Advancements in liquid marbles as an open microfluidic platform: Rapid formation, robust manipulation, and revolutionary applications

Tong Tong , Huaiqing Hu , Yuanhao Xie , Jing Jin

Droplet ›› 2025, Vol. 4 ›› Issue (2) : e160

PDF
Droplet ›› 2025, Vol. 4 ›› Issue (2) :e160 DOI: 10.1002/dro2.160
REVIEW ARTICLE

Advancements in liquid marbles as an open microfluidic platform: Rapid formation, robust manipulation, and revolutionary applications

Author information +
History +
PDF

Abstract

Liquid marbles (LMs) have become a focal point in microfluidics for their efficient manipulation of small liquid volumes. These non-wetting droplets, typically coated with hydrophobic particles, offer enhanced stability, reduced evaporation and diverse utility, distinguishing them from bare droplets. This review examines advancements in LMs from 2014 to 2024, focusing on their rapid formation, robust manipulation, and revolutionary applications—termed the “3R trilogy.” We delve into the generation mechanisms, analyzing laboratory and engineering production techniques, and explore how surface particles affect LMs’ physicochemical properties. The structural dynamics and motion control of LMs are investigated, detailing their response to external forces and environmental factors. The review also highlights the state-of-the-art applications of LMs in digital microfluidics, biochemical analysis, materials synthesis, environmental monitoring, soft robotics, and energy harvesting. Concluding with a discussion on significant progress and future development trends, this review provides insights and ideas for broader applications of LM-based microfluidic platforms.

Cite this article

Download citation ▾
Tong Tong, Huaiqing Hu, Yuanhao Xie, Jing Jin. Advancements in liquid marbles as an open microfluidic platform: Rapid formation, robust manipulation, and revolutionary applications. Droplet, 2025, 4(2): e160 DOI:10.1002/dro2.160

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Whitesides GM. The origins and the future of microfluidics. Nature. 2006; 442: 368-373.

[2]

Squires TM, Quake SR. Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys. 2005; 77: 977-1026.

[3]

Battat S, Weitz DA, Whitesides GM. An outlook on microfluidics: the promise and the challenge. Lab Chip. 2022; 22: 530-536.

[4]

Teh S-Y, Lin R, Hung L-H, Lee AP. Droplet microfluidics. Lab Chip. 2008; 8: 198-220.

[5]

Moragues T, Arguijo D, Beneyton T, et al. Droplet-based microfluidics. Nat Rev Methods Primers. 2023; 3: 32.

[6]

Guo MT, Rotem A, Heyman JA, Weitz DA. Droplet microfluidics for high-throughput biological assays. Lab Chip. 2012; 12: 2146-2155.

[7]

Li J, Kim C-J. Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics. Lab Chip. 2020; 20: 1705-1712.

[8]

Zheng L, Handschuh-Wang S, Ye Z, Wang B. Liquid metal droplets enabled soft robots. Appl Mater Today. 2022; 27:101423.

[9]

Bormashenko E. Liquid marbles: properties and applications. Curr Opin Colloid Interface Sci. 2011; 16: 266-271.

[10]

McHale G, Newton MI. Liquid marbles: principles and applications. Soft Matter. 2011; 7: 5473-5481.

[11]

Pike N, Richard D, Foster W, Mahadevan L. How aphids lose their marbles. Proc R Soc Lond Ser B. 2002; 269: 1211-1215.

[12]

Aussillous P, Quéré D. Liquid marbles. Nature. 2001; 411: 924-927.

[13]

Ooi CH, Nguyen N-T. Manipulation of liquid marbles. Microfluid Nanofluid. 2015; 19: 483-495.

[14]

Huang Z, Xie Y, Chen H, Yu Z, Shi L, Jin J. Fundamentals and manipulation of bare droplets and liquid marbles as open microfluidic platforms. Processes. 2023; 11: 983.

[15]

Tenjimbayashi M, Mouterde T, Roy PK, Uto K. Liquid marbles: review of recent progress in physical properties, formation techniques, and lab-in-a-marble applications in microreactors and biosensors. Nanoscale. 2023; 15: 18980-18998.

[16]

Lobel BT, Thomas CA, Ireland PM, Wanless EJ, Webber GB. Liquid marbles, formation and locomotion using external fields and forces. Adv Powder Technol. 2021; 32: 1823-1832.

[17]

Nguyen N-K, Ooi CH, Singha P, et al. Liquid marbles as miniature reactors for chemical and biological applications. Processes. 2020; 8: 793.

[18]

Saczek J, Yao X, Zivkovic V, et al. Long-lived liquid marbles for green applications. Adv Funct Mater. 2021; 31:2011198.

[19]

Singha P, Ooi CH, Nguyen N-K, Sreejith KR, Jin J, Nguyen N-T. Capillarity: revisiting the fundamentals of liquid marbles. Microfluid Nanofluid. 2020; 24: 81.

[20]

Asare-Asher S, Connor JN, Sedev R. Elasticity of liquid marbles. J Colloid Interface Sci. 2015; 449: 341-346.

