A strategy to drive nanoflow using Laplace pressure and the end effect

Keli Zhang , Hengyu Xu , Jingcun Fan , Cancan Ouyang , Hengan Wu , Fengchao Wang

Droplet ›› 2024, Vol. 3 ›› Issue (3) : e136

PDF
Droplet ›› 2024, Vol. 3 ›› Issue (3) : e136 DOI: 10.1002/dro2.136
RESEARCH ARTICLE

A strategy to drive nanoflow using Laplace pressure and the end effect

Author information +
History +
PDF

Abstract

Nanofluidics holds significant potential across diverse fields, including energy, environment, and biotechnology. Nevertheless, the fundamental driving mechanisms on the nanoscale remain elusive, underscoring the crucial importance of exploring nanoscale driving techniques. This study introduces a Laplace pressure-driven flow method that is accurately controlled and does not interfere with interfacial dynamics. Here, we first confirmed the applicability of the Young–Laplace equation for droplet radii ranging from 1 to 10 nm. Following that, a steady-state liquid flow within the carbon nanotube was attained in molecular dynamics simulations. This flow was driven by the Laplace pressure difference across the nanochannel, which originated from two liquid droplets of unequal sizes positioned at the channel ends, respectively. Furthermore, we employ the Sampson formula to rectify the end effect, ultimately deriving a theoretical model to quantify the flow rate, which satisfactorily describes the molecular dynamics simulation results. This research enhances our understanding on the driving mechanisms of nanoflows, providing valuable insights for further exploration in fluid dynamics on the nanoscale.

Cite this article

Download citation ▾
Keli Zhang, Hengyu Xu, Jingcun Fan, Cancan Ouyang, Hengan Wu, Fengchao Wang. A strategy to drive nanoflow using Laplace pressure and the end effect. Droplet, 2024, 3(3): e136 DOI:10.1002/dro2.136

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bocquet L. Nanofluidics coming of age. Nat Mater. 2020;19:254-256.

[2]

Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science. 2011;333:712-717.

[3]

Zhang Z, Li X, Yin J, et al. Emerging hydrovoltaic technology. Nat Nanotechnol. 2018;13:1109-1119.

[4]

Marbach S, Bocquet L. Osmosis, from molecular insights to large scale applications. Chem Soc Rev. 2019;48:3102-3144.

[5]

Chen S, Tang Y, Zhan K, Sun D, Hou X. Chemiresistive nanosensors with convex/concave structures. Nano Today. 2018;20:84-100.

[6]

Kavokine N, Netz RR, Bocquet L. Fluids at the nanoscale: from continuum to subcontinuum transport. Annu Rev Fluid Mech. 2021;53:377-410.

[7]

Radha B, Esfandiar A, Wang FC, et al. Molecular transport through capillaries made with atomic-scale precision. Nature. 2016;538:222-225.

[8]

Xie Q, Alibakhshi MA, Jiao SP, et al. Fast water transport in graphene nanofluidic channels. Nat Nanotechnol. 2018;13:238-245.

[9]

Wang F, Qian J, Fan J, et al. Molecular transport under extreme confinement. Sci China Phys Mech Astron. 2022;65:264601.

[10]

Wan Z, Gao Y, Chen X, Zeng XC, Francisco JS, Zhu C. Anomalous water transport in narrow-diameter carbon nanotubes. Proc Natl Acad Sci USA. 2022;119:e2211348119.

[11]

Sam A, Hartkamp R, Kannam Kumar S, et al. Fast transport of water in carbon nanotubes: a review of current accomplishments and challenges. Mol Simul. 2021;47:905-924.

[12]

Secchi E, Marbach S, Niguès A, et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature. 2016;537:210-213.

[13]

Qin X, Yuan Q, Zhao Y, Xie S, Liu Z. Measurement of the rate of water translocation through carbon nanotubes. Nano Lett. 2011;11:2173-2177.

[14]

Falk K, Sedlmeier F, Joly L, Netz RR, Bocquet L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 2010;10:4067-4073.

[15]

Thomas JA, McGaughey AJH. Water flow in carbon nanotubes: transition to subcontinuum transport. Phys Rev Lett. 2009;102:184502.

[16]

Joseph S, Aluru NR. Why are carbon nanotubes fast transporters of water? Nano Lett. 2008;8:452-458.

[17]

Thomas JA, McGaughey AJH. Reassessing fast water transport through carbon nanotubes. Nano Lett. 2008;8:2788-2793.

[18]

Karniadakis G, Beskok A, Aluru N. Microflows and Nanoflows, Fundamentals and Simulation. Springer;2005.

[19]

Rauscher M, Dietrich S. Wetting phenomena in nanofluidics. Annu Rev Mater Res. 2008;38:143-172.

[20]

Thomas JA, McGaughey AJH, Kuter-Arnebeck O. Pressure-driven water flow through carbon nanotubes: insights from molecular dynamics simulation. Int J Therm Sci. 2010;49:281-289.

[21]

Sparreboom W, van den Berg A, Eijkel JCT. Transport in nanofluidic systems: a review of theory and applications. New J Phys. 2010;12:015004.

[22]

Fan J, Wu H, Wang F. Evaporation-driven liquid flow through nanochannels. Phys Fluids. 2020;32:012001.

[23]

Li J, Zhang K, Fan J, Wu H, Wang F. Boundary slip moderated by interfacial hydrogen bond dynamics. Microfluid Nanofluidics. 2023;27:86.

[24]

Gravelle S, Ybert C, Bocquet L, Joly L. Anomalous capillary filling and wettability reversal in nanochannels. Phys Rev E. 2016;93:033123.

[25]

Zhao K, Wu H. Fast water thermo-pumping flow across nanotube membranes for desalination. Nano Lett. 2015;15:3664-3668.

