DP-Fed6G: An adaptive differential privacy-empowered federated learning framework for 6G networks

Miao Du , Peng Yang , Yinqiu Liu , Xiaoming He , Mingkai Chen

›› 2025, Vol. 11 ›› Issue (6) : 1994 -2002.

PDF
›› 2025, Vol. 11 ›› Issue (6) :1994 -2002. DOI: 10.1016/j.dcan.2025.07.006
Special issue on AI-native 6G networks
research-article

DP-Fed6G: An adaptive differential privacy-empowered federated learning framework for 6G networks

Author information +
History +
PDF

Abstract

The advent of 6G networks is poised to drive a new era of intelligent, privacy-preserving distributed learning by leveraging advanced communication and AI-driven edge intelligence. Federated Learning (FL) has emerged as a promising paradigm to enable collaborative model training without exposing raw data. However, its deployment in 6G networks faces significant obstacles, including vulnerabilities to inference attacks, the complexities of heterogeneous and dynamic network environments, and the inherent trade-off between privacy protection and model performance. In response to these challenges, we introduce DP-Fed6G, a novel FL framework that integrates differential privacy (DP) to fortify data security while ensuring high-quality learning outcomes. Specifically, DP-Fed6G employs an adaptive noise injection strategy that dynamically adjusts privacy protection levels based on real-time 6G network conditions and device heterogeneity, ensuring robust data security while maximizing model performance and optimizing the trade-off between privacy and utility. Extensive experiments on three real-world healthcare datasets demonstrate that DP-Fed6G consistently outperforms existing baselines (DP-FedSGD and DP-FedAvg), achieving up to 10.3% higher test accuracy under the same privacy budget. The proposed framework thus provides a practical solution for secure and privacy-preserving AI in 6G, supporting intelligent decision-making in privacy-sensitive applications.

Keywords

Differential privacy / Federated learning / 6G / Gaussian noise

Cite this article

Download citation ▾
Miao Du, Peng Yang, Yinqiu Liu, Xiaoming He, Mingkai Chen. DP-Fed6G: An adaptive differential privacy-empowered federated learning framework for 6G networks. , 2025, 11(6): 1994-2002 DOI:10.1016/j.dcan.2025.07.006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Du, P. Yang, Y. Liu, W. Tian, Z. Xiong, Z. Han, RDP-FedGAN: a renyi-differential privacy empowered federated learning GAN in smart parking, IEEE Trans. Veh. Tech-nol. 74 (1) (2025) 100-109.

[2]

V.-L. Nguyen, P.-C. Lin, B.-C. Cheng, R.-H. Hwang, Y.-D. Lin, Security and privacy for 6G: a survey on prospective technologies and challenges, IEEE Commun. Surv. Tutor. 23 (4) (2021) 2384-2428.

[3]

B. Mao, J. Liu, Y. Wu, N. Kato, Security and privacy on 6G network edge: a survey, IEEE Commun. Surv. Tutor. 25 (2) (2023) 1095-1127.

[4]

Q. Xu, Z. Su, R. Li, Security and privacy in artificial intelligence-enabled 6G, IEEE Netw. 36 (5) (2022) 188-196.

[5]

T. Fukami, T. Murata, K. Niwa, I. Tyou, DP-Norm: differential privacy primal-dual algorithm for decentralized federated learning, IEEE Trans. Inf. Forensics Secur. 19 (2024) 5783-5797.

[6]

J.M. Parra Ullauri, X. Zhang, A. Bravalheri, S. Moazzeni, Y. Wu, R. Nejabati, D. Simeonidou, Federated analytics for 6G networks: applications, challenges, and op-portunities, IEEE Netw. 38 (2) (2024) 9-17.

[7]

H. Yan, X. Li, W. Zhang, Q. Chen, B. Wang, H. Li, X. Lin, CODER: protecting privacy in image retrieval with differential privacy, IEEE Trans. Dependable Secure Comput. 21 (6) (2024) 5420-5430.

[8]

S.A. Soleymani, S. Goudarzi, M.H. Anisi, Z. Movahedi, A. Jindal, N. Kama, PAC-MAN: privacy-preserving authentication scheme for managing cybertwin-based 6G networking, IEEE Trans. Ind. Inform. 18 (7) (2022) 4902-4911.