[21]

Polwaththe-Gallage H-N, Ooi CH, Jin J, et al. The stress-strain relationship of liquid marbles under compression. Appl Phys Lett. 2019; 114:043701.

[22]

Liu Z, Fu X, Binks BP, Shum HC. Mechanical compression to characterize the robustness of liquid marbles. Langmuir. 2015; 31: 11236-11242.

[23]

Akbari MJ, Bijarchi MA, Shafii MB. Experimental investigation on the bouncing dynamics of a liquid marble during the impact on a hydrophilic surface. J Colloid Interface Sci. 2024; 662: 637-652.

[24]

Nguyen TH, Hapgood K, Shen W. Observation of the liquid marble morphology using confocal microscopy. Chem Eng J. 2010; 162: 396-405.

[25]

Asaumi Y, Rey M, Oyama K, et al. Effect of stabilizing particle size on the structure and properties of liquid marbles. Langmuir. 2020; 36: 13274-13284.

[26]

Gallo A, Tavares F, Das R, Mishra H. How particle‒particle and liquid‒particle interactions govern the fate of evaporating liquid marbles. Soft Matter. 2021; 17: 7628-7644.

[27]

McHale G, Shirtcliffe NJ, Newton MI, Pyatt FB, Doerr SH. Self-organization of hydrophobic soil and granular surfaces. Appl Phys Lett. 2007; 90:054110.

[28]

Larmour IA, Saunders GC, Bell SEJ. Sheets of large superhydrophobic metal particles self assembled on water by the cheerios effect. Angew Chem Int Ed. 2008; 47: 5043-5045.

[29]

Lekshmi BS, Varanakkottu SN. Droplet-impact driven formation of ultralow volume liquid marbles with enhanced mechanical stability and sensing ability. Langmuir. 2022; 38: 11743-11752.

[30]

Liyanaarachchi KR, Ireland PM, Webber GB, Galvin KP. Electrostatic formation of liquid marbles and agglomerates. Appl Phys Lett. 2013; 103:054105.

[31]

Bhosale PS, Panchagnula MV. Sweating liquid micro-marbles: dropwise condensation on hydrophobic nanoparticulate materials. Langmuir. 2012; 28: 14860-14866.

[32]

Krov M, Rychecký O, Prachár M, Zadražil A, Šrámek R, Štěpánek F. Operating limits and parametric sensitivity of laboratory device for continuous production of liquid marbles. Powder Technol. 2022; 411:117944.

[33]

Lekshmi BS, Yadav AS, Ranganathan P, Varanakkottu SN. Simple and continuous fabrication of Janus liquid marbles with tunable particle coverage based on controlled droplet impact. Langmuir. 2020; 36: 15396-15402.

[34]

Bormashenko E, Bormashenko Y, Pogreb R, Gendelman O. Janus droplets: liquid marbles coated with dielectric/semiconductor particles. Langmuir. 2011; 27: 7-10.

[35]

Tenjimbayashi M, Samitsu S, Watanabe Y, Nakamura Y, Naito M. Liquid marble patchwork on super-repellent surface. Adv Funct Mater. 2021; 31:2010957.

[36]

Li X, Wang Y, Huang J, et al. Monolayer nanoparticle-covered liquid marbles derived from a sol‒gel coating. Appl Phys Lett. 2017; 111:261604.

[37]

Geyer F, Asaumi Y, Vollmer D, Butt H-J, Nakamura Y, Fujii S. Polyhedral liquid marbles. Adv Funct Mater. 2019; 29:1808826.

[38]

Li X, Xue Y, Lv P, et al. Liquid plasticine: controlled deformation and recovery of droplets with interfacial nanoparticle jamming. Soft Matter. 2016; 12: 1655-1662.

[39]

Serrano MC, Nardecchia S, Gutiérrez MC, Ferrer ML, del Monte F. Mammalian cell cryopreservation by using liquid marbles. ACS Appl Mater Interfaces. 2015; 7: 3854-3860.

[40]

Draper TC, Phillips N, Weerasekera R, et al. Contactless sensing of liquid marbles for detection, characterisation & computing. Lab Chip. 2020; 20: 136-146.

[41]

Eshtiaghi N, Liu JS, Shen W, Hapgood KP. Liquid marble formation: spreading coefficients or kinetic energy? Powder Technol. 2009; 196: 126-132.

[42]

Supakar T, Moradiafrapoli M, Christopher GF, Marston JO. Spreading, encapsulation and transition to arrested shapes during drop impact onto hydrophobic powders. J Colloid Interface Sci. 2016; 468: 10-20.

[43]

Ireland PM, Thomas CA, Lobel BT, Webber GB, Fujii S, Wanless EJ. Electrostatic formation of liquid marbles—statistical model. J Phys: Conf Ser. 2019; 1322:012006.

[44]

Lobel BT, Ireland PM, Walsh LS, Thomas CA, Webber GB, Wanless EJ. Electrostatic transfer of conductive particles for the formation of liquid marbles‒charge transfer behavior. J Phys Chem C. 2020; 124: 9947-9957.

