Artificial intelligence enhanced edge server placement for workload balancing and energy efficiency in B5G networks

Vaibhav Tiwari , Chandrasen Pandey , Shamila J. Francis , Ishan Budhiraja , Pronaya Bhattacharya , Zhu Zhu , Thippa Reddy Gadekallu

›› 2025, Vol. 11 ›› Issue (6) : 1951 -1960.

PDF
›› 2025, Vol. 11 ›› Issue (6) :1951 -1960. DOI: 10.1016/j.dcan.2025.08.009
Special issue on AI-native 6G networks
research-article

Artificial intelligence enhanced edge server placement for workload balancing and energy efficiency in B5G networks

Author information +
History +
PDF

Abstract

The Internet of Things (IoT) and allied applications have made real-time responsiveness for massive devices over the Internet essential. Cloud-edge/fog ensembles handle such applications' computations. For Beyond 5th Generation (B5G) communication paradigms, Edge Servers (ESs) must be placed within Information Communication Technology infrastructures to meet Quality of Service requirements like response time and resource utilisation. Due to the large number of Base Stations (BSs) and ESs and the possibility of significant variations in placing the ESs within the IoTs geographical expanse for optimising multiple objectives, the Edge Server Placement Problem (ESPP) is NP-hard. Thus, stochastic evolutionary metaheuristics are natural. This work addresses the ESPP using a Particle Swarm Optimization that initialises particles as BS positions within the geography to maintain the workload while scanning through all feasible sets of BSs as an encoded sequence. The Workload-Threshold Aware Sequence Encoding (WTASE) Scheme for ESPP provides the number of ESs to be deployed, similar to existing methodologies and exact locations for their placements without the overhead of maintaining a prohibitively large distance matrix. Simulation tests using open-source datasets show that the suggested technique improves ESs utilisation rate, workload balance, and average energy consumption by 36%, 17%, and 32%, respectively, compared to prior works.

Keywords

Mobile edge computing / Evolutionary optimization / 6G / Edge server placement / Load balancing / Performance evaluation

Cite this article

Download citation ▾
Vaibhav Tiwari, Chandrasen Pandey, Shamila J. Francis, Ishan Budhiraja, Pronaya Bhattacharya, Zhu Zhu, Thippa Reddy Gadekallu. Artificial intelligence enhanced edge server placement for workload balancing and energy efficiency in B5G networks. , 2025, 11(6): 1951-1960 DOI:10.1016/j.dcan.2025.08.009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. Ahmed, A. Gani, M. Sookhak, S.H. Ab Hamid, F. Xia, Application optimization in mobile cloud computing: motivation, taxonomies, and open challenges, J. Netw. Comput. Appl. 52 (2015) 52-68.

[2]

S. Safavat, N.N. Sapavath, D.B. Rawat, Recent advances in mobile edge computing and content caching, Digit. Commun. Netw. 6 (2) (2020) 189-194.

[3]

S. Verma, T.K. Rodrigues, Y. Kawamoto, M.M. Fouda, N. Kato, A survey on Multi-AP coordination approaches over emerging WLANs: future directions and open chal-lenges, IEEE Commun. Surv. Tutor. 26 (2) (2024) 858-889.

[4]

J.P.A. León, T. Begin, A. Busson, L.J. de la Cruz Llopis, A fair and distributed conges-tion control mechanism for smart grid neighborhood area networks, Ad Hoc Netw. 104 (2020) 102169.

[5]

S. Verma, Y. Kawamoto, N. Kato, T. Saiwai, M. Yonehara, An efficient beam search-ing in hybrid intelligent reflecting/refracting surfaces (irs)-aided mmwave 6g net-work, IEEE Trans. Veh. Technol. 73 (12) (2024) 19299-19312.

[6]

V.C. Pujol, P.K. Donta, A. Morichetta, I. Murturi, S. Dustdar, Edge intelligence—research opportunities for distributed computing continuum systems, IEEE Internet Comput. 27 (4) (2023) 53-74.