[9]

G. Li, C. Lai, R. Lu, D. Zheng, SecCDV: a security reference architecture for cybertwin-driven 6G V2X, IEEE Trans. Veh. Technol. 71 (5) (2022) 4535-4550.

[10]

M. Du, K. Wang, Y. Chen, X. Wang, Y. Sun, Big data privacy preserving in multi-access edge computing for heterogeneous internet of things, IEEE Commun. Mag. 56 (8) (2018) 62-67.

[11]

S. Park, W. Choi, On the differential privacy in federated learning based on over-the-air computation, IEEE Trans. Wirel. Commun. 23 (5) (2024) 4269-4283.

[12]

G. Cheng, J. Huang, Y. Wang, J. Zhao, L. Kong, S. Deng, X. Yan, Conditional privacy-preserving multi-domain authentication and pseudonym management for 6G-enabled IoV, IEEE Trans. Inf. Forensics Secur. 19 (2024) 10206-10220.

[13]

X. Lu, L. Xiao, P. Li, X. Ji, C. Xu, S. Yu, W. Zhuang, Reinforcement learning-based physical cross-layer security and privacy in 6G, IEEE Commun. Surv. Tutor. 25 (1)(2023) 425-466.

[14]

P. Wang, Y. Yang, W. Sun, Q. Wang, B. Guo, J. He, Y. Bi, Federated learning with privacy-preserving incentives for aerial computing networks, IEEE Trans. Netw. Sci. Eng. 11 (6) (2024) 5336-5348.

[15]

Y. Wang, S. Guo, Y. Deng, H. Zhang, Y. Fang, Privacy-preserving task-oriented se-mantic communications against model inversion attacks, IEEE Trans. Wirel. Com-mun. 23 (8) (2024) 10150-10165.

[16]

K.B. Letaief, Y. Shi, J. Lu, J. Lu, Edge artificial intelligence for 6G: vision, enabling technologies, and applications, IEEE J. Sel. Areas Commun. 40 (1) (2022) 5-36.

[17]

S. Liu, J. Yu, X. Deng, S. Wan, FedCPF: an efficient-communication federated learn-ing approach for vehicular edge computing in 6G communication networks, IEEE Trans. Intell. Transp. Syst. 23 (2) (2022) 1616-1629.

[18]

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, et al., Towards federated learning at scale: system design, Proc. MLSys 2 (3) (2021) 1-12.

[19]

X. Wang, Y. Han, V.C.M. Leung, D. Niyato, X. Yan, X. Chen, Convergence of edge computing and federated learning for future wireless networks, IEEE Wirel. Com-mun. 28 (4) (2022) 56-63.

[20]

Y. Zhao, M. Li, H. Wang, J. Xu, W. Liu, Federated learning with non-IID data in edge computing, IEEE Trans. Netw. Sci. Eng. 9 (2) (2023) 1023-1035.

[21]

S. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, A. Ribeiro, Gradient compres-sion for communication-efficient distributed learning, Adv. Neural Inf. Process. Syst. 34 (2022) 3456-3467.

[22]

H. Li, K. Ota, M. Dong, A survey on security and privacy in federated learning, ACM Comput. Surv. 55 (5) (2023) 1-38.

[23]

R. Shokri, V. Shmatikov, Privacy-preserving deep learning, Proc. ACM CCS 29 (6)(2021) 1310-1323.

[24]

L. Ma, Z. Yang, W. Zhang, Y. Xiang, Blockchain-enabled federated learning for secure edge computing in 6G networks, IEEE Trans. Ind. Inform. 19 (1) (2024) 874-886.

[25]

J. Kang, Z. Xiong, D. Niyato, S. Xie, J. Zhang, Edge-assisted federated learning for intelligent 6G networks, IEEE Internet Things J. 10 (2) (2023) 2312-2325.

[26]

Z. Yang, Y. Liu, L. Liang, B. Guo, Incentive mechanism design for federated learning in 6G networks, IEEE J. Sel. Areas Commun. 41 (3) (2024) 456-467.

[27]

M. Zhang, J. Lin, X. Gao, Federated learning for autonomous vehicles: challenges and opportunities, IEEE Trans. Intell. Transp. Syst. 24 (1) (2023) 78-92.

[28]

A. Sheller, B. Edwards, G. Reina, H. Martin, Privacy-preserving medical AI using federated learning, Nat. Mach. Intell. 5 (3) (2022) 234-246.