[45]

Forny L, Saleh K, Pezron I, Komunjer L, Guigon P. Influence of mixing characteristics for water encapsulation by self-assembling hydrophobic silica nanoparticles. Powder Technol. 2009; 189: 263-269.

[46]

Hapgood KP, Farber L, Michaels JN. Agglomeration of hydrophobic powders via solid spreading nucleation. Powder Technol. 2009; 188: 248-254.

[47]

Forny L, Pezron I, Saleh K, Guigon P, Komunjer L. Storing water in powder form by self-assembling hydrophobic silica nanoparticles. Powder Technol. 2007; 171: 15-24.

[48]

Xiong H, Shi X, Wang C, He J, Chen X. Fabrication structure design of liquid marbles. 2nd International Conference on Mechanical Engineering, Intelligent Manufacturing and Automation Technology, Guilin, China, 2022: 1-4.

[49]

Geim AK. Graphene: status and prospects. Science. 2009; 324: 1530-1534.

[50]

Gao W, Lee HK, Hobley J, Liu T, Phang IY, Ling XY. Graphene liquid marbles as photothermal miniature reactors for reaction kinetics modulation. Angew Chem Int Ed. 2015; 54: 3993-3996.

[51]

Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res. 2015; 6: 105-121.

[52]

Leite ÁJ, Oliveira NM, Song W, Mano JF. Bioactive hydrogel marbles. Sci Rep. 2018; 8:15215.

[53]

Chen R, Xiong Q, Song R-Z, et al. Magnetically controllable liquid metal marbles. Adv Mater Interfaces. 2019; 6:1901057.

[54]

Pereira V, Ang ZZ, Chong C, Li H, Lee HK. Spinnable hydrogel marbles: a dynamic miniature molecule concentrator for efficient water decontamination and colorimetric detection. Chem Eng J. 2024; 480:148132.

[55]

Popelka A, Padmanabhan AC, Elgendy AS, et al. Perfluoroctylsilane grafted Ti3C2X-based hydrogel liquid marble for controlled movement, self-assembly, light-induced release, and water evaporation system. Mater Today Commun. 2023; 35:105529.

[56]

Li N, Wanyan H, Lu S, et al. Robust cellulose-based hydrogel marbles with excellent stability for gas sensing. Carbohydr Polym. 2023; 306:120617.

[57]

Sivan V, Tang S-Y, O'Mullane AP, et al. Liquid metal marbles. Adv Funct Mater. 2013; 23: 144-152.

[58]

Ding Y, Liu J. Water film coated composite liquid metal marble and its fluidic impact dynamics phenomenon. Front Energy. 2016; 10: 29-36.

[59]

Jeong J, Lee J-B, Chung SK, Kim D. Electromagnetic three dimensional liquid metal manipulation. Lab Chip. 2019; 19: 3261-3267.

[60]

Xu Z, Zhao Y, Dai L, Lin T. Multi-responsive Janus liquid marbles: the effect of temperature and acidic/basic vapors. Part Part Syst Charact. 2014; 31: 839-842.

[61]

Lekshmi BS, Varanakkottu SN. Janus liquid marbles: fabrication techniques, recent developments, and applications. Droplet. 2023; 2:e44.

[62]

Asaumi Y, Rey M, Vogel N, Nakamura Y, Fujii S. Particle monolayer-stabilized light-sensitive liquid marbles from polypyrrole-coated microparticles. Langmuir. 2020; 36: 2695-2706.

[63]

Shi H, Li X. Monolayer nanoparticle-covered liquid marble production with low surface tension liquids. Adv Mater Interfaces. 2020; 7:2001081.

[64]

Fujiwara J, Geyer F, Butt H-J, Hirai T, Nakamura Y, Fujii S. Shape-designable polyhedral liquid marbles/plasticines stabilized with polymer plates. Adv Mater Interfaces. 2020; 7:2001573.

[65]

Liu H, Peng C, Guo S, Liu X, Li X. Rod-shaped liquid plasticine as cuttable minireactor for photodynamic therapy of tumors. Small. 2024; 20:2309535.

[66]

Salehabad SM, Azizian S, Fujii S. Shape-designable liquid marbles stabilized by gel layer. Langmuir. 2019; 35: 8950-8960.

[67]

Li X, Shi H, Wang Y, et al. Liquid shaping based on liquid pancakes. Adv Mater Interfaces. 2018; 5:1701139.

[68]

Niu J, Liu W, Li JX, et al. Machining water through laser cutting of nanoparticle-encased water pancakes. Nat Commun. 2023; 14: 3853.

[69]

Li X, Pang X, Jiang H, et al. Open millifluidics based on powder-encased channels. Proc Natl Acad Sci U S A. 2023; 120:e2302907120.

[70]

Starostin A, Strelnikov V, Dombrovsky L, Shoval S, Bormashenko E. Three scenarios of freezing of liquid marbles. Colloids Surf A Physicochem Eng Asp. 2021; 636:128125.

