]

Li J, Zhou X, Li J, et al. Topological liquid diode. Sci Adv. 2020; 3:eaao3530.

[138]

Sun W, Tang L, Hong W, Zhan Y, Yang B, Liu J. A novel microstructure inspired from Nepenthes alata and lizard skin and its enhanced uni-directional liquid spreading property. RSC Adv. 2019; 9: 7842-7848.

[139]

Li J, Zheng H, Zhou X, Zhang C, Liu M, Wang Z. Flexible topological liquid diode catheter. Mater Today Phys. 2020; 12:100170.

[140]

Li J, Zhou X, Tao R, Zheng H, Wang Z. Directional liquid transport from the cold region to the hot region on a topological surface. Langmuir. 2021; 37: 5059-5065.

[141]

Liao D, He M, Qiu H. High-performance icephobic droplet rebound surface with nanoscale doubly reentrant structure. Int J Heat Mass Transfer. 2019; 133: 341-351.

[142]

Li J, Li Y, Zheng H, et al. Strengthening unidirectional liquid pumping using multi-biomimetic structures. Extreme Mech Lett. 2021; 43:101144.

[143]

Ma C, Zhang D, Liu L, et al. Construction of the stable lubricant film on one-dimensional cone-structured surfaces for directional liquid transport. ACS Appl Mater Interfaces. 2023; 15: 39017-39024.

[144]

Feng S, Delannoy J, Malod A, Zheng H, Quéré D, Wang Z. Tip-induced flipping of droplets on Janus pillars: from local reconfiguration to global transport. Sci Adv. 2020; 6:eabb4540.

[145]

Sun S, Miao J, Tan R, Zhang T, Li G, Shen Y. Asymmetric soft-structure functional surface for intelligent liquids’ distinction, transportation, and reaction mixer. Adv Funct Mater. 2023; 33:2209769.

[146]

Li Y, Zhang Q, Wei X, Li K, Tian D, Jiang L. Curvature adjustable liquid transport on anisotropic microstructured elastic film. ACS Nano. 2023; 17: 6036-6044.

[147]

Sun J, Qin X, Song Y, et al. Selective liquid directional steering enabled by dual-scale reentrant ratchets. Int J Extreme Manuf. 2023; 5:025504.

[148]

Xie D, Zhang BY, Wang G, Sun Y, Wu C, Ding G. High-performance directional water transport using a two-dimensional periodic janus gradient structure. Small Methods. 2022; 6:2200812.

[149]

Ichimura K, Oh S-K, Nakagawa M. Light-driven motion of liquids on a photoresponsive surface. Science. 2000; 288: 1624-1626.

[150]

Lv J-a, Liu Y, Wei J, Chen E, Qin L, Yu Y. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature. 2016; 537: 179-184.

[151]

Guo J, Wang D, Sun Q, et al. Omni-liquid droplet manipulation platform. Adv Mater Interfaces. 2019; 6:1900653.

[152]

Zhang J, Wang X, Wang Z, et al. Wetting ridge assisted programmed magnetic actuation of droplets on ferrofluid-infused surface. Nat Commun. 2021; 12: 7136.

[153]

Chu L, Li W, Zhan Y, Amirfazli A. Magnetically responsive superhydrophobic surfaces with droplet manipulation capability. Adv Eng Mater. 2023; 25:2201352.

[154]

Yu J, Lao J, Chu D, et al. Reversible photodriven droplet motion on Ti3C2 MXene film for diverse liquids. ACS Appl Mater Interfaces. 2020; 12: 19194-19200.

[155]

Jin Y, Xu W, Zhang H, et al. Complete prevention of contact electrification by molecular engineering. Matter. 2021; 4: 290-301.

[156]

Lacks DJ, Shinbrot T. Long-standing and unresolved issues in triboelectric charging. Nat Rev Chem. 2019; 3: 465-476.

[157]

Stetten AZ, Golovko DS, Weber SAL, Butt H-J. Slide electrification: charging of surfaces by moving water drops. Soft Matter. 2019; 15: 8667-8679.

[158]

Jiang S, Li B, Zhao J, et al. Magnetic Janus origami robot for cross-scale droplet omni-manipulation. Nat Commun. 2023; 14: 5455.