[29]

C. Xu, Q. Wang, Y. Huang, S. Chen, Federated learning for Internet of vehicles: a sur-vey, IEEE Commun. Surv. Tutor. 25 (4) (2023) 789-812.

[30]

K. Wei, J. Li, M. Ding, C. Ma, H.H. Yang, F. Farokhi, S. Jin, T.Q.S. Quek, H.V. Poor, Federated learning with differential privacy: algorithms and performance analysis, IEEE Trans. Inf. Forensics Secur. 15 (2020) 3454-3469.

[31]

X. Yin, Y. Zhu, J. Hu, A comprehensive survey of privacy-preserving federated learn-ing: a taxonomy, review, and future directions, ACM Comput. Surv. 54 (6) (2021) 131:1-131:36.

[32]

R.C. Geyer, T. Klein, M. Nabi, Differentially private federated learning: a client level perspective,in:Proc. NIPS, 2017, pp. 1-11.

[33]

A. Triastcyn, B. Faltings, Federated learning with Bayesian differential privacy, in: Proc. IEEE Int. Conf. Big Data, 2019, pp. 2587-2596.

[34]

W. Liu, J. Cheng, X. Wang, X. Lu, J. Yin, Hybrid differential privacy based federated learning for Internet of things, J. Syst. Archit. 124 (2022) 102418.

[35]

K. Wei, J. Li, C. Ma, M. Ding, W. Chen, J. Wu, M. Tao, H.V. Poor, Personalized federated learning with differential privacy and convergence guarantee, IEEE Trans. Inf. Forensics Secur. 18 (2023) 4488-4503.

[36]

N. Mohammadi, J. Bai, Q. Fan, Y. Song, Y. Yi, L. Liu, Differential privacy meets fed-erated learning under communication constraints, in: Proc. IEEE Int. Conf. Commun.(ICC), 2021, pp. 1-6.

[37]

Y. Zhang, Y. Lu, F. Liu, A systematic survey for differential privacy techniques in federated learning, J. Inf. Secur. 14 (2) (2023) 111-135.

[38]

N. Tavangaran, M. Chen, Z. Yang, J.M.B. Da Silva, H.V. Poor, On differential privacy for federated learning in wireless systems with multiple base stations, IEEE Trans. Wirel. Commun. 21 (12) (2022) 10529-10542.

[39]

S. Truex, L. Liu, K.-H. Chow, M.E. Gursoy, W. Wei, LDP-Fed: federated learning with local differential privacy,in:Proc. ACM Workshop Edge Syst., Analytics and Networking, 2020, pp. 61-66.

[40]

K. Wei, J. Li, C. Ma, M. Ding, C. Chen, S. Jin, Z. Han, H.V. Poor, Low-latency federated learning over wireless channels with differential privacy, IEEE J. Sel. Areas Commun. 40 (1) (2022) 290-307.

[41]

X. Zhang, J. Wang, H. Zhang, L. Li, M. Pan, Z. Han, Data-driven transportation network company vehicle scheduling with users’ location differential privacy preser-vation, IEEE Trans. Mob. Comput. 22 (2) (2023) 813-823.

[42]

H. Huang, C. Zeng, Y. Zhao, G. Min, Y. Zhu, W. Miao, J. Hu, Scalable orchestration of service function chains in NFV-enabled networks: a federated reinforcement learning approach, IEEE J. Sel. Areas Commun. 39 (8) (2021) 2558-2571.

[43]

C. Ma, J. Li, K. Wei, B. Liu, M. Ding, L. Yuan, Z. Han, H.V. Poor, Trusted AI in multiagent systems: an overview of privacy and security for distributed learning, Proc. IEEE 111 (9) (2023) 1097-1132.

[44]

A. Asheralieva, D. Niyato, Z. Xiong, Auction-and-learning based Lagrange coded computing model for privacy-preserving, secure, and resilient mobile edge comput-ing, IEEE Trans. Mob. Comput. 22 (2) (2023) 744-764.

[45]

C. Dwork, G.N. Rothblum, S. Vadhan, Boosting and differential privacy, in: Proc. 51st Annual IEEE Symp. Foundations of Comput. Sci., 2010, pp. 51-60.

[46]

X. Jian, Y. Wang, L. Chen, Publishing graphs under node differential privacy, IEEE Trans. Knowl. Data Eng. 35 (4) (2023) 4164-4177.

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/