[71]

Liu M, Chen C, Yu J, et al. The gelatin-based liquid marbles for cell cryopreservation. Mater Today Bio. 2022; 17:100477.

[72]

Zhu C, Zhang Y, Shekh MI, Dong B, Yan X, Zhu G. Advancing inorganic microcapsule fabrication through frozen-assisted interfacial reactions utilizing liquid marbles. ACS Appl Mater Interfaces. 2023; 15: 50437-50446.

[73]

Dupin D, Armes SP, Fujii S. Stimulus-responsive liquid marbles. J Am Chem Soc. 2009; 131: 5386-5387.

[74]

Ohno S, Tsuda Y, Nakai K, Fujii S, Nakamura Y, Yusa S-I. pH-responsive liquid marbles prepared using fluorinated fatty acid. Chem Lett. 2016; 45: 547-549.

[75]

Zhang J, Gu Y, Jiang J, Zheng R. pH-responsive liquid marbles based on dihydroxystearic acid. Langmuir. 2022; 38: 5702-5707.

[76]

Kumar S, Barman N, Borbora A, Mondal P, Tenjimbayashi M, Manna U. pH-triggered adjustable bursting of liquid marbles in water pools. J Mater Chem A. 2024; 12: 3362-3372.

[77]

Bormashenko E, Musin A. Revealing of water surface pollution with liquid marbles. Appl Surf Sci. 2009; 255: 6429-6431.

[78]

Yusa S-I, Morihara M, Nakai K, et al. Thermo-responsive liquid marbles. Polym J. 2014; 46: 145-148.

[79]

Tan TTY, Ahsan A, Reithofer MR, et al. Photoresponsive liquid marbles and dry water. Langmuir. 2014; 30: 3448-3454.

[80]

Tsumura Y, Oyama K, Fameau A-L, et al. Photo/thermo dual stimulus-responsive liquid marbles stabilized with polypyrrole-coated stearic acid particles. ACS Appl Mater Interfaces. 2022; 14: 41618-41628.

[81]

Xue Y, Wang H, Zhao Y, et al. Magnetic liquid marbles: a “precise” miniature reactor. Adv Mater. 2010; 22: 4814-4818.

[82]

Zang D, Li J, Chen Z, Zhai Z, Geng X, Binks BP. Switchable opening and closing of a liquid marble via ultrasonic levitation. Langmuir. 2015; 31: 11502-11507.

[83]

Chen Z, Zang D, Zhao L, et al. Liquid marble coalescence and triggered microreaction driven by acoustic levitation. Langmuir. 2017; 33: 6232-6239.

[84]

Lin W, Lai S, Lu D, et al. An acousto-assisted liquid-marble-based microreactor for quantitative SERS detection of alkaline phosphatase. Sens Actuators B Chem. 2022; 356:131361.

[85]

Wang B, Chan KF, Ji F, et al. On-demand coalescence and splitting of liquid marbles and their bioapplications. Adv Sci. 2019; 6:1802033.

[86]

Liu Z, Yang T, Huang Y, et al. Electrocontrolled liquid marbles for rapid miniaturized organic reactions. Adv Funct Mater. 2019; 29:1901101.

[87]

Lv Q, Li J, Wang R, Zhang L. Ultraviolet-light-triggered coalescence of liquid marbles for multistep microreactions. Part Part Syst Charact. 2023; 40:2300076.

[88]

Zhao Y, Fang J, Wang H, Wang X, Lin T. Magnetic liquid marbles: manipulation of liquid droplets using highly hydrophobic Fe3O4 nanoparticles. Adv Mater. 2010; 22: 707-710.

[89]

Sarkhosh MH, Yousefi M, Bijarchi MA, Pishkenari HN, Forghani K. Manipulation of ferrofluid marbles and droplets using repulsive force in magnetic digital microfluidics. Sens Actuator A Phys. 2023; 363:114733.

[90]

Azizian P, Mohammadrashidi M, Azimi AA, Bijarchi MA, Shafii MB, Nasiri R. Magnetically driven manipulation of nonmagnetic liquid marbles: billiards with liquid marbles. Micromachines. 2023; 14: 49.

[91]

Mohammadrashidi M, Bijarchi MA, Shafii MB, Taghipoor M. Experimental and theoretical investigation on the dynamic response of ferrofluid liquid marbles to steady and pulsating magnetic fields. Langmuir. 2023; 39: 2246-2259.

[92]

Aussillous P, Quéré D. Properties of liquid marbles. Proc R Soc A. 2006; 462: 973-999.

[93]

Newton MI, Herbertson DL, Elliott SJ, Shirtcliffe NJ, McHale G. Electrowetting of liquid marbles. J Phys D Appl Phys. 2007; 40: 20.

[94]

Fu X, Zhang Y, Yuan H, Binks BP, Shum HC. Controlled actuation of liquid marbles on a dielectric. ACS Appl Mater Interfaces. 2018; 10: 34822-34827.

[95]

Ooi CH, Jin J, Nguyen AV, Evans GM, Nguyen N-T. Picking up and placing a liquid marble using dielectrophoresis. Microfluid Nanofluid. 2018; 22: 142.