[159]

Tang B, Meng C, Zhuang L, et al. Field-induced wettability gradients for no-loss transport of oil droplets on slippery surfaces. ACS Appl Mater Interfaces. 2020; 12: 38723-38729.

[160]

Jing X, Chen H, Zhang L, et al. Accurate magneto-driven multi-dimensional droplet manipulation. Adv Funct Mater. 2023; 33:2210883.

[161]

Sun Q, Wang D, Li Y, et al. Surface charge printing for programmed droplet transport. Nat Mater. 2019; 18: 936-941.

[162]

Li W, Tang X, Wang L. Photopyroelectric microfluidics. Sci Adv; 6:eabc1693.

[163]

Manabe K, Saito K, Nakano M, Ohzono T, Norikane Y. Light-driven liquid conveyors: manipulating liquid mobility and transporting solids on demand. ACS Nano. 2022; 16: 16353-16362.

[164]

Yuan Z, Lu C, Liu C, et al. Ultrasonic tweezer for multifunctional droplet manipulation. Sci Adv. 2023; 9:eadg2352.

[165]

Li A, Li H, Li Z, et al. Programmable droplet manipulation by a magnetic-actuated robot. Sci Adv. 2020; 6:eaay5808.

[166]

Link DR, Grasland-Mongrain E, Duri A, et al. Electric control of droplets in microfluidic devices. Angew Chem Int Ed. 2006; 45: 2556-2560.

[167]

Velev OD, Bhatt KH. On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter. 2006; 2: 738-750.

[168]

Gao C, Wang L, Lin Y, et al. Droplets manipulated on photothermal organogel surfaces. Adv Funct Mater. 2018; 28:1803072.

[169]

Zhan H, Xia Y, Liu Y, et al. Sustainable droplet manipulation on ultrafast lubricant self-mediating photothermal slippery surfaces. Adv Funct Mater. 2023; 33:2211317.

[170]

Hwang H, Papadopoulos P, Fujii S, Wooh S. Driving droplets on liquid repellent surfaces via light-driven marangoni propulsion. Adv Funct Mater. 2022; 32:2111311.

[171]

Mehta K, Peeketi AR, Liu L, Broer D, Onck P, Annabattula RK. Design and applications of light responsive liquid crystal polymer thin films. Appl Phys Rev. 2020; 7:041306.

[172]

Han K, Wang Z, Heng L, Jiang L. Photothermal slippery surfaces towards spatial droplet manipulation. J Mater Chem A. 2021; 9: 16974-16981.

[173]

Zhan H, Yuan Z, Li Y, et al. Versatile bubble maneuvering on photopyroelectric slippery surfaces. Nat Commun. 2023; 14: 6158.

[174]

Liu Y, Xia Y, Zhan H, Lu C, Yuan Z, Zhao L. An electrothermal platform for active droplet manipulation. RSC Adv. 2023; 13: 14041-14047.

[175]

Dai H, Gao C, Sun J, et al. Controllable high-speed electrostatic manipulation of water droplets on a superhydrophobic surface. Adv Mater. 2019; 31:1905449.

[176]

Li J, Ha NS, Liu TL, van Dam RM, Kim C-JC. Ionic-surfactant-mediated electro-dewetting for digital microfluidics. Nature. 2019; 572: 507-510.

[177]

Linke H, Alemán BJ, Melling LD, et al. Self-propelled Leidenfrost droplets. Phys Rev Lett. 2006; 96:154502.

[178]

Kruse C, Somanas I, Anderson T, et al. Self-propelled droplets on heated surfaces with angled self-assembled micro/nanostructures. Microfluid Nanofluid. 2015; 18: 1417-1424.

[179]

Liu C, Sun K, Lu C, et al. One-step process for dual-scale ratchets with enhanced mobility of Leidenfrost droplets. J Colloid Interface Sci. 2020; 569: 229-234.

[180]

Lagubeau G, Le Merrer M, Clanet C, Quéré D. Leidenfrost on a ratchet. Nat Phys. 2011; 7: 395-398.

[181]

Stringer M, Zeng Z, Zhang X, et al. Methodologies, technologies, and strategies for acoustic streaming-based acoustofluidics. Appl Phys Rev. 2023; 10:011315.

[182]

Tian Z, Wang Z, Zhang P, et al. Generating multifunctional acoustic tweezers in Petri dishes for contactless, precise manipulation of bioparticles. Sci Adv. 2020; 6:eabb0494.