[7]

T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, H. Flinck, Mobile edge computing potential in making cities smarter, IEEE Commun. Mag. 55 (3) (2017) 38-43.

[8]

S. Zarei, S. Azizi, A. Ahmed, Optimizing edge server placement and load distribution in mobile edge computing using aco and heuristic algorithms, J. Supercomput. 81 (1)(2025) 1-32.

[9]

Y. Liang, et al., Collaborative edge server placement for maximizing qos with dis-tributed data cleaning, IEEE Trans. Serv. Comput. 18 (3) (2025) 1321-1335.

[10]

A. Ghasemzadeh, H.S. Aghdasi, S. Saeedvand, Optimizing edge server placement and allocation for enhanced energy efficiency: a multi-objective approach based on decision space and elitism, Clust. Comput. 28 (1) (2025) 13.

[11]

C. Liang, Y. He, F.R. Yu, N. Zhao, Energy-efficient resource allocation in software-defined mobile networks with mobile edge computing and caching, in: 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), IEEE, 2017, pp. 121-126.

[12]

J. Wu, X. Xu, G. Cui, Y. Zhang, L. Qi, W. Dou, Z. Cai, Fairness-aware budgeted edge server placement for connected autonomous vehicles, IEEE Trans. Mob. Comput. 24 (6) (2025) 4762-4776.

[13]

J. Kennedy, R. Eberhart,Particle swarm optimization, in:Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, IEEE, 1995, pp. 1942-1948.

[14]

V. Tiwari, C. Pandey, S. Singh Yadav, D.S. Roy, O.J. Pandey, L.R. Cenkeramaddi, Maximizing coverage and energy conservation in B5G networks using hexagonal tiling to deploy FT-S2ES, IEEE Open J. Commun. Soc. 5 (2024) 2541-2554.

[15]

Y. Wu, B. Shi, L.P. Qian, F. Hou, J. Cai, X.S. Shen, Energy-efficient multi-task multi-access computation offloading via noma transmission for iots, IEEE Trans. Ind. In-form. 16 (7) (2019) 4811-4822.

[16]

V. Tiwari, C. Pandey, D. Sinha Roy, A forecasting-based approach for optimal de-ployment of edge servers in 5g networks, Clust. Comput. 27 (2024) 5721-5739.

[17]

Y. Kawamoto, M. Takahashi, S. Verma, N. Kato, H. Tsuji, A. Miura, Traffic-prediction-based dynamic resource control strategy in haps-mounted mec-assisted satellite com-munication systems, IEEE Internet Things J. 11 (8) (2024) 13824-13836.

[18]

N.M. Khan, P. Bhattacharya, H. Liu, Z. Zhu, T.R. Gadekallu, Zero trust networks and federated unlearning based 6g edge networks: attack scenario, security model and future directions, Int. Technol. Lett. 8 (4) (2025) e70056.

[19]

Z. He, K. Li, K. Li, Cost-efficient server configuration and placement for mobile edge computing, IEEE Trans. Parallel Distrib. Syst. 33 (9) (2021) 2198-2212.

[20]

X. Zhang, Y. Wang, S. Lu, L. Liu, W. Shi, et al., Openei: an open framework for edge intelligence, in: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), IEEE, 2019, pp. 1840-1851.

[21]

H. Yuan, J. Bi, W. Tan, M. Zhou, B.H. Li, J. Li, Ttsa: an effective scheduling ap-proach for delay bounded tasks in hybrid clouds, IEEE Trans. Cybern. 47 (11) (2016) 3658-3668.

[22]

J. Bi, H. Yuan, S. Duanmu, M. Zhou, A. Abusorrah, Energy-optimized partial compu-tation offloading in mobile-edge computing with genetic simulated-annealing-based particle swarm optimization, IEEE Internet Things J. 8 (5) (2020) 3774-3785.

[23]

K.E. Purushothaman, V. Nagarajan, Multiobjective optimization based on self-organizing particle swarm optimization algorithm for massive mimo 5g wireless network, Int. J. Commun. Syst. 34 (4) (2021) e4725.