[96]

Jin J, Ooi CH, Sreejith KR, Dao DV, Nguyen NT. Dielectrophoretic trapping of a floating liquid marble. Phys Rev Appl. 2019; 11:044059.

[97]

Frenkel M, Dombrovsky L, Multanen V, et al. Self-propulsion of water-supported liquid marbles filled with sulfuric acid. J Phys Chem B. 2018; 122: 7936-7942.

[98]

Paven M, Mayama H, Sekido T, Butt H-J, Nakamura Y, Fujii S. Light-driven delivery and release of materials using liquid marbles. Adv Funct Mater. 2016; 26: 3199-3206.

[99]

Uda M, Kawashima H, Mayama H, Hirai T, Nakamura Y, Fujii S. Locomotion of a nonaqueous liquid marble induced by near-infrared-light irradiation. Langmuir. 2021; 37: 4172-4182.

[100]

Uda M, Fujiwara J, Seike M, et al. Controllable positive/negative phototaxis of millimeter-sized objects with sensing function. Langmuir. 2021; 37: 11093-11101.

[101]

Tang X, Tang S-Y, Sivan V, et al. Photochemically induced motion of liquid metal marbles. Appl Phys Lett. 2013; 103:174104.

[102]

Draper TC, Fullarton C, Phillips N, de Lacy Costello BPJ, Adamatzky A. Liquid marble actuator for microfluidic logic systems. Sci Rep. 2018; 8:14153.

[103]

Ragisha CM, Varanakkottu SN. Optically controlled liquid marble transport platform. IOP Conf Ser Mater Sci Eng. 2022; 1221:012030.

[104]

Han X, Lee HK, Lim WC, et al. Spinning liquid marble and its dual applications as microcentrifuge and miniature localized viscometer. ACS Appl Mater Interfaces. 2016; 8: 23941-23946.

[105]

Nguyen N-K, Singha P, Dai Y, et al. Controllable high-performance liquid marble micromixer. Lab Chip. 2022; 22: 1508-1518.

[106]

Pang X, Duan M, Liu H, Xi Y, Shi H, Li X. Oscillation-induced mixing advances the functionality of liquid marble microreactors. ACS Appl Mater Interfaces. 2022; 14: 11999-12009.

[107]

Nguyen N-K, Singha P, An H, Phan H-P, Nguyen N-T, Ooi CH. Electrostatically excited liquid marble as a micromixer. React Chem Eng. 2021; 6: 1386-1394.

[108]

Zhang Y, Furyk S, Bergbreiter DE, Cremer PS. Specific ion effects on the water solubility of macromolecules: pnipam and the Hofmeister series. J Am Chem Soc. 2005; 127: 14505-14510.

[109]

Bielas R, Kubiak T, Molcan M, Dobosz B, Rajnak M, Józefczak A. Biocompatible hydrogel-based liquid marbles with magnetosomes. Materials. 2024; 17: 99.

[110]

Tice JD, Lyon AD, Ismagilov RF. Effects of viscosity on droplet formation and mixing in microfluidic channels. Ana Chim Acta. 2004; 507: 73-77.

[111]

Rong X, Ettelaie R, Lishchuk SV, et al. Liquid marble-derived solid‒liquid hybrid superparticles for CO2 capture. Nat Commun. 2019; 10: 1854.

[112]

Fernandes AM, Paulis M, Yuan J, Mecerreyes D. Magnetic poly(ionic liquid) microcapsules for oil capture and recovery. Part Part Syst Charact. 2016; 33: 734-739.

[113]

Han X, Koh CSL, Lee HK, Chew WS, Ling XY. Microchemical plant in a liquid droplet: plasmonic liquid marble for sequential reactions and attomole detection of toxin at microliter scale. ACS Appl Mater Interfaces. 2017; 9: 39635-39640.

[114]

Xue N, Cao J, Zhang X, et al. A liquid marble method for synthesizing large-sized carbon microspheres with controlled interior structures. Carbon. 2021; 179: 541-553.

[115]

Ramadhan W, Ohama Y, Minamihata K, et al. Redox-responsive functionalized hydrogel marble for the generation of cellular spheroids. J Biosci Bioeng. 2020; 130: 416-423.

[116]

Takei T, Yamasaki Y, Yuji Y, et al. Millimeter-sized capsules prepared using liquid marbles: encapsulation of ingredients with high efficiency and preparation of spherical core-shell capsules with highly uniform shell thickness using centrifugal force. J Colloid Interface Sci. 2019; 536: 414-423.

[117]

Oliveira NM, Correia CR, Reis RL, Mano JF. Liquid marbles for high-throughput biological screening of anchorage-dependent cells. Adv Healthc Mater. 2014; 4: 264-270.

[118]

Gomez JC, Vishnosky NS, Kim ST, Dinca SA, Finkelstein EB, Steinhardt RC. Robotic locomotion and piezo1 activity controlled with novel liquid marble-based soft actuators. Adv Funct Mater. 2023; 33:221893.

