Skin supersoliditymatters the performance and functionality of water droplets

ChangQ. Sun , Yong Zhou , Hengxin Fang , Biao Wang

Droplet ›› 2024, Vol. 3 ›› Issue (4) : e139

PDF
Droplet ›› 2024, Vol. 3 ›› Issue (4) : e139 DOI: 10.1002/dro2.139
REVIEW ARTICLE

Skin supersoliditymatters the performance and functionality of water droplets

Author information +
History +
PDF

Abstract

Even more fascinating than its bulk parent, a water droplet possesses extraordinary catalytic and hydro-voltaic capability, elastic adaptivity, hydrophobicity, sensitivity, thermal stability, etc., but the underlying mechanism is still elusive. We emphasize herewith that the H–O bond follows the universal bond order–length–strength correlation and nonbonding electron polarization regulation and the hydrogen bond cooperativity and polarizability notion regulates the performance of the coupling hydrogen bond (O:H–O). Computational and spectrometric evidence consistently shows that molecular undercoordination shortens the intramolecular H–O bond by up to 10% while lengthening the intermolecular O:H nonbond by 20% cooperatively with an association of electron polarization, making the 0.3-nm thick droplet skin of a supersolid phase of self-electrification. The supersolid skin dictates the performance and functionality of the droplet in chemical, dielectric, electrical, mechanical, optical, and thermal properties as well as the transport dynamics of electrons and phonons. The amplification of these findings could deepen our insight into the undercoordinated aqueous systems, including bubbles and molecular clusters, and promote deep engineering of water and ice.

Cite this article

Download citation ▾
ChangQ. Sun, Yong Zhou, Hengxin Fang, Biao Wang. Skin supersoliditymatters the performance and functionality of water droplets. Droplet, 2024, 3(4): e139 DOI:10.1002/dro2.139

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pennisi E. Water’s tough skin. Science. 2014;343:1194-1197.

[2]

Amit G. Why is Ice Slippery? London: New Scientist;2015:38.

[3]

Rosenberg R. Why ice is slippery? Phys Today. 2005;58:50-55.

[4]

Canale L, Comtet J, Niguès A, et al. Nanorheology of interfacial water during ice gliding. Phys Rev X. 2019;9:041025.

[5]

Gao X, Jiang L. Water-repellent legs of water striders. Nature. 2004;432:36.

[6]

Helmy R, Kazakevich Y, Ni C, Fadeev AY. Wetting in hydrophobic nanochannels: a challenge of classical capillarity. J Am Chem Soc. 2005;127:12446-12447.

[7]

Slater B, Michaelides A. Surface premelting of water ice. Nat Rev Chem. 2019;3:172-188.

[8]

James M, Darwish TA, Ciampi S, et al. Nanoscale condensation of water on self-assembled monolayers. Soft Matter. 2011;7:5309-5318.

[9]

Mallamace F, Branca C, Broccio M, Corsaro C, Mou CY, Chen SH. The anomalous behavior of the density of water in the range 30 K < T < 373 K. Proc Natl Acad Sci U S A. 2007;104:18387-18391.

[10]

Huang Y, Zhang X, Ma Z, et al. Hydrogen-bond relaxation dynamics: resolving mysteries of water ice. Coord Chem Rev. 2015;285:109-165.

[11]

Weijs JH, Lohse D. Why surface nanobubbles live for hours. Phys Rev Lett. 2013;110:054501.

[12]

Zhang L-J, Wang J, Luo Y, Fang H-P, Hu J. A novel water layer structure inside nanobubbles at room temperature. Nucl Sci Tech. 2014;25:060503.

[13]

Chen C, Li J, Zhang X. The existence and stability of bulk nanobubbles: a long-standing dispute on the experimentally observed mesoscopic inhomogeneities in aqueous solutions. Commun Theor Phys. 2020;72:037601.

[14]

Singh DP, Singh JP. Delayed freezing of water droplet on silver nanocolumnar thin film. Appl Phys Lett. 2013;102:243112.

