EPVCNet: Enhancing privacy and security for image authentication in computing-sensitive 6G environment✩,✩✩

Muhammad Shafiq , Lijing Ren , Denghui Zhang , Thippa Reddy Gadekallu , Mohammad Mahtab Alam

›› 2025, Vol. 11 ›› Issue (5) : 1679 -1688.

PDF
›› 2025, Vol. 11 ›› Issue (5) :1679 -1688. DOI: 10.1016/j.dcan.2025.07.005
Special issue on integrated sensing and communications (ISAC) for 6G networks
research-article

EPVCNet: Enhancing privacy and security for image authentication in computing-sensitive 6G environment✩,✩✩

Author information +
History +
PDF

Abstract

As the 5G architecture gains momentum, interest in 6G is growing. The proliferation of Internet of Things (IoT) devices, capable of capturing sensitive images, has increased the need for secure transmission and robust access control mechanisms. The vast amount of data generated by low-computing devices poses a challenge to traditional centralized access control, which relies on trusted third parties and complex computations, resulting in intricate interactions, higher hardware costs, and processing delays. To address these issues, this paper introduces a novel distributed access control approach that integrates a decentralized and lightweight encryption mechanism with image transmission. This method enhances data security and resource efficiency without imposing heavy computational and network burdens. In comparison to the best existing approach, it achieves a 7% improvement in accuracy, effectively addressing existing gaps in lightweight encryption and recognition performance.

Keywords

ISAC / IoT / Privacy and security / VC

Cite this article

Download citation ▾
Muhammad Shafiq, Lijing Ren, Denghui Zhang, Thippa Reddy Gadekallu, Mohammad Mahtab Alam. EPVCNet: Enhancing privacy and security for image authentication in computing-sensitive 6G environment✩,✩✩. , 2025, 11(5): 1679-1688 DOI:10.1016/j.dcan.2025.07.005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Lu, X. Zheng, 6g: a survey on technologies, scenarios, challenges, and the related issues, J. Ind. Inf. Integr. 19 (2020) 100158.

[2]

D. Li, 5g and intelligence medicine-how the next generation of wireless technology will reconstruct healthcare?, Precis. Clin. Med. 2 (4) (2019) 205-208.

[3]

G. Manogaran, T. Baabdullah, D.B. Rawat, P.M. Shakeel, Ai-assisted service virtu- alization and flow management framework for 6g-enabled cloud-software-defined network-based iot, IEEE Internet Things J. 9 (16) (2022) 14644-14654.

[4]

J. Wang, M. Zhu, M. Li, Y. Sun, Z. Tian, An access control method against unautho- rized and noncompliant behaviors of real-time data in industrial iot, IEEE Internet Things J. 11 (1) (2024) 708-727.

[5]

J. Cai, T. Liu, T. Wang, H. Feng, K. Fang, A.K. Bashir, W. Wang, Multisource-fusion- enhanced power-efficient sustainable computing for air quality monitoring, IEEE Internet Things J. 11 (24) (2024) 39041-39055.

[6]

M. Shafiq, Z. Tian, A.K. Bashir, X. Du, M. Guizani, Iot malicious traffic identifica- tion using wrapper-based feature selection mechanisms, Comput. Secur. 94 (2020) 101863.

[7]

Y. Yang, X. Xiao, X. Cai, W. Zhang, A secure and privacy-preserving technique based on contrast-enhancement reversible data hiding and plaintext encryption for medical images, IEEE Signal Process. Lett. 27 (2020) 256-260.

[8]

W. Yang, S. Wang, G. Zheng, J. Yang, C. Valli, A privacy-preserving lightweight biometric system for Internet of things security, IEEE Commun. Mag. 57 (3) (2019) 84-89.

[9]

H. Feng, Q. Li, W. Wang, A.K. Bashir, A.K. Singh, J. Xu, K. Fang, Security of tar- get recognition for uav forestry remote sensing based on multi-source data fusion transformer framework, Inf. Fusion 112 ( 2024) 102555.

[10]

S. Minaee, A. Abdolrashidi, H. Su, M. Bennamoun, D. Zhang, Biometrics recognition using deep learning: a survey, Artif. Intell. Rev. 56 (8) (2023) 8647-8695.

[11]

F. Ma, X.-Y. Jing, X. Zhu, Z. Tang, Z. Peng, True-color and grayscale video person re-identification, IEEE Trans. Inf. Forensics Secur. 15 (2020) 115-129.

[12]

D. Zhang, M. Shafiq, L. Wang, G. Srivastava, S. Yin, Privacy-preserving remote sens- ing images recognition based on limited visual cryptography, CAAI Trans. Intell. Technol. (2023), cit2.12164.

[13]

Z. Gu, H. Li, S. Khan, L. Deng, X. Du, M. Guizani, Z. Tian, Iepsbp: a cost-efficient image encryption algorithm based on parallel chaotic system for green iot, IEEE Trans. Green Commun. Netw. 6 (1) (2022) 89-106.

[14]

D. Zhang, M. Shafiq, G. Srivastava, T.R. Gadekallu, L. Wang, Z. Gu, STBCIoT: secur- ing the transmission of biometric images in customer IoT, IEEE Internet Things J. 11 (9) (2024) 16279-16288.

[15]

X. Wu, J. Fang, W. Yan, Contrast optimization for size invariant visual cryptography scheme, IEEE Trans. Image Process. 32 (2023) 2174-2189.

[16]

F. Tang, C. Ma, K. Cheng, Privacy-preserving authentication scheme based on zero trust architecture, Digit. Commun. Netw. 10 (5) (2024) 1211-1220.

