Programmable curvilinear self-propelling of dropletswithout preset channels

Shile Feng , Yongping Hou , Yongmei Zheng

Droplet ›› 2024, Vol. 3 ›› Issue (4) : e138

PDF
Droplet ›› 2024, Vol. 3 ›› Issue (4) : e138 DOI: 10.1002/dro2.138
RESEARCH ARTICLE

Programmable curvilinear self-propelling of dropletswithout preset channels

Author information +
History +
PDF

Abstract

Curvilinear self-propelling of droplets has attracted great interest in the past few decades due to their irreplaceable roles in many areas. Conventional understanding is that a droplet moves only along a preset channel formed by morphology or chemical components. Achieving programmable curvilinear droplet motion independent of a preset channel remains greatly challenging. Here, we report a programmable curvilinear self-propelling of droplets (circle, divergence, and convergence) based on the collaboration of the curvilinearwetting gradient and the Leidenfrost effect. This design achieves motion trajectory in awell-controlled manner aswell as high velocity and long distance of droplet transport independent of the preset channel. Moreover, the motion behaviors of droplets could be predicted accurately by theoretic simulation.We envision that our unique design could manifest extensive practical applications in fluidic devices, liquid transport, and heat transfer systems.

Cite this article

Download citation ▾
Shile Feng, Yongping Hou, Yongmei Zheng. Programmable curvilinear self-propelling of dropletswithout preset channels. Droplet, 2024, 3(4): e138 DOI:10.1002/dro2.138

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li J, Zhou X, Li J, et al. Topological liquid diode. Sci Adv. 2017;3:eaaO3530.

[2]

Chiou N, Lu C, Guan J, Lee L, Epstein A. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat Nanotechnol. 2007;2:354-357.

[3]

Xu J, Xiu S, Lian Z, Yu H, Cao J. Bioinspired materials for droplet manipulation: principles, methods and applications. Droplet. 2022;1:11-37.

[4]

Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces. Nature. 1997;388:431-432.

[5]

Yu X, Wang Z, Jiang Y, Zhang X. Surface gradient material: from superhydrophobicity to superhydrophilicity. Langmuir. 2006;22:4483.

[6]

Prakash M, Quere D, Bush J. Surface tension transport of prey by feeding shorebirds: the capillary ratchet. Science. 2008;320:931-934.

[7]

Comanns P, Buchberger G, Buchsbaum A, et al. Directional, passive liquid transport: the Texas horned lizard as a model for a biomimetic “liquid diode”. J R Soc Interface. 2015;12:20150415.

[8]

Chen H, Zhang P, Zhang L, et al. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature. 2016;532:85-89.

[9]

Park K, Kim P, Grinthal A, et al. Condensation on slippery asymmetric bumps. Nature. 2016;531:78-82.

[10]

Chen H, Ran T, Gan Y, et al. Ultrafast water harvesting and transport in hierarchical microchannels. Nat Mater. 2018;17:935-942.

[11]

Parker A, Lawrence C. Water capture by a desert beetle. Nature. 2001;414:33.

[12]

Feng S, Zhu P, Zheng H, et al. Three-dimensional capillary ratchet-induced liquid directional steering. Science. 2021;373:1344-1348.

[13]

Yang X, Qi B, Lu Y, Zhang W, Wang X. Bionic surface diode for droplet steering. Droplet. 2023;2:e46.

[14]

Leng X, Sun L, Long Y, Lu Y. Bioinspired superwetting materials for water manipulation. Droplet. 2022;1:139-169.

[15]

Wang J, Sun L, Zou M, et al. Bioinspired shape-memory graphene film with tunable wettability. Sci Adv. 2017;3:e1700004.

[16]

Chu K, Xiao R, Wang E. Directional liquid spreading on asymmetric nanostructured surfaces. Nat Mater. 2010;9:413-417.

[17]

Chaudhury M, Whitesides G. How to make water run uphill. Science. 1992;256:1539-1541.

[18]

Lv C, Chen C, Chuang Y, et al. Substrate curvature gradient drives rapid droplet motion. Phys Rev Lett. 2014;113:026101.

[19]

Feng S, Wang S, Gao L, et al. Controlled directional water-droplet spreading on a high-adhesion surface. Angew Chem Int Ed. 2014;53:6163-6167.

[20]

Holmes H, Böhringer K. Transporting droplets through surface anisotropy. Microsyst Nanoeng. 2015;1:15022.

[21]

Teh S, Lin R, Hung L, Lee A. Droplet microfluidics. Lab Chip. 2008;8:198-220.

[22]

Whitesides G M. The origins and the future of microfluidics. Nature. 2006;442:368-373.

[23]

Mertaniemi H, Jokinen V, Sainiemi L, et al. Superhydrophobic tracks for low-friction, guided transport of water droplets. Adv Mater. 2011;23:2911-2914.

[24]

Yao X, Bai H, Ju J, et al. Running droplet of interfacial chemical reaction flow. Soft Matter. 2012;8:5988-5991.

[25]

Quéré D. Leidenfrost dynamics. Annu Rev Fluid Mech. 2013;45:197-215.

[26]

Linke H, Aleman B, Melling L, et al. Self-propelled Leidenfrost droplets. Phys Rev Lett. 2006;96:154502.

[27]

Bouillant A, Mouterde T, Bourrianne P, Lagarde A, Clanet C, Quéré D. Leidenfrost wheels. Nat Phys. 2018;14:1188-1192.

[28]

Gauthier A, Diddens C, Proville R, Lohse D, Van der Meer D. Self-propulsion of inverse Leidenfrost drops on a cryogenic bath. P Natl Acad Sci USA. 2019;116:1174-1179.

[29]

Hai T, Caney N, Marty P, Colasson S, Gavillet J. Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism. Int J Heat Mass Tran. 2009;52:5459-5471.

[30]

Vakarelski I, Patankar N, Marston J, Chan D, Thoroddsen S. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature. 2012;489:274-277.

RIGHTS & PERMISSIONS

2024 The Author(s). Droplet published by Jilin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/