[119]

Shang Q, Hu L, Hu Y, Liu C, Zhou Y. Fabrication of superhydrophobic fluorinated silica nanoparticles for multifunctional liquid marbles. Appl Phys A. 2018; 124: 25.

[120]

Yukioka S, Fujiwara J, Okada M, Fujii S, Nakamura Y, Yusa S-I. CO2-gas-responsive liquid marble. Langmuir. 2019; 36: 6971-6976.

[121]

Luo X, Yin H, Li X, Su X, Feng Y. CO2-triggered microreactions in liquid marbles. Chem Commun. 2018; 54: 9119-9122.

[122]

Kunanopparatn A, Hayashi M, Atsuta Y, et al. pH-responsive liquid marbles stabilized with chitosan-stearic acid-conjugated particles. ACS Sustain Chem Eng. 2024; 12: 4175-4185.

[123]

Si Y, Guo Z. Novel pH-responsive liquid marble as microfluidic responder for controlled release. Chem Lett. 2016; 45: 779-781.

[124]

Sato E, Yuri M, Fujii S, Nishiyama T, Nakamura Y, Horibe H. Liquid marbles as a micro-reactor for efficient radical alternating copolymerization of diene monomer and oxygen. Chem Commun. 2015; 51: 17241-17244.

[125]

Chi Y, Han J, Zheng J, et al. Insights into the interfacial contact and charge transport of gas-sensing liquid metal marbles. ACS Appl Mater Interfaces. 2022; 14: 30112-30123.

[126]

Sun J, Xu Y, Pan W, et al. Oily wastewater detector based on superhydrophobic liquid marbles. Colloids Surf A Physicochem Eng Asp. 2024; 692:134030.

[127]

Huang S, Zhang Y, Shi J, Huang W. Superhydrophobic particles derived from nature-inspired polyphenol chemistry for liquid marble formation and oil spills treatment. ACS Sustain Chem Eng. 2016; 4: 676-681.

[128]

Alp G, Alp E, Aydogan N. Magnetic liquid marbles to facilitate rapid manipulation of the oil phase: synergistic effect of semifluorinated ligand and catanionic surfactant mixtures. Colloids Surf A Physicochem Eng Asp. 2020; 585:124051.

[129]

Harsha L, Bhuyan T, Maity S, Mondal PK, Ghosh SS, Bandyopadhyay D. Multifunctional liquid marbles to stabilize and transport reactive fluids. Soft Matter. 2021; 17: 5084-5095.

[130]

Wang Z, Zhu G, Wang Q, Ding K, Tong Y, Gao C. Preparation of hollow granules as micro-adsorber for uranium extraction from aqueous solutions. Sep Purif Technol. 2022; 301:122046.

[131]

Han G, Wang X, Hamel J, Zhu H, Sun R. Lignin-AuNPs liquid marble for remotely-controllable detection of Pb2+. Sci Rep. 2016; 6:38164.

[132]

Wang D, Zhu L, Chen JF, Dai L. Liquid marbles based on magnetic upconversion nanoparticles as magnetically and optically responsive miniature reactors for photocatalysis and photodynamic therapy. Angew Chem Int Ed. 2016; 55: 10795-10799.

[133]

Liu Z, Fu X, Binks BP, Shum HC. Coalescence of electrically charged liquid marbles. Soft Matter. 2017; 13: 119-124.

[134]

Li M, Tian J, Li L, Liu A, Shen W. Charge transport between liquid marbles. Chem Eng Sci. 2013; 97: 337-343.

[135]

Li H, Liu P, Gunawan R, et al. Magnetothermal miniature reactors based on Fe3O4 nanocube-coated liquid marbles. Adv Healthc Mater. 2021; 10:2001658.

[136]

Nguyen NK, Singha P, Zhang J, Phan HP, Nguyen NT, Ooi CH. Digital imaging-based colourimetry for enzymatic processes in transparent liquid marbles. ChemPhysChem. 2020; 22: 99-105.

[137]

Tyowua AT, Ahor F, Yiase SG, Binks BP. Liquid marbles as microreactors for qualitative and quantitative inorganic analyses. SN Appl Sci. 2020; 2: 345.

[138]

Zhang W, Srichan N, Chrimes AF, et al. Sonication synthesis of micro-sized silver nanoparticle/oleic acid liquid marbles: a novel SERS sensing platform. Sens Actuators B Chem. 2016; 223: 52-58.

[139]

Koh CSL, Lee HK, Phan-Quang GC, et al. SERS- and electrochemically active 3D plasmonic liquid marbles for molecular-level spectroelectrochemical investigation of microliter reactions. Angew Chem Int Ed. 2017; 56: 8813-8817.

[140]

Lee HK, Lee YH, Phang IY, et al. Plasmonic liquid marbles: a miniature substrate-less SERS platform for quantitative and multiplex ultratrace molecular detection. Angew Chem Int Ed. 2014; 53: 5054-5058.

[141]

Gu H, Ye B, Ding H, Liu C, Zhao Y, Gu Z. Non-iridescent structural color pigments from liquid marbles. J Mater Chem C. 2015; 3: 6607-6612.