[26]

Bitrián V, Principe J. Driving mechanisms and streamwise homogeneity in molecular dynamics simulations of nanochannel flows. Phys Rev Fluids. 2018;3:014202.

[27]

Chong JY, Wang B, Li K. Water transport through graphene oxide membranes: the roles of driving forces. Chem Comm. 2018;54:2554-2557.

[28]

Young T. A Course of Lectures on Natural Philosophy and the Mechanical Arts. Joseph Johnson;1807.

[29]

Laplace PS. Traitéde Mécanique Céleste. L’Imprimerie de Crapelet;1805. (in French)

[30]

Zhao Y. Physical Mechanics of Surfaces and Interfaces. Science Press;>2012. (in Chinese).

[31]

Sing KS, Williams RT. Historical aspects of capillarity and capillary condensation. Microporous Mesoporous Mater. 2012;154:16-18.

[32]

Thompson PA, Brinckerhoff WB, Robbins MO. Microscopic studies of static and dynamic contact angles. J Adhes Sci Technol. 1993;7:535-554.

[33]

van Honschoten JW, Brunets N, Tas NR. Capillarity at the nanoscale. Chem Soc Rev. 2010;39:1096-1114.

[34]

Walther JH, Ritos K, Cruz-Chu ER, Megaridis CM, Koumoutsakos P. Barriers to superfast water transport in carbon nanotube membranes. Nano Lett. 2013;13:1910-1914.

[35]

Vafaei S, Wen D. Modification of the Young-Laplace equation and prediction of bubble interface in the presence of nanoparticles. Adv Colloid Interface Sci. 2015;225:1-15.

[36]

Liu H, Cao G. Effectiveness of the Young-Laplace equation at nanoscale. Sci Rep. 2016;6:23936.

[37]

Yan H, Wei J, Cui S, et al. On the applicability of Young-Laplace equation for nanoscale liquid drops. Russ J Phys Chem A. 2016;90:635-640.

[38]

Mo J, Sha J, Li D, Li Z, Chen Y. Fluid release pressure for nanochannels: the Young-Laplace equation using the effective contact angle. Nanoscale. 2019;11:8408-8415.

[39]

Kirkwood JG, Buff FP. The statistical mechanical theory of surface tension. J Chem Phys. 1949;17:338-343.

[40]

Tolman RC. The effect of droplet size on surface tension. J Chem Phys. 1949;17:333-337.

[41]

Lei YA, Bykov T, Yoo S, Zeng XC. The Tolman length: is it positive or negative? J Am Chem Soc. 2005;127:15346-15347.

[42]

van Giessen AE, Blokhuis EM. Direct determination of the Tolman length from the bulk pressures of liquid drops via molecular dynamics simulations. J Chem Phys. 2009;131:164705.

[43]

Homman AA, Bourasseau E, Stoltz G, Malfreyt P, Strafella L, Ghoufi A. Surface tension of spherical drops from surface of tension. J Chem Phys. 2014;140:034110.

[44]

Allen MP, Tildesley DJ. Computer Simulation of Liquids. Oxford University Press;2017.

[45]

Zwanzig R. Time-correlation functions and transport coefficients in statistical mechanics. Annu Rev Phys Chem. 1965;16:67-102.

[46]

Couette M. Studies relating to the friction of liquids. Ann Chim. 1890;21:433-510.

[47]

Sampson RA, Greenhill AG. XII. On Stokes’s current function. Trans R Soc Lond A. 1891;182:449-518.

[48]

Weissberg HL. End correction for slow viscous flow through long tubes. Phys Fluids. 1962;5:1033-1036.

[49]

Dagan Z, Weinbaum S, Pfeffer R. An infinite-series solution for the creeping motion through an orifice of finite length. J Fluid Mech. 1982;115:505-523.

[50]

Suk ME, Aluru NR. Water transport through ultrathin graphene. J Phys Chem Lett. 2010;1:1590-1594.

[51]

Gravelle S, Joly L, Detcheverry F, Ybert C, Cottin-Bizonne C, Bocquet L. Optimizing water permeability through the hourglass shape of aquaporins. Proc Natl Acad Sci USA. 2013;110:16367-16372.

[52]

Suk ME, Aluru NR. Molecular and continuum hydrodynamics in graphene nanopores. RSC Adv. 2013;3:9365-9372.

[53]

Gravelle S, Joly L, Ybert C, Bocquet L. Large permeabilities of hourglass nanopores: from hydrodynamics to single file transport. J Chem Phys. 2014;141:18C526.

[54]

Suk ME, Aluru NR. Modeling water flow through carbon nanotube membranes with entrance/exit effects. Nanosc Microsc Therm. 2017;21:247-262.

[55]

Heiranian M, Taqieddin A, Aluru NR. Revisiting Sampson’s theory for hydrodynamic transport in ultrathin nanopores. Phys Rev Res. 2020;2:043153.

[56]

Seveno D, Blake TD, De Coninck J. Young’s equation at the nanoscale. Phys Rev Lett. 2013;111:096101.

[57]

Lukyanov AV, Likhtman AE. Dynamic contact angle at the nanoscale: a unified view. ACS Nano. 2016;10:6045-6053.

[58]

Fernández-Toledano JC, Blake TD, Lambert P, De Coninck J. On the cohesion of fluids and their adhesion to solids: young’s equation at the atomic scale. Adv Colloid Interface Sci. 2017;245:102-107.

[59]

Fernández-Toledano JC, Blake TD, De Coninck J. Contact-line fluctuations and dynamic wetting. J Colloid Interface Sci. 2019;540:322-329.

[60]

Kremer K, Grest GS. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J Chem Phys. 1990;92:5057-5086.

RIGHTS & PERMISSIONS

2024 The Author(s). Droplet published by Jilin University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/