[15]

Fuller A, Kant K, Pitchumani R. Analysis of freezing of a sessile water droplet on surfaces over a range of wettability. J Colloid Interface Sci. 2024;653:960-970.

[16]

Schutzius TM, Jung S, Maitra T, Graeber G, Köhme M, Poulikakos D. Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature. 2015;527:82-85.

[17]

Huang W, Zhao L, He X, et al. Low-temperature Leidenfrost-like jumping of sessile droplets on microstructured surfaces. Nat Phys. 2024:1-8.

[18]

Lee JK, Walker KL, Han HS, et al. Spontaneous generation of hydrogen peroxide from aqueous microdroplets. Proc Natl Acad Sci U S A. 2019;116:19294-19298.

[19]

Mehrgardi MA, Mofidfar M, Zare RN. Sprayed water microdroplets are able to generate hydrogen peroxide spontaneously. J Am Chem Soc. 2022;144:7606-7609.

[20]

Meng Y, Zare RN, Gnanamani E. One-step, catalyst-free formation of phenol from benzoic acid using water microdroplets. J Am Chem Soc. 2023;145:19202-19206.

[21]

Song X, Basheer C, Zare RN. Water microdroplets-initiated methane oxidation. J Am Chem Soc. 2023;145:27198-27204.

[22]

Song X, Basheer C, Xia Y, et al. One-step formation of urea from carbon dioxide and nitrogen using water microdroplets. J Am Chem Soc. 2023;145:25910-25916.

[23]

Song X, Basheer C, Zare RN. Making ammonia from nitrogen and water microdroplets. Proc Natl Acad Sci U S A. 2023;120:e2301206120.

[24]

Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. “On water”: unique reactivity of organic compounds in aqueous suspension. Angew Chem Int Ed. 2005;44:3275-3279.

[25]

Zhang X, Huang Y, Ma Z, et al. A common supersolid skin covering both water and ice. Phys Chem Phys. 2014;16:22987-22994.

[26]

Hao H, Leven I, Head-Gordon T. Can electric fields drive chemistry for an aqueous microdroplet? Nat Commun. 2022;13:280.

[27]

Lin S, Chen X, Wang ZL. Contact electrification at the liquid–solid interface. Chem Rev. 2022;122:5209-5232.

[28]

Xu W, Zheng H, Liu Y, et al. A droplet-based electricity generator with high instantaneous power density. Nature. 2020;578:392-396.

[29]

Wang X, Lin F, Wang X, et al. Hydrovoltaic technology: from mechanism to applications. Chem Soc Rev. 2022;51:4902-4927.

[30]

Wang L, Song Y, Xu W, et al. Harvesting energy from high-frequency impinging water droplets by a droplet-based electricity generator. EcoMat. 2021;3:e12116.

[31]

Martins-Costa MT, Ruiz-López MF. Electrostatics and chemical reactivity at the air–water interface. J Am Chem Soc. 2023;145:1400-1406.

[32]

Jin Y, Yang S, Sun M, et al. How liquids charge the superhydrophobic surfaces. Nat Commun. 2024;15:4762.

[33]

Arunan E, Desiraju GR, Klein RA, et al. Defining the hydrogen bond: an account (IUPAC technical report). Pure Appl Chem. 2011;83:1619-1636.

[34]

Omar MA. Elementary Solid State Physics: Principles and Applications. Addison-Wesley;1993.

[35]

Liu X, Zhang X, Bo M, et al. Coordination-resolved electron spectrometrics. Chem Rev. 2015;115:6746-6810.

[36]

Sun CQ, Huang Y, Zhang X, Ma Z, Wang B. The physics behind water irregularity. Phys Rep. 2023;998:1-68.

[37]

Yang X, Peng C, Li L, et al. Multifield-resolved phonon spectrometrics: structured crystals and liquids. Prog Solid State Chem. 2019;55:20-66.