[183]

Pan H, Mei D, Han S, et al. Morphologically reconfigurable magnetic micropillar arrays using acoustic streaming for particle capture and droplet manipulation. Sens Actuators, B. 2024; 412:135776.

[184]

Mats L, Logue F, Oleschuk RD. “Particle-free” magnetic actuation of droplets on superhydrophobic surfaces using dissolved paramagnetic salts. Anal Chem. 2016; 88: 9486-9494.

[185]

Hu D, Lai H, Cheng Z, et al. A magnetic-driven switchable adhesive superhydrophobic surface for in situ sliding control of superparamagnetic microdroplets. Adv Mater Interfaces. 2022; 9:2101660.

[186]

Kim S, Park Y-G, Kim J-Y, et al. Magnetic manipulation of locomotive liquid electrodes for wireless active cardiac monitoring. ACS Appl Mater Interfaces. 2023; 15: 28954-28963.

[187]

Azizian P, Mohammadrashidi M, Abbas Azimi A, Bijarchi MA, Shafii MB, Nasiri R. Magnetically driven manipulation of nonmagnetic liquid marbles: billiards with liquid marbles. Micromachines. 2023; 14: 49.

[188]

Wang X, Zhuang Z, Li X, Yao X. Droplet manipulation on bioinspired slippery surfaces: from design principle to biomedical applications. Small Methods. 2028; 8:2300253.

[189]

Searby NE. A design for fluid management in space. Acta Astronaut. 1986; 13: 403-410.

[190]

Wang Y, Wang Z, Cheng X, Yang G, Wu J. Pressure-driven phase separation based on modified porous mesh for liquid management in microgravity. Langmuir. 2022; 38: 2919-2927.

[191]

Conboy TM, Daines GW, O'Neill LE, Zagarola MV, Hartwig JW. Development of a hybrid screen channel liquid acquisition device for reliable microgravity transfer of cryogenic fluids. Cryogenics. 2022; 127:103569.

[192]

Liu J, Li Y, Li W, Zhai H, Chen L. Testing liquid distribution in a vane-type propellant tank under conditions of microgravity using a drop tower test. Int J Aerospace Eng. 2020; 2020:6402083.

[193]

Chen S, Han Z, Duan L, Kang Q. Experimental and numerical study on capillary flow along deflectors in plate surface tension tanks in microgravity environment. AIP Adv. 2019; 9:025020.

[194]

Wu Z, Li K, Han W, Li G, Fan C, Xu B. Simulation analysis of liquid flow in a vane-type surface tension tank. Microgravity Sci Technol. 2022; 34: 80.

[195]

Liu J, Li Y, Li W, et al. Experimental study on liquid sloshing of a vane-type surface tension tank for satellite. Microgravity Sci Technol. 2022; 34: 83.

[196]

Camarotti CF, Hartwig JW, Wang H, Chung JN. A transient hydrodynamic model of screen channel liquid acquisition devices for in-space cryogenic propellant management. Phys Fluids. 2022; 34:117111.

[197]

Li H, Yang Y, Zhu X, et al. Droplet transportation on photosensitive lubricant-impregnated slippery surfaces in response to the light induced Marangoni effect and asymmetrical wetting ridges. Soft Matter. 2023; 19: 7323-7333.

[198]

Gao A, Butt H-J, Steffen W, Schönecker C. Optical manipulation of liquids by thermal marangoni flow along the air–water interfaces of a superhydrophobic surface. Langmuir. 2021; 37: 8677-8686.

[199]

Wang Q, Li L, Gu J, Zhang C, Lyu J, Yao W. Manipulation of a nonconductive droplet in an aqueous fluid with ac electric fields: droplet dewetting, oscillation, and detachment. Langmuir. 2021; 37: 12098-12111.

[200]

Sun X, Wang X, Guo P, Jiang L, Heng L. Photoelectric synergistic anisotropic slippery interface for directional droplets manipulation. Nanoscale. 2023; 15: 14523-14530.

[201]

Shao K, Jiang S, Hu Y, et al. Bioinspired lubricated slippery magnetic responsive microplate array for high performance multi-substance transport. Adv Funct Mater. 2022; 32:2205831.

