Design and preparation of a simplifiedmicrodroplet generation device for nanoliter volume collection and measurementwith liquidmicrojunction–surface sampling probe–mass spectrometry

Daniel O. Reddy , Lishen Zhang , Thomas R. Covey , Richard D. Oleschuk

Droplet ›› 2025, Vol. 4 ›› Issue (1) : e158

PDF
Droplet ›› 2025, Vol. 4 ›› Issue (1) :e158 DOI: 10.1002/dro2.158
RESEARCH ARTICLE

Design and preparation of a simplifiedmicrodroplet generation device for nanoliter volume collection and measurementwith liquidmicrojunction–surface sampling probe–mass spectrometry

Author information +
History +
PDF

Abstract

Given recent interest in laboratory automation and miniaturization, the microdroplet research space has expanded across research disciplines and sectors. In turn, the microdroplet field is continually evolving and seeking new methods to generate microdroplets, especially in ways that can be integrated into diverse (microfluidic) workflows. Herein, we present a convenient, low-cost, and re-usable microdroplet generation device, termed as the “NanoWand,” which enables microdroplet formation in the nanoliter volume range through modulated surface energy and roughness, that is, an open surface energy trap (oSET), using commercially available and readily assembled coating and substrate materials. A wand-like shape is excised from a microscope glass cover slip via laser-micromachining and rendered hydrophobic; a circle is then cut-out from the hydrophobically modified wand’s tip using laser-micromachining to create the oSET. By adjusting the size of the oSET with laser-micromachining, the volume of the microdroplet can be similarly controlled. Using liquid microjunction–surface sampling probe–mass spectrometry (LMJ-SSPMS), specific NanoWand droplet capture volumeswere estimated to be 117 ± 23.6 nL, 198 ± 30.3 nL, and 277 ± 37.1 nL, corresponding to oSET diameters of 0.75, 1.00, and 1.25 mm, respectively. This simple approach provides a user-friendly way to form and transfer microdroplets that could be integrated into different liquid handling applications, especially when combined with the LMJ-SSP and ambient ionization MS as a powerful and rapid analytical tool.

Cite this article

Download citation ▾
Daniel O. Reddy, Lishen Zhang, Thomas R. Covey, Richard D. Oleschuk. Design and preparation of a simplifiedmicrodroplet generation device for nanoliter volume collection and measurementwith liquidmicrojunction–surface sampling probe–mass spectrometry. Droplet, 2025, 4(1): e158 DOI:10.1002/dro2.158

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huebner A, Sharma S, Srisa-Art M, Hollfelder F, Edel JB, deMello AJ. Microdroplets: a sea of applications? Lab Chip. 2008;8:1244.

[2]

Kelly BT, Baret JC, Taly V, Griffiths AD. Miniaturizing chemistry and biology in microdroplets. Chem Commun. 2007:1773-1788.

[3]

Garcia-Cordero JL, Fan ZH. Sessile droplets for chemical and biological assays. Lab Chip. 2017;17:2150-2166.

[4]

Theberge AB, Courtois F, Schaerli Y, et al. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed. 2010;49:5846-5868.

[5]

Dunn DA, Feygin I. Challenges and solutions to ultra-high-throughput screening assay miniaturization: submicroliter fluid handling. Drug Discov Today. 2000;5: S84-S91.

[6]

Shang L, Cheng Y, Zhao Y. Emerging droplet microfluidics. Chem Rev. 2017;117:7964-8040.

[7]

Wei Y-Y, Sun Z-Q. Ren H-H, Li L. Advances in microdroplet generation methods. Chin J Anal Chem. 2019;47:795-804.

[8]

Ding Y, Howes PD, deMello AJ. Recent advances in droplet microfluidics. Anal Chem. 2020;92:132-149.

[9]

Yan X. Emerging microdroplet chemistry for synthesis and analysis. Int J Mass Spectrom. 2021;468:116639.

[10]

Kafeenah H, Jen H, Chen S. Microdroplet mass spectrometry: accelerating reaction and application. Electrophoresis. 2022;43:74-81.

[11]

MarketsAndMarkets. Liquid Handling System Market. Accessed October 30, 2024. https://www.marketsandmarkets.com/Market-Reports/liquid-handling-system-market-192124302.html

[12]

BioDot. Technology. Accessed October 30, 2024. https://www.biodot.com/technology

[13]

M2 Automation. Microdispensers-Choose One or Multiple for Your Instrument. Accessed October 30, 2024. https://www.m2-automation.com/en/microdispenser?gclid=Cj0KCQjw-_mvBhDwARIsAA-Q0Q7EN_pNyWny3RcdhbVNj8_YxEEKHmwAoY7MHu3XjJmHtdyy9-UY5p4aArMkEALw_wcB

[14]

sptlabtech. Mosquito®. Accessed October 30, 2024. https://www.sptlabtech.com/products/mosquito

[15]

Lübbert C, Peukert W. Characterization of electrospray drop size distributions by mobility-classified mass spectrometry: implications for ion clustering in solution and ion formation pathways. Anal Chem. 2021;93:12862-12871.

