Synergistic effect in liquidmetal heartbeatwith high-efficiency energy conversion

Shutong Wang , Sicheng Wang , Binbin Zhou , Dongmei Ren , Zhenwei Yu

Droplet ›› 2025, Vol. 4 ›› Issue (1) : e161

PDF
Droplet ›› 2025, Vol. 4 ›› Issue (1) : e161 DOI: 10.1002/dro2.161
RESEARCH ARTICLE

Synergistic effect in liquidmetal heartbeatwith high-efficiency energy conversion

Author information +
History +
PDF

Abstract

The phenomenon of liquid metal “heartbeat” oscillation presents intriguing applications in microfluidic devices, drug delivery, andminiature robotics. However, achieving high vibrational kinetic energy outputs in these systems remains challenging. In this study, we developed a graphite ring electrode with V-shaped inner wall that enables wide-ranging control over the oscillation performance based on droplet size and the height of the V-shape. The mechanism driving the heartbeat is defined as a dynamic process involving the transformation of the oxide layer. Through electrochemical analysis, we confirmed three distinct states of the heartbeat and introduced a novel model to elucidate the role of the V-shaped structure in initiating and halting the oscillations. A comprehensive series of experiments explored how various factors, such as droplet volume, voltage, tilt angle, and V-shape height, affect heartbeat performance, achieving a significant conversion from surface energy to vibrational kinetic energy as high as 4732 J m−2 s−1. The increase in energy output is attributed to the synergistic effect of the V-shape height and droplet size on the oscillations. These results not only advance our understanding of liquidmetal droplet manipulation but also pave the way for designing high-speed microfluidic pumping systems.

Cite this article

Download citation ▾
Shutong Wang, Sicheng Wang, Binbin Zhou, Dongmei Ren, Zhenwei Yu. Synergistic effect in liquidmetal heartbeatwith high-efficiency energy conversion. Droplet, 2025, 4(1): e161 DOI:10.1002/dro2.161

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yuan B, Wang L, Yang X, et al. Liquid metal machine triggered violin-like wire oscillator. Adv Sci. 2016;3:1600212.

[2]

Yu ZW, Chen YC, Yun FF, Wang XL. Simultaneous fast deformation and solidification in supercooled liquid gallium at room temperature. Adv Eng Mater. 2017;19:1700190.

[3]

Yu Z, Yun FF, Wang X. A novel liquid metal patterning technique: voltage induced non-contact electrochemical lithography at room temperature. Mater Horiz. 2018;5:36-40.

[4]

Joshipura ID, Nguyen CK, Quinn C, et al. An atomically smooth container: can the native oxide promote supercooling of liquid gallium? iScience. 2023;26:106493.

[5]

Tang S-Y, Lin Y, Joshipura ID, Khoshmanesh K, Dickey MD. Steering liquid metal flow in microchannels using low voltages. Lab Chip. 2015;15:3905-3911.

[6]

Tang S-Y, Khoshmanesh K, Sivan V, et al. Liquid metal enabled pump. Proc Natl Acad Sci U S A. 2014;111:3304-3309.

[7]

Khoshmanesh K, Tang S-Y. Zhu JY, et al. Liquid metal enabled microfluidics. Lab Chip. 2017;17:974-993.

[8]

Han J, Mayyas M, Tang J, et al. Liquid metal enabled continuous flow reactor: a proof-of-concept. Matter. 2021;4:4022-4041.

[9]

Wu J, Tang S-Y. Fang T, et al. A wheeled robot driven by a liquid-metal droplet. Adv Mater. 2018;30:1805039.

[10]

Li X, Tang S-Y. Li S, et al. A robot boat powered by liquid metal engines. Adv Mater Technol. 2021;6:2000840.

[11]

Li X, Li S, Lu Y, et al. Programmable digital liquid metal droplets in reconfigurable magnetic fields. ACS Appl Mater Inter. 2020;12:37670-37679.

[12]

Li F, Shu J, Zhang L, et al. Liquid metal droplet robot. Appl Mater Today. 2020;19:100597.

[13]

Chen Y, Chen X, Zhu Z, et al. 3D actuation of foam-core liquid metal droplets. Soft Matter. 2023;19:1293-1299.

[14]

Lippmann G. Beziehungen zwischen den capillaren und elektrischen Erscheinungen. Ann Phys. 1873;225:546-561.

[15]

Dai L, Wu X, Hu Z, et al. An oscillation system based on a liquid metal droplet and pillars under a direct current electric field. Langmuir. 2023;39:9315-9324.

[16]

Khan MR, Eaker CB, Bowden EF, Dickey MD. Giant and switchable surface activity of liquid metal via surface oxidation. Proc Natl Acad Sci U S A. 2014;111:14047-14051.

[17]

Ma J, Krisnadi F, Vong MH, et al. Shaping a soft future: patterning liquid metals. Adv Mater. 2023;35:2205196.