[202]

Ji X-Y, Li Y-Z, Liu G-Q, et al. A brief review of ground and flight failures of Chinese spacecraft. Prog Aerosp Sci. 2019; 107: 19-29.

[203]

Hengeveld DW, Mathison MM, Braun JE, Groll EA, Williams AD. Review of modern spacecraft thermal control technologies. HVAC&R Res. 2010; 16: 189-220.

[204]

Wang J, Li Y, Liu X, Shen C, Zhang H, Xiong K. Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China. Chin J Aeronaut. 2021; 34: 1-27.

[205]

Guo X, Cheng S, Cai W, Zhang Y, Zhang X-a. A review of carbon-based thermal interface materials: mechanism, thermal measurements and thermal properties. Mater Design. 2021; 209:109936.

[206]

Montesano MJ. Spacecraft thermal management solutions using annealed pyrolytic graphite. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, IL, USA, 2008:AIAA 2008-1958.

[207]

Shaddock D, Weaver S, Chasiotis I, Shah B, Zhong D. Development of a compliant nanothermal interface material. ASME 2011 Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, Portland, Oregon, USA, 2011: 13-17.

[208]

Wasniewski JR, Altman DH, Hodson SL, et al. Characterization of metallically bonded carbon nanotube-based thermal interface materials using a high accuracy 1D steady-state technique. ASME J Electron Packag. 2012; 134:020901.

[209]

Zhao Y, Strauss D, Liao T, Chen YC, Chen CL. Development of a high performance thermal interface material with vertically aligned graphite platelets. ASME/JSME 2011 8th Thermal Engineering Joint Conference, Honolulu, Hawaii, USA, 2011:AJTEC2011-44169.

[210]

Alshehhi A, Almarar A, Alshehhi Y, Alameri M. Thermal design evaluation of loop heat pipe for small satellite applications using graphene nano-particles. 70thInternational Astronautical Congress (IAC), Washington, DC, USA, 2019:IAC-19,C2,8,4,x49340.

[211]

Richard B, Anderson WG, Crawmer J. Development of a 3D printed loop heat pipe. 2019 35th Semiconductor Thermal Measurement, Modeling and Management Symposium (SEMI-THERM), San Jose, CA, USA, 2019: 58-60.

[212]

Lee J, Kim D, Mun J, Kim S. Heat-transfer characteristics of a cryogenic loop heat pipe for space applications. Energies. 2020; 13: 1616.

[213]

Guo Y, Zhou Q, Liu X, et al. Co-designing cryogenic system with pulse tube cryocooler and loop heat pipe for infrared energy management. Appl Therm Eng. 2021; 195:117228.

[214]

Lv Y-G, Wang Y-T, Meng T, Wang Q-W, Chu W-X. Review on thermal management technologies for electronics in spacecraft environment. Energy Storage and Saving. 2024; 3: 153-189.

[215]

Birur GC, Sur TW, Paris AD, et al. Micro/nano spacecraft thermal control using a MEMS-based pumped liquid cooling system. Proceedings of SPIE 4560, Microfluidics and BioMEMS, San Francisco, CA, USA, 2001.

[216]

Martin K, Bar-Cohen A, Maurer JJ. Modeling and simulation challenges in embedded two phase cooling: DARPA's ICECool program. ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, San Francisco, California, USA, 2015:IPACK2015-48334.

[217]

Altman DH, Gupta A, Tyhach M. Development of a diamond microfluidics-based intra-chip cooling technology for GaN. ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems collocated with the ASME 2015 13th International Conference on Nanochannels, Microchannels, and Minichannels, San Francisco, California, USA, 2015:IPACK2015-48179.

[218]

Huang Y, Yang Q, Zhao J, et al. Experimental study on flow boiling heat transfer characteristics of ammonia in microchannels. Microgravity Sci Technol. 2020; 32: 477-492.

[219]

Chu W-X, Huang K-C, Amer M, Wang C-C. Experimental and numerical investigations on jet impingement cooling for electronic modules. J Heat Transfer. 2019; 141:102201.

[220]

Plant RD, Friedman J, Saghir MZ. A review of jet impingement cooling. Int J Thermofluids. 2023; 17:100312.

[221]

Ekkad SV, Singh P. A modern review on jet impingement heat transfer methods. J Heat Transfer. 2021; 143:064001.