[16]

Tang K, Gomez A. Generation by electrospray of monodisperse water droplets for targeted drug delivery by inhalation. J Aerosol Sci. 1994;25:1237-1249.

[17]

Brouzes E, Carniol A, Bakowski T, Strey HH. Precise pooling and dispensing of microfluidic droplets towards micro-to macro-world interfacing. RSC Adv. 2014;4:38542-38550.

[18]

Ge A, Diao Z, Li Y, et al. An integrated microfluidic platform for on-demand single droplet dispenser with high accuracy by electrohydrodynamic (EHD) printing technique. Sens Actuators B Chem. 2024;405:135334.

[19]

Awashra M, Elomaa P, Ojalehto T, Saavalainen P, Jokinen V. Superhydrophilic/superhydrophobic droplet microarrays of low surface tension biofluids for nucleic acid detection. Adv Mater Inter. 2024;11:2300596.

[20]

Wu L, Dong Z, Li F, Song Y. Designing Laplace pressure pattern for microdroplet manipulation. Langmuir. 2018;34:639-645.

[21]

Hattori S, Tang C, Tanaka D, et al. Development of microdroplet generation method for organic solvents used in chemical synthesis. Molecules. 2020;25:5360.

[22]

Shen Z, Zou Y, Chen X. Characterization of microdroplets using optofluidic signals. Lab Chip. 2012;12:3816-3820.

[23]

Zhan Y, Yu S, Amirfazli A, Siddiqui AR, Li W. Magnetically responsive superhydrophobic surfaces for microdroplet manipulation. Adv Mater Inter. 2022;9:2102010.

[24]

Sullivan DE. Surface tension and contact angle of a liquid-solid interface. J Chem Phys. 1981;74:2604-2615.

[25]

Chen L, Bonaccurso E. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops. Phys Rev E Stat Nonlin Soft Matter Phys. 2014;90:022401.

[26]

Ortiz-Young D, Chiu HC, Kim S, Voïtchovsky K, Riedo E. The interplay between apparent viscosity and wettability in nanoconfined water. Nat Commun. 2013;4:2482.

[27]

Lei BUW, Prow TW. A review of microsampling techniques and their social impact. Biomed Microdevices. 2019;21:81.

[28]

Londhe V, Rajadhyaksha M. Opportunities and obstacles for microsampling techniques in bioanalysis: special focus on DBS and VAMS. J Pharm Biomed Anal. 2020;182:113102.

[29]

Denniff P, Spooner N. Volumetric absorptive microsampling: a dried sample collection technique for quantitative bioanalysis. Anal Chem. 2014;86:8489-8495.

[30]

Kok MGM, Fillet M. Volumetric absorptive microsampling: current advances and applications. J Pharm Biomed Anal. 2018;147:288-296.

[31]

Protti M, Mandrioli R, Mercolini L. Tutorial: volumetric absorptive microsampling (VAMS). Anal Chim Acta. 2019;1046:32-47.

[32]

Gao L, Smith N, Kaushik D, Milner S, Kong R. Validation and application of volumetric absorptive microsampling (VAMS) dried blood method for phenylalanine measurement in patients with phenylketonuria. Clin Biochem. 2023;116:65-74.

[33]

Mandrioli R, Mercolini L, Protti M. Blood and plasma volumetric absorptive microsampling (VAMS) coupled to LC-MS/MS for the forensic assessment of cocaine consumption. Molecules. 2020;25:1046.

[34]

Volani C, Malfertheiner C, Caprioli G, et al. VAMS-based blood capillary sampling for mass spectrometry-based human metabolomics studies. Metabolites. 2023;13:146.

[35]

Palmisani M, Tartara E, Landmark CJ, et al. Therapeutic salivary monitoring of perampanel in patients with epilepsy using a volumetric absorptive microsampling technique. Pharmaceutics. 2023;15:2030.

[36]

Rudge J, Kushon S. Volumetric absorptive microsampling: its use in COVID-19 research and testing. Bioanalysis. 2021;13:1851-1863.

[37]

Penot M, Linard C, Taudon N. A validated volumetric absorptive microsampling-liquid chromatography tandem mass spectrometry method to quantify doxycycline levels in urine: an application to monitor the malaria chemoprophylaxis compliance. J Anal Methods Chem. 2020;2020:8868396.