[18]

Mayyas M, Khoshmanesh K, Kumar P, et al. Gallium-based liquid metal reaction media for interfacial precipitation of bismuth nanomaterials with controlled phases and morphologies. Adv Funct Mater. 2022;32:2108673.

[19]

Liu X-J, Li Z-Q. Jin Z-G, et al. Energy conversion during electrically actuated jumping of droplets. Acta Phys Sin. 2022;71:114702. (in Chinese).

[20]

Yi L, Wang Q, Liu J. Self-powered gallium-based liquid-metal beating heart. J Phys Chem A. 2019;123:9268-9273.

[21]

Yi L, Ding Y, Yuan B, et al. Breathing to harvest energy as a mechanism towards making a liquid metal beating heart. RSC Adv. 2016;6:94692-94698.

[22]

Wang B, Jiang X, Zhang Y, Yu L, Zhang Y. A safer alternative for the mercury beating heart demonstration. J Chem Educ. 2022;99:1095-1099.

[23]

Chen S, Yang X, Wang H, Wang R, Liu J. AI-assisted high frequency self-powered oscillations of liquid metal droplets. Soft Matter. 2019;15:8971-8975.

[24]

Wang L, Liu J. Graphite induced periodical self-actuation of liquid metal. RSC Adv. 2016;6:60729-60735.

[25]

Ge Z, Tao Y, Liu W, et al. DC electric field-driven heartbeat phenomenon of gallium-based liquid metal on a floating electrode. Soft Matter. 2022;18:609-616.

[26]

Yu Z, Chen Y, Yun FF, et al. Discovery of a voltage-stimulated heartbeat effect in droplets of liquid gallium. Phys Rev Lett. 2018;121:024302.

[27]

Li D-D, Wang Q, Liu J. A tunable liquid metal electronic oscillator as a DC-AC converter. Soft Matter. 2022;18:5185-5193.

[28]

He Y, You J, Dickey MD, Wang X. Liquid-metal transfer from an anode to a cathode without short circuiting. Nat Chem Eng. 2024;1:293-300.

[29]

Wang B, Wang Q, Jiang X, et al. Direct current (DC) electric field-enabled beating heart of Ga-based liquid metal. J Chem Educ. 2022;99:3337-3341.

[30]

Verma DK, Contractor AQ, Parmananda P. Potential-dependent topological modes in the mercury beating heart system. J Phys Chem A. 2013;117:267-274.

[31]

Li G, Du J, Zhang A, Lee DW. Artificial heart based on electrically controlled non-toxic liquid metal pump. Adv Eng Mater. 2019;21:1900381.

[32]

Eaker CB, Hight DC, O’Regan JD, Dickey MD, Daniels KE. Oxidation-mediated fingering in liquid metals. Phys Rev Lett. 2017;119:174502.

[33]

Handschuh-Wang S, Stadler FJ, Zhou X. Critical review on the physical properties of gallium-based liquid metals and selected pathways for their alteration. J Phys Chem C. 2021;125:20113-20142.

[34]

Sheng L, Zhang J, Liu J. Diverse transformations of liquid metals between different morphologies. Adv Mater. 2014;26:6036.

[35]

Li X, Cao L, Xiao B, et al. Superelongation of liquid metal. Adv Sci. 2022;9:2105289.

[36]

Hennig R, Cacucciolo V, Shea H. Actuating droplets with electrowetting: force and dynamics. Droplet. 2024;3:e108.

[37]

Zhao X, Qiao M, Zhou Y, Liu J. Liquid metal droplet dynamics. Droplet. 2024;3:e104.

[38]

Wang S, Zhang Y, Wang J, Ren D, Yu Z. Electrically driven heartbeat effect of gallium-based liquid metal on a ratchet. Front Bioeng Biotechnol. 2023;10:1094482.

[39]

Lee SW, Subramanian A, Zamudio FB, et al. Interaction of gallium with a copper surface: surface alloying and formation of ordered structures. J Phys Chem C. 2023;127:20700-20709.

[40]

Extrand CW, Moon SI. When sessile drops are no longer small: transitions from spherical to fully flattened. Langmuir. 2010;26:11815-11822.

[41]

Rotenberg Y, Boruvka L, Neumann AW. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J Colloid Interface Sci. 1983;93:169-183.

[42]

Song M, Kartawira K, Hillaire KD, et al. Overcoming Rayleigh-Plateau instabilities: stabilizing and destabilizing liquid-metal streams via electrochemical oxidation. Proc Natl Acad Sci U S A. 2020;117:19026-19032.

[43]

Dickey MD. Emerging applications of liquid metals featuring surface oxides. ACS Appl Mater Inter. 2014;6:18369-18379.

[44]

Chung Y, Lee CW. Electrochemistry of gallium. J Electrochem Sci Technol. 2013;4:1-18.

RIGHTS & PERMISSIONS

2025 The Author(s). Droplet published by Jilin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/