[38]

Wang J, Zeng Y, Zheng Z, et al. Discriminative mechanical and thermal response of the H-N bonds for the energetic LLM-105 molecular assembly. J Phys Chem Lett. 2023;14:8555-8562.

[39]

Sun CQ, Zhang X, Zheng W. Hidden force opposing ice compression. Chem Sci. 2012;3:1455-1460.

[40]

Sun CQ. Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem. 2007;35:1-159.

[41]

Peng Y, Tong Z, Yang Y, Sun CQ. The common and intrinsic skin electric-double-layer (EDL) and its bonding characteristics of nanostructures. Appl Surf Sci. 2021;539:148208.

[42]

Zhang X, Liu X, Zhong Y, Zhou Z, Huang Y, Sun CQ. Nanobubble skin supersolidity. Langmuir. 2016;32:11321-11327.

[43]

Liu XJ, Zhang X, Bo ML, et al. Coordination-resolved electron spectrometrics. Chem Rev. 2015;115:6746-6810.

[44]

Kim DY, Chan MHW. Upper limit of supersolidity in solid helium. Phys Rev B. 2014;90:064503.

[45]

Kahan TF, Reid JP, Donaldson DJ. Spectroscopic probes of the quasi-liquid layer on ice. J Phys Chem A. 2007;111:11006-11012.

[46]

Wilson KR, Schaller RD, Co DT, et al. Surface relaxation in liquid water and methanol studied by X-ray absorption spectroscopy. J Chem Phys. 2002;117:7738-7744.

[47]

Faraday M. Note on regelation. Proc R Soc Lond. 1860;10:440-450.

[48]

Sun CQ, Zhang X, Zhou J, Huang Y, Zhou Y, Zheng W. Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors. J Phys Chem Lett. 2013;4:2565-2570.

[49]

Sun Q. The Raman OH stretching bands of liquid water. Vib Spectrosc. 2009;51:213-217.

[50]

Ceponkus J, Uvdal P, Nelander B. Water tetramer, pentamer, and hexamer in inert matrices. J Phys Chem A. 2012;116:4842-4850.

[51]

Hirabayashi S, Yamada KMT. Infrared spectra and structure of water clusters trapped in argon and krypton matrices. J Mol Struct. 2006;795:78-83.

[52]

Buch V, Bauerecker S, Devlin JP, Buck U, Kazimirski JK. Solid water clusters in the size range of tens-thousands of H2O: a combined computational/spectroscopic outlook. Int Rev Phys Chem. 2004;23:375-433.

[53]

Pradzynski CC, Forck RM, Zeuch T, Slavicek P, Buck U. A fully size-resolved perspective on the crystallization of water clusters. Science. 2012;337:1529-1532.

[54]

Sulpizi M, Salanne M, Sprik M, Gaigeot M-P. Vibrational sum frequency generation spectroscopy of the water liquid–vapor interface from density functional theory-based molecular dynamics simulations. J Phys Chem Lett. 2012;4:83-87.

[55]

Verlet J, Bragg A, Kammrath A, Cheshnovsky O, Neumark D. Observation of large water-cluster anions with surface-bound excess electrons. Science. 2005;307:93-96.

[56]

Sun CQ. Aqueous charge injection: solvation bonding dynamics, molecular nonbond interactions, and extraordinary solute capabilities. Int Rev Phys Chem. 2018;37:363-558.

[57]

Wang B, Jiang W, Gao Y, et al. Energetics competition in centrally four-coordinated water clusters and Raman spectroscopic signature for hydrogen bonding. RSC Adv. 2017;7:11680-11683.

[58]

Siefermann KR, Liu Y, Lugovoy E, et al. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water. Nat Chem. 2010;2:274-279.

[59]

Jähnert S, Chávez FV, Schaumann G, Schreiber A, Schönhoff M, Findenegg G. Melting and freezing of water in cylindrical silica nanopores. Phys Chem Phys. 2008;10:6039-6051.