[222]

Xu R, Wang G, Jiang P. Spray cooling on enhanced surfaces: a review of the progress and mechanisms. J Electron Packag. 2022; 144:010802.

[223]

Benther JD, Pelaez-Restrepo J, Stanley C, Rosengarten G. Heat transfer during multiple droplet impingement and spray cooling: review and prospects for enhanced surfaces. Int J Heat Mass Transfer. 2021; 178:121587.

[224]

Liang G, Mudawar I. Review of spray cooling–Part 1: single-phase and nucleate boiling regimes, and critical heat flux. Int J Heat Mass Transfer. 2017; 115: 1174-1205.

[225]

Golliher EL, Zivich CP, Yao SC. Exploration of unsteady spray cooling for high power electronics at microgravity using NASA Glenn's drop tower. ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems, San Francisco, California, USA, 2005: 609-612.

[226]

Baysinger KM, Yerkes KL, Michalak TE, Harris RJ, McQuillen J. Design of a microgravity spray cooling experiment. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 2004:AIAA 2004-966.

[227]

Kreitzer PJ, Glaspell SL, Kuhlman JM, Mehra D, Gray DD. Electrical Force Effects on Spray Cooling. SAE Technical Paper; 2006.

[228]

Chang Y, Wang Z, Shi Y-e, et al. Hydrophobic W18O49 mesocrystal on hydrophilic PTFE membrane as an efficient solar steam generation device under one sun. J Mater Chem A. 2018; 6: 10939-10946.

[229]

Wang J-X, Guo W, Xiong K, Wang S-N. Review of aerospace-oriented spray cooling technology. Prog Aerosp Sci. 2020; 116:100635.

[230]

Zeitlin C, Hassler DM, Cucinotta FA, et al. Measurements of energetic particle radiation in transit to mars on the mars science laboratory. Science. 2013; 340: 1080-1084.

[231]

Shkaplero AN, Cherkashina NI, Pavlenko VI, et al. Changes in the Vickers hardness, wettability, structural and mechanical properties of the «shielding composite» under the exposure to cosmic radiation. Eng Fail Anal. 2023; 152:107470.

[232]

Qin D, Guo J, Liang M, Qin L, Chen L, He W. Modification of surface characteristics of ophthalmic biomaterial-polymethyl methacrylate induced by cobalt 60 gamma irradiation. PLoS One. 2023; 18:e0291344.

[233]

Seshadri A, Forrest EC, Shirvan K. Why ionizing radiation enhances surface wettability. Appl Surf Sci. 2020; 514:145935.

[234]

Zhang Q, Zhang N, Li K, et al. Dynamically adjustable wet ridge for directional liquid movement and controllable coating distribution. Chem Eng J. 2023; 469:143998.

[235]

Bai H, Wang X, Li Z, et al. Improved liquid collection on a dual-asymmetric superhydrophilic origami. Adv Mater. 2023; 35:2211596.

[236]

Wang L, Yin K, Deng Q, Huang Q, He J, Duan J-A. Wetting ridge-guided directional water self-transport. Adv Sci. 2022; 9:2204891.

[237]

Yu X, Lai H, Kang H, Liu Y, Wang Y, Cheng Z. Underoil directional self-transportation of water droplets on a TiO2-coated conical spine. ACS Appl Mater Interfaces. 2022; 14: 6274-6282.

[238]

Han K, Wang Z, Han X, et al. Active manipulation of functional droplets on slippery surface. Adv Funct Mater. 2022; 32:2207738.

[239]

Xu B, Chen X, Shi Z, et al. Electrochemical on-site switching of the directional liquid transport on a conical fiber. Adv Mater. 2022; 34:2200759.

[240]

Wang R, Jin F, Li Y, et al. Magnetic responsive on-site switching of the directional droplet self-transport in shape memory slippery tube. Adv Funct Mater. 2023; 33:2305766.

[241]

Xu W, Jin Y, Li W, et al. Triboelectric wetting for continuous droplet transport. Sci Adv. 2022; 8:eade2085.

[242]

Chen X, Hu Z, Lyu Q, Li M, Zhang L, Zhu J. Shape memory photonic materials: fabrication and emerging applications. J Mater Chem C. 2023; 11: 12466-12485.

[243]

Yang H, D'Ambrosio N, Liu P, Pasini D, Ma L. Shape memory mechanical metamaterials. Mater Today. 2023; 66: 36-49.