[142]

McQuillan RV, Stevens GW, Mumford KA. Implementation of biodegradable liquid marbles as a novel controlled release fertilizer. ACS Sustain Chem Eng. 2022; 11: 122-132.

[143]

Sheng Y, Sun G, Wu J, Ma G, Ngai T. Silica-based liquid marbles as microreactors for the silver mirror reaction. Angew Chem Int Ed. 2015; 54: 7012-7017.

[144]

Salehabad SM, Azizian S. Sulfur liquid marbles submerged in biphasic systems as microreactors for interfacial synthesis. Colloids Surf A Physicochem Eng Asp. 2021; 620:126551.

[145]

Chu Y, Wang Z, Pan Q. Constructing robust liquid marbles for miniaturized synthesis of graphene/Ag nanocomposite. ACS Appl Mater Interfaces. 2014; 6: 8378-8386.

[146]

Fujii S, Sawada S, Nakayama S, et al. Pressure-sensitive adhesive powder. Mater Horiz. 2016; 3: 47-52.

[147]

Baby M, Bhaskaran SP, Maniyeri SC. Catechol-amine-decorated epoxy resin as an underwater adhesive: a coacervate concept using a liquid marble strategy. ACS Omega. 2023; 8: 7289-7301.

[148]

Li X. Liquid marbles and liquid plasticines with nanoparticle monolayers. Adv Colloid Interface Sci. 2019; 271:101988.

[149]

Vadivelu R, Kashaninejad N, Nikmaneshi MR, et al. Sessile liquid marbles with embedded hydrogels as bioreactors for three-dimensional cell culture. Adv Biol. 2021; 5:2000108.

[150]

Vadivelu R, Kashaninejad N, Sreejith KR, Bhattacharjee R, Cock I, Nguyen N-T. Cryoprotectant-free freezing of cells using liquid marbles filled with hydrogel. ACS Appl Mater Interfaces. 2018; 10: 43439-43449.

[151]

Vadivelu RK, Kamble H, Munaz A, Nguyen N-T. Liquid marble as bioreactor for engineering three-dimensional toroid tissues. Sci Rep. 2017; 7:12388.

[152]

Bielas R, Kubiak T, Kopčanský P, Šafařík I, Józefczak A. Tunable particle shells of thermo-responsive liquid marbles under alternating magnetic field. J Mol Liq. 2023; 391:123283.

[153]

Zhang G, Wang C. Pickering emulsion-based marbles for cellular capsules. Materials. 2016; 9: 572.

[154]

Kim Y, Oh S, Lee H, et al. Chitosan‒Alginate‒Pectin-coated Suspended-Liquid-Encapsulating (CAPSuLE) marbles for therapeutic agent storage and delivery. Biomate Sci. 2021; 9: 1639-1651.

[155]

Salehabad SM, Azizian S. Elemental sulfur-stabilized liquid marbles: properties and applications. ACS Appl Mater Interfaces. 2020; 12: 43201-43211.

[156]

Sreejith KR, Gorgannezhad L, Jin J, et al. Liquid marbles as biochemical reactors for the polymerase chain reaction. Lab Chip. 2019; 19: 3220-3227.

[157]

Sreejith KR, Gorgannezhad L, Jin J, et al. Core‒shell beads made by composite liquid marble technology as a versatile microreactor for polymerase chain reaction. Micromachines. 2020; 11: 242.

[158]

Gorgannezhad L, Sreejith KR, Christie M, et al. Core‒shell beads as microreactors for phylogrouping of E. coli strains. Micromachines. 2020; 11: 761.

[159]

Kamiya N, Ohama Y, Minamihata K, Wakabayashi R, Goto M. Liquid marbles as an easy-to-handle compartment for cell-free synthesis and in situ immobilization of recombinant proteins. Biotechnol J. 2018; 13:e1800085.

[160]

Niu J, Shi H, Wei H, et al. Liquid plasticine integrated with isoelectric focusing for miniaturized protein analysis. Anal Chem. 2020; 92: 9048-9056.

[161]

Li H, Liu P, Kaur G, Yao X, Yang M. Transparent and gas-permeable liquid marbles for culturing and drug sensitivity test of tumor spheroids. Adv Healthc Mater. 2017; 6:1700185.

[162]

Lin K, Chen R, Zhang L, Zang D, Geng X, Shen W. Transparent bioreactors based on nanoparticle-coated liquid marbles for in situ observation of suspending embryonic body formation and differentiation. ACS Appl Mater Interfaces. 2018; 11: 8789-8796.

[163]

Zhao Z, Yao X, Zhao W, et al. Highly transparent liquid marble in liquid (HT-LMIL) as 3D miniaturized reactor for real-time bio-/chemical assays. Chem Eng J. 2022; 443:136417.

[164]

Tenjimbayashi M, Yamamoto S, Uto K. Drycells: cell-suspension micro liquid marbles for single-cell picking. Adv Mater. 2023; 35:2300486.