[17]

E. Pagnin, A. Mitrokotsa, Privacy-preserving biometric authentication: challenges and directions, Secur. Commun. Netw. 2017 ( 2017) e7129505, publisher: Hindawi.

[18]

Manisha N. Kumar, Cancelable biometrics: a comprehensive survey, Artif. Intell. Rev. 53 (5) (2019) 3403-3446.

[19]

L. Ren, D. Zhang, A qr code-based user-friendly visual cryptography scheme, Sci. Rep. 12 (1) (2022) 7667.

[20]

D. Zhang, H. Zhu, S. Liu, X. Wei, Hp-vcs: a high-quality and printer-friendly visual cryptography scheme, J. Vis. Commun. Image Represent. 78 (2021) 103186.

[21]

M.R. Holla, A.R. Pais, High-performance medical image secret sharing using super- resolution for cad systems, Appl. Intell. 52 (14) (2022) 16852-16868.

[22]

X. Wu, J. Fang, W.Q. Yan, Contrast optimization for size invariant visual cryptogra- phy scheme, IEEE Trans. Image Process. 32 (2023) 2174-2189.

[23]

D. Zhang, M. Shafiq, L. Wang, G. Srivastava, S. Yin, Privacy-preserving remote sens- ing images recognition based on limited visual cryptography, CAAI Trans. Intell. Technol. (2023), cit2.12164.

[24]

I. Ahmad, S. Shahabuddin, T. Kumar, J. Okwuibe, A. Gurtov, M. Ylianttila, Security for 5g and beyond, IEEE Commun. Surv. Tutor. 21 (4) (2019) 3682-3722.

[25]

R. Khan, P. Kumar, D.N.K. Jayakody, M. Liyanage, A survey on security and privacy of 5g technologies: potential solutions, recent advancements, and future directions, IEEE Commun. Surv. Tutor. 22 (1) (2020) 196-248.

[26]

L.A. Elrefaei, A.M. Al-Mohammadi, Machine vision gait-based biometric cryptosys- tem using a fuzzy commitment scheme, J. King Saud Univ, Comput. Inf. Sci. 34 (2) (2022) 204-217.

[27]

C. Rathgeb, J. Merkle, J. Scholz, B. Tams, V. Nesterowicz, Deep face fuzzy vault: implementation and performance, Comput. Secur. 113 (2022) 102539.

[28]

M. Gayathri, C. Malathy, Novel framework for multimodal biometric image authen- tication using visual share neural network, Pattern Recognit. Lett. 152 (2021) 1-9.

[29]

A. Muhammed, A.R. Pais, A secure fingerprint template generation mechanism using visual secret sharing with inverse halftoning, J. Vis. Commun. Image Represent. 94 (2023) 103854.

[30]

W. Ni, Y. Liu, Z. Yang, H. Tian, X. Shen, Federated learning in multi-RIS-aided sys- tems, IEEE Internet Things J. 9 (12) (2022) 9608-9624.

[31]

L. Li, Y. Fan, M. Tse, K.-Y. Lin, A review of applications in federated learning, Com- put. Ind. Eng. 149 (2020) 106854.

[32]

D.R. Ibrahim, J.S. Teh, R. Abdullah, An overview of visual cryptography techniques, Multimed. Tools Appl. 80 (21-23) (2021) 31927-31952.

[33]

X. Wu, Z. Luo, Block-based progressive visual cryptography scheme with uniform progressive recovery and consistent background, J. Vis. Commun. Image Represent. 88 (2022) 103631.

[34]

X. Wu, P. Yao, N. An, Extended XOR-based visual cryptography schemes by integer linear program, Signal Process. 186 (2021) 108122.

[35]

D. Zhang, L. Ren, M. Shafiq, Z. Gu, A lightweight privacy-preserving system for the security of remote sensing images on IoT, Remote Sens. 14 (24) (2022) 6371.

[36]

J.M. Guo, S. Sankarasrinivasan, Digital halftone database (DHD): a comprehensive analysis on halftone types,in: 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 2018-11, pp. 1091-1099.

[37]

V. Ostromoukhov, A simple and efficient error-diffusion algorithm, in: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, Association for Computing Machinery, New York, NY, USA, 2001, pp. 567-572.

[38]

D. Chicco, Siamese Neural Networks:An Overview, Springer US, New York, NY, 2021, pp. 73-94.

[39]

A. Hore, D. Ziou, Image Quality Metrics: Psnr vs. ssim, 2010 20th International Con- ference on Pattern Recognition (ICPR), IEEE, Istanbul, Turkey, 2010, pp. 2366-2369, Online; accessed 2021-12-22.

[40]

B. Yan, Y. Xiang, G. Hua, Improving the Visual Quality of Size-Invariant Visual Cryptography for Grayscale Images: An Analysis-by-Synthesis (AbS) Approach, IEEE Trans. Image Process. 28 (2) (2019) 896-911.

[41]

F. Albardi, H.M.D. Kabir, M.M.I. Bhuiyan, P.M. Kebria, A. Khosravi, S. Nahavandi, A comprehensive study on torchvision pre-trained models for fine-grained inter-species classification, in: 2021 IEEE International Conference on Systems, Man, and Cyber- netics (SMC), IEEE, 2021-10-17, pp. 2767-2774.

[42]

M.M. Rahman, M.S. Islam, M.K. Ara Jannat, M.H. Rahman, M. Arifuzzaman, R. Sassi, M. Aktaruzzaman, Eyenet: an improved eye states classification system using con- volutional neural network,in: 2020 22nd International Conference on Advanced Communication Technology (ICACT), 2020, pp. 84-90.

AI Summary AI Mindmap
PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/