[24]

W.H. Bangyal, A. Hameed, W. Alosaimi, H. Alyami, A new initialization approach in particle swarm optimization for global optimization problems, Comput. Intell. Neurosci. 2021 ( 2021) 1-17.

[25]

Z. Wang, W. Zhang, X. Jin, Y. Huang, C. Lu, An optimal edge server placement approach for cost reduction and load balancing in intelligent manufacturing, J. Su-percomput. 78 (3) (2022) 4032-4056.

[26]

X. Jiang, P. Hou, H. Zhu, B. Li, Z. Wang, H. Ding, Dynamic and intelligent edge server placement based on deep reinforcement learning in mobile edge computing, Ad Hoc Netw. 145 (2023) 103172.

[27]

P.-C. Huang, T.-L. Chin, T.-Y. Chuang, Server placement and task allocation for load balancing in edge-computing networks, IEEE Access 9 (2021) 138200-138208.

[28]

B. Cao, Q. Wei, Z. Lv, J. Zhao, A.K. Singh, Many-objective deployment optimization of edge devices for 5g networks, IEEE Trans. Netw. Sci. Eng. 7 (4) (2020) 2117-2125.

[29]

B. Yuan, S. Guo, Q. Wang, Joint service placement and request routing in mobile edge computing, Ad Hoc Netw. 120 (2021) 102543.

[30]

Y. Ren, F. Zeng, W. Li, L. Meng, A low-cost edge server placement strategy in wireless metropolitan area networks, in: 2018 27th International Conference on Computer Communication and Networks (ICCCN), IEEE, 2018, pp. 1-6.

[31]

Y. Li, A. Zhou, X. Ma, S. Wang, Profit-aware edge server placement, IEEE Internet Things J. 9 (1) (2021) 55-67.

[32]

B. Li, P. Hou, H. Wu, R. Qian, H. Ding, Placement of edge server based on task over-head in mobile edge computing environment, Trans. Emerg. Telecommun. Technol. 32 (9) (2021) e4196.

[33]

C. Ling, Z. Feng, L. Xu, Q. Huang, Y. Zhou, W. Zhang, R. Yadav, An edge server placement algorithm based on graph convolution network, IEEE Trans. Veh. Technol. 72 (4) (2023) 5224-5239.

[34]

Y. Li, S. Wang, An energy-aware edge server placement algorithm in mobile edge computing, in: 2018 IEEE International Conference on Edge Computing (EDGE), IEEE, 2018, pp. 66-73.

[35]

P. Cazzaniga, M.S. Nobile, D. Besozzi, The impact of particles initialization in pso: parameter estimation as a case in point, in: 2015 IEEE Conference on Compu-tational Intelligence in Bioinformatics and Computational Biology (CIBCB), IEEE, 2015, pp. 1-8.

[36]

M. Dayarathna, Y. Wen, R. Fan, Data center energy consumption modeling: a survey, IEEE Commun. Surv. Tutor. 18 (1) (2015) 732-794.

[37]

S. Gao, A. Zhou, X. Chen, Q. Sun, Redundant virtual machine placement in mobile edge computing, in: International Conference on Blockchain and Trustorthy Systems (BlockSys 2019), Springer, 2020, pp. 371-384.

[38]

B. Sonkoly, J. Czentye, M. Szalay, B. Németh, L. Toka, Survey on placement methods in the edge and beyond, IEEE Commun. Surv. Tutor. 23 (4) (2021) 2590-2629.

[39]

S. Wang, Y. Zhao, J. Xu, J. Yuan, C.-H. Hsu, Edge server placement in mobile edge computing, J. Parallel Distrib. Comput. 127 (2019) 160-168.

[40]

V. Tiwari, C. Pandey, A. Dahal, D.S. Roy, U. Fiore, A knapsack-based metaheuristic for edge server placement in 5g networks with heterogeneous edge capacities, Future Gener. Comput. Syst. 153 (2024) 222-233.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/