[165]

Aalders J, Léger L, Tuerlings T, Ledda S, van Hengel J. Liquid marble technology to create cost-effective 3D cardiospheres as a platform for in vitro drug testing and disease modelling. MethodsX. 2020; 7:101065.

[166]

Vadivelu RK, Kamble H, Munaz A, Nguyen N-T. Liquid marbles as bioreactors for the study of three-dimensional cell interactions. Biomed Microdevices. 2017; 19: 31.

[167]

Rychecký O, Majerská M, Král V, Štěpánek F, Čejková J. Spheroid cultivation of HT-29 carcinoma cell line in liquid marbles. Chem Pap. 2016; 71: 1055-1063.

[168]

Nguyen N-K, Tran DT, Chuang A, et al. Liquid marble—a high-yield micro-photobioreactor platform. React Chem Eng. 2023; 8: 2710-2716.

[169]

Bebbere D, Nieddu SM, Ariu F, Piras D, Ledda S. 3D liquid marble microbioreactors support in vitro maturation of prepubertal ovine oocytes and affect expression of oocyte-specific factors. Biology. 2021; 10: 1101.

[170]

Ledda S, Idda A, Kelly J, Ariu F, Bogliolo L, Bebbere D. A novel technique for in vitro maturation of sheep oocytes in a liquid marble microbioreactor. J Assist Reprod Genet. 2016; 33: 513-518.

[171]

Sarvi F, Jain K, Arbatan T, et al. Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv Healthc Mater. 2014; 4: 77-86.

[172]

Chen M, Shah MP, Shelper TB, et al. Naked liquid marbles: a robust three-dimensional low-volume cell-culturing system. ACS Appl Mater Interfaces. 2019; 11: 9814-9823.

[173]

Langella A, Gadau SD, Serra E, Bebbere D, Ledda S. Microtubular assessment of C6 rat glioma cell spheroids developed in transparent liquid marbles or hanging drops. Biology. 2022; 11: 492.

[174]

Panchal A, Rahman N, Konnova S, et al. Clay nanotube liquid marbles enhanced with inner biofilm formation for the encapsulation and storage of bacteria at room temperature. ACS Appl Nano Mater. 2019; 3: 1263-1271.

[175]

Tanaka S, Okano H, Matsuda N, Sawai J, Naoe K, Imai M. Preparation of biocompatible liquid marbles stabilized by food-grade stearate microparticle for aerobic bacteria cultivation. Appl Biochem Biotechnol. 2020; 191: 1684-1694.

[176]

Yamakawa K, Hirobe A, Honjo S, et al. Stearate liquid marbles for bacterial cellulose production: influence of the liquid marble interface on bacterial cellulose properties. J Phys Chem C. 2022; 126: 1611-1622.

[177]

Mayne R, Draper TC, Phillips N, et al. Neuromorphic liquid marbles with aqueous carbon nanotube cores. Langmuir. 2019; 35: 13182-13188.

[178]

Tsompanas M-A, Fullarton C, Adamatzky A. Belousov‒Zhabotinsky liquid marbles in robot control. Sens Actuators B Chem. 2019; 295: 194-203.

[179]

Zhang T, Zhang C, Liu H, Han Z. Experimental investigation of novel dry liquids with aqueous potassium Solution@Nano-SiO2 for the suppression of liquid fuel fires: preparation, application, and stability. Fire Saf J. 2020; 115:103144.

[180]

Shin D, Huang T, Neibloom D, Bevan MA, Frechette J. Multifunctional liquid marble compound lenses. ACS Appl Mater Interfaces. 2019; 11: 34478-34486.

[181]

Adamatzky A, Fullarton C, Phillips N, De Lacy Costello B, Draper TC. Thermal switch of oscillation frequency in Belousov‒Zhabotinsky liquid marbles. R Soc Open Sci. 2019; 6:190078.

[182]

Jeon J, Lee J-B, Chung SK, Kim D. Magnetic liquid metal marble: characterization of lyophobicity and magnetic manipulation for switching applications. J Microelectromech Syst. 2016; 25: 1050-1057.

[183]

Ghanbari M, Rezazadeh G. A liquid-state high sensitive accelerometer based on a micro-scale liquid marble. Microsyst Technol. 2019; 26: 617-623.

[184]

Zeng H, Zhao Y. Dynamic behavior of a liquid marble based accelerometer. Appl Phys Lett. 2010; 96:114104.

[185]

Tenjimbayashi M, Samitsu S, Naito M. Simultaneous detection and repair of wetting defects in superhydrophobic coatings via Cassie‒Wenzel transitions of liquid marbles. Adv Funct Mater. 2019; 29:1900688.

[186]

Phillips N, Mayne R, Adamatzky A. Chlorella sensors in liquid marbles and droplets. Sens Bio-Sens Res. 2022; 36:100491.

[187]

Wang D, Li S, Wang B, Guo Z, Liu W. Fabrication of bioinspired edible liquid marble with phase transition and tunable water barrier property. Bio-Des Manuf. 2021; 4: 889-901.

RIGHTS & PERMISSIONS

2025 The Author(s). Droplet published by Jilin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/