[38]

Protti M, Marasca C, Cirrincione M, Sberna AE, Mandrioli R, Mercolini L. Dried urine microsampling coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the analysis of unconjugated anabolic androgenic steroids. Molecules. 2020;25:3210.

[39]

Protti M, Sberna PM, Sardella R, Vovk T, Mercolini L, Mandrioli R. VAMS and StAGE as innovative tools for the enantioselective determination of clenbuterol in urine by LC-MS/MS. J Pharm Biomed Anal. 2021;195:113873.

[40]

Seemann R, Brinkmann M, Pfohl T, Herminghaus S. Droplet based microfluidics. Rep Prog Phys. 2012;75:016601.

[41]

Lisowski P, Zarzycki PK. Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): development, applications and future trends. Chromatographia. 2013;76:1201-1214.

[42]

Zhang L, Reddy DO, Salomons TT, Oleschuk RD. Micro “Hyper-Channels”on laser-refined cellulose structures. Small Methods. 2024;8:2301164.

[43]

Zhang L, Salomons TT, Reddy D, Hillen P, Oleschuk R. A universally adaptable micropatterning method through laser-induced wettability inversion. Sens Actuators B Chem. 2023;390:133983.

[44]

Zhang Y, Wang T-H. Flip-drop: droplet array created by surface energy trap for combinatorial screening. Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 2013:20-24.

[45]

Jackman RJ, Duffy DC, Ostuni E, Willmore ND, Whitesides GM. Fabricating large arrays of microwells with arbitrary dimensions and filling them using discontinuous dewetting. Anal Chem. 1998;70:2280-2287.

[46]

Tucker B, Hermann M, Mainguy A, Oleschuk R. Hydrophobic/hydrophilic patterned surfaces for directed evaporative preconcentration. Analyst. 2020;145:643-650.

[47]

Hermann M, Agrawal P, Liu C, LeBlanc JCY, Covey TR, Oleschuk RD. Rapid mass spectrometric calibration and standard addition using hydrophobic/hydrophilic patterned surfaces and discontinuous dewetting. J Am Soc Mass Spectrom. 2022;33:660-670.

[48]

McEwen RAH, Hermann M, Metwally H, et al. Discontinuously dewetting solvent arrays: droplet formation and poly-synchronous surface extraction for mass spectrometry imaging applications. Anal Chem. 2022;94:7219-7228.

[49]

Zhang L, Kwok H, Li X, Yu H-Z. Superhydrophobic substrates from off-the-shelf laboratory filter paper: simplified preparation, patterning, and assay application. ACS Appl Mater Interfaces. 2017;9:39728-39735.

[50]

Sriramulu D, Reed EL, Annamalai M, Venkatesan TV, Valiyaveettil S. Synthesis and characterization of superhydrophobic, self-cleaning NIR-reflective silica nanoparticles. Sci Rep. 2016;6:35993.

[51]

Milionis A, Fragouli D, Martiradonna L, et al. Spatially controlled surface energy traps on superhydrophobic surfaces. ACS Appl Mater Interfaces. 2014;6:1036-1043.

[52]

Parvate S, Dixit P, Chattopadhyay S. Superhydrophobic surfaces: insights from theory and experiment. J Phys Chem B. 2020;124:1323-1360.

[53]

Bachus KJ, Mats L, Choi HW, Gibson GTT, Oleschuk RD. Fabrication of patterned superhydrophobic/hydrophilic substrates by laser micromachining for small volume deposition and droplet-based fluorescence. ACS Appl Mater Interfaces. 2017;9:7629-7636.

[54]

Hillen P. Simplified Chemical Analysis Using Microfluidics and Surface Sampling Mass Spectrometry. Dissertation. Queen’s University; 2021. Accessed October 30, 2024. http://hdl.handle.net/1974/30126

[55]

Van Berkel GJ, Kertesz V, Koeplinger KA, Vavrek M, Kong ANT. Liquid microjunction surface sampling probe electrospray mass spectrometry for detection of drugs and metabolites in thin tissue sections. J Mass Spectrom. 2008;43:500-508.

[56]

Simon D, Oleschuk R. The liquid micro junction-surface sampling probe (LMJ-SSP);a versatile ambient mass spectrometry interface. Analyst. 2021;146:6365-6378.

[57]

Liu S, Xu Q, Li Y, Xu W, Zhai Y. Coupling handheld liquid microjunction-surface sampling probe (hLMJ-SSP) to the miniature mass spectrometer for automated and in-situ surface analysis. Talanta. 2022;242:123090.

RIGHTS & PERMISSIONS

2025 The Author(s). Droplet published by Jilin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

256

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/