[60]

Park S, Moilanen DE, Fayer MD. Water dynamics: the effects of ions and nanoconfinement. J Phys Chem B. 2008;112:5279-5290.

[61]

Erko M, Wallacher D, Hoell A, Hauss T, Zizak I, Paris O. Density minimum of confined water at low temperatures: a combined study by small-angle scattering of X-rays and neutrons. Phys Chem Phys. 2012;14:3852-3858.

[62]

Zhou Y, Zhong Y, Gong Y, et al. Unprecedented thermal stability of water supersolid skin. J Mol Liq. 2016;220:865-869.

[63]

Fuchs EC, Wexler AD, Paulitsch-Fuchs AH, Agostinho LLF, Yntema D, Woisetschlager J. The Armstrong experiment revisited. Eur Phys J Spec Top. 2014;223:959-977.

[64]

Chen J, Nagashima K, Murata K-I, Sazaki G. Quasi-liquid layers can exist on polycrystalline ice thin films at a temperature significantly lower than on ice single crystals. Cryst Growth Des. 2018;19:116-124.

[65]

Toda S, Asakawa Y. Studies on the Improvement of Fuel Combustion and Vapour Evaporation of Small Steam Boiler: Effect of High Voltage. Bulletin of the College of Agriculture and Veterinary Medicine Nihon University;1976.

[66]

Bronstein Y, Depondt P, Bove LE, Gaal R, Saitta AM, Finocchi F. Quantum versus classical protons in pure and salty ice under pressure. Phys Rev B. 2016;93:024104.

[67]

Agarwal A, Ng WJ, Liu Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere. 2011;84:1175-1180.

[68]

Winter B, Aziz EF, Hergenhahn U, Faubel M, Hertel IV. Hydrogen bonds in liquid water studied by photoelectron spectroscopy. J Chem Phys. 2007;126:124504.

[69]

Bregante DT, Chan MC, Tan JZ, et al. The shape of water in zeolites and its impact on epoxidation catalysis. Nat Catal. 2021;4:797-808.

[70]

Wei Z, Li Y, Cooks RG, Yan X. Accelerated reaction kinetics in microdroplets: overview and recent developments. Ann Rev Phys Chem. 2020;71:31-51.

[71]

Gong C, Li D, Li X, et al. Spontaneous reduction-induced degradation of viologen compounds in water microdroplets and its inhibition by host–guest complexation. J Am Chem Soc. 2022;144:3510-3516.

[72]

Colussi AJ. Mechanism of hydrogen peroxide formation on sprayed water microdroplets. J Am Chem Soc. 2023;145:16315-16317.

[73]

Trainoff S, Philips N. Water Droplet Dancing on Water Surfaces. http://www.youtube.com/watch?v=pbGz1njqhxU.2009.

[74]

Klyuzhin IS, Ienna F, Roeder B, Wexler A, Pollack GH. Persisting water droplets on water surfaces. J Phys Chem B. 2010;114:14020-14027.

[75]

Zhang X, Huang Y, Ma Z, Niu L, Sun CQ. From ice supperlubricity to quantum friction: electronic repulsivity and phononic elasticity. Friction. 2015;3:294-319.

[76]

Zha C-S, Hemley RJ, Gramsch SA, Mao H-K, Bassett WA. Optical study of H2O ice to 120 GPa: dielectric function, molecular polarizability, and equation of state. J Chem Phys. 2007;126:074506.

[77]

Zhang X, Yan T, Huang Y, et al. Mediating relaxation and polarization of hydrogen-bonds in water by NaCl salting and heating. Phys Chem Chem Phys. 2014;16:24666-24671.

[78]

Mpemba EB, Osborne DG. Cool? Phys Educ. 1979;14:410-413.

[79]

Zhang X, Huang Y, Ma Z, et al. Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox. Phys Chem Chem Phys. 2014;16:22995-23002.

RIGHTS & PERMISSIONS

2024 The Author(s). Droplet published by Jilin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/