[244]

Wang L, Zhang F, Liu Y, Leng J. γ-rays radiation resistant shape memory cyanate ester resin and its composites with high transition temperature. Smart Mater Struct. 2019; 28:075039.

[245]

Kholkhoev BC, Bardakova KN, Nikishina AN, et al. 4D-printing of mechanically durable high-temperature shape memory polymer with good irradiation resistance. Appl Mater Today. 2024; 36:102022.

[246]

Wang L, Wang R, Wang J, Wong T-S. Compact nanoscale textures reduce contact time of bouncing droplets. Sci Adv. 2020; 6:eabb2307.

[247]

de Ruiter J, Lagraauw R, van den Ende D, Mugele F. Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat Phys. 2015; 11: 48-53.

[248]

Lee S-H, Harth K, Rump M, et al. Drop impact on hot plates: contact times, lift-off and the lamella rupture. Soft Matter. 2020; 16: 7935-7949.

[249]

Zhan H, Lu C, Liu C, Wang Z, Lv C, Liu Y. Horizontal motion of a superhydrophobic substrate affects the drop bouncing dynamics. Phys Rev Lett. 2021; 126:234503.

[250]

Han X, Tang X, Zhao H, Li W, Li J, Wang L. Spatio-temporal maneuvering of impacting drops. Mater Horiz. 2021; 8: 3133-3140.

[251]

Liu C, Lu C, Yuan Z, Lv C, Liu Y. Steerable drops on heated concentric microgroove arrays. Nat Commun. 2022; 13: 3141.

[252]

Chen S, Ye Z, Duan L, Kang Q. Capillary driven flow in oval tubes under microgravity. Phys Fluids. 2021; 33:032111.

[253]

Li Y-Q, Dong J-Y, Rui W. Numerical simulation for capillary driven flow in capsule-type vane tank with clearances under microgravity. Microgravity Sci Technol. 2020; 32: 321-329.

[254]

Cheng X, Chen Y, Li H, Li B, Han X, Xin G. Investigation on capillary flow in tubes with variable diameters. J Porous Media. 2019; 22: 1627-1638.

[255]

Chassagne R, Dörfler F, Guyenot M, Harting J. Modeling of capillary-driven flows in axisymmetric geometries. Comput Fluids. 2019; 178: 132-140.

[256]

Li J-C, Lin H, Zhao J-F, Li K, Hu W-R. Dynamic behaviors of liquid in partially filled tank in short-term microgravity. Microgravity Sci Technol. 2018; 30: 849-856.

[257]

Yang P, Wang X, Liu Y, Yan C, Wang X. Numerical simulation of vapor configuration and bubbles coalescence in cryogenic propellant tank under microgravity. Microgravity Sci Technol. 2023; 35: 20.

[258]

Wei Y, Chen X, Huang Y. Interior corner flow theory and its application to the satellite propellant management device design. Sci China: Technol Sci. 2011; 54: 1849-1854.

[259]

Yue B, Wang Z. Numerical study of three-dimensional free surface dynamics. Acta Mech Sin. 2006; 22: 120-125.

[260]

Collicott S, Weislogel M. Modeling of the operation of the VTRE propellant management device. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, Indiana, USA, 2002:AIAA 2002-4140.

[261]

Weislogel M, Collicott S. Analysis of tank PMD rewetting following thrust resettling. 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 2002:AIAA 2002-0757.

[262]

Dong M, Chatzis I. The imbibition and flow of a wetting liquid along the corners of a square capillary tube. J Colloid Interface Sci. 1995; 172: 278-288.

[263]

Jaekle JD. Propellant management device conceptual design and analysis—Vanes. 27th Joint Propulsion Conference, Sacramento, CA, USA, 1991:AIAA-91-2172.

[264]

Paul C, Robert F. On capillary free surfaces in the absence of gravity. Acta Math. 1974; 132: 177-198.

[265]

Concus P, Finn R. On the behavior of a capillary surface in a wedge. P Natl Acad Sci USA. 1969; 63: 292-299.

[266]

Sequeira Y, Maitra A, Pandey A, Jung S. Revisiting the NASA surface tension driven convection experiments. npj Microgravity. 2022; 8: 5.

RIGHTS & PERMISSIONS

2025 The Author(s). Droplet published by Jilin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

217

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/