Resilient task offloading in integrated satellite-terrestrial networks with mobility-induced variability

Kongyang Chen , Guomin Liang , Hongfa Zhang , Waixi Liu , Jiaxing Shen

›› 2025, Vol. 11 ›› Issue (6) : 1961 -1972.

PDF
›› 2025, Vol. 11 ›› Issue (6) :1961 -1972. DOI: 10.1016/j.dcan.2025.07.004
Special issue on AI-native 6G networks
research-article

Resilient task offloading in integrated satellite-terrestrial networks with mobility-induced variability

Author information +
History +
PDF

Abstract

Low Earth Orbit (LEO) satellites have gained significant attention for their low-latency communication and computing capabilities but face challenges due to high mobility and limited resources. Existing studies integrate edge computing with LEO satellite networks to optimize task offloading; however, they often overlook the impact of frequent topology changes, unstable transmission links, and intermittent satellite visibility, leading to task execution failures and increased latency. To address these issues, this paper proposes a dynamic integrated space-ground computing framework that optimizes task offloading under LEO satellite mobility constraints. We design an adaptive task migration strategy through inter-satellite links when target satellites become inaccessible. To enhance data transmission reliability, we introduce a communication stability constraint based on transmission bit error rate (BER). Additionally, we develop a genetic algorithm (GA)-based task scheduling method that dynamically allocates computing resources while minimizing latency and energy consumption. Our approach jointly considers satellite computing capacity, link stability, and task execution reliability to achieve efficient task offloading. Experimental results demonstrate that the proposed method significantly improves task execution success rates, reduces system overhead, and enhances overall computational efficiency in LEO satellite networks.

Keywords

LEO satellites / Task offloading / Edge computing / Communication reliability

Cite this article

Download citation ▾
Kongyang Chen, Guomin Liang, Hongfa Zhang, Waixi Liu, Jiaxing Shen. Resilient task offloading in integrated satellite-terrestrial networks with mobility-induced variability. , 2025, 11(6): 1961-1972 DOI:10.1016/j.dcan.2025.07.004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

W. Jiang, Software defined satellite networks: a survey, Digit. Commun. Netw. 9 (6)(2023) 1243-1264.

[2]

Y. Zhang, S. Zhao, J. He, Satellite Internet security: requirement, current status and trends, Cybersecurity 2 (4) (2024) 2-17.

[3]

P. Ye, W. Wang, B. Mi, K. Chen, Edgestreaming: secure computation intelligence in distributed edge networks for streaming analytics, ACM Trans. Multimed. Comput. Commun. Appl. 21 (8) (2024) 1-15.

[4]

M. Zhang, J. Cao, X. Shen, Z. Cui, et al., Edgeshard: efficient LLM inference via collaborative edge computing, IEEE Internet Things J. 12 (10) (2025) 13119-13131.

[5]

X. Chen, J. Cao, Y. Sahni, S. Jiang, Z. Liang, Dynamic task offloading in edge comput-ing based on dependency-aware reinforcement learning, IEEE Trans. Cloud Comput. 12 (2) (2024) 594-608.

[6]

M. Zhang, J. Cao, L. Yang, L. Zhang, Y. Sahni, S. Jiang, ENTS: an edge-native task scheduling system for collaborative edge computing,in:Proceedings of the 7th IEEE/ACM Symposium on Edge Computing, IEEE, 2022, pp. 149-161.

[7]

W. Jiang, J. Mu, H. Han, Y. Zhang, S. Huang, Federated learning-based mobile traf-fic prediction in satellite-terrestrial integrated networks, Softw. Pract. Exp. 55 (4)(2025) 613-628.

[8]

K. Chen, Y. Li, W. Lan, B. Mi, S. Wang,Aigc-assisted digital watermark services in low-earth orbit satellite-terrestrial edge networks, arXiv preprint, arXiv:2407.01534, https://doi.org/10.48550/arXiv.2407.01534.

[9]

Z. Zhang, W. Zhang, F.-H. Tseng, Satellite mobile edge computing: improving qos of high-speed satellite-terrestrial networks using edge computing techniques, IEEE Netw. 33 (1) (2019) 70-76.

[10]

P. Wang, J. Zhang, X. Zhang, L. Liu, Y. Wang, L. Ouyang, Performance evaluation of double-edge satellite terrestrial networks on opnet platform, in: Proceedings of the 2018 IEEE/CIC International Conference on Communications in China, IEEE, 2018, pp. 37-42.

[11]

R. Xie, Q. Tang, Q. Wang, X. Liu, F.R. Yu, T. Huang, Satellite-terrestrial integrated edge computing networks: architecture, challenges, and open issues, IEEE Netw. 34 (3) (2020) 224-231.

[12]

F. Tang, Dynamically adaptive cooperation transmission among satellite-ground in-tegrated networks, in: Proceedings of the 39th IEEE Conference on Computer Com-munications, IEEE, 2020, pp. 1559-1568.

[13]

J. Fu, J. Hua, J. Wen, K. Zhou, J. Li, B. Sheng, Optimization of achievable rate in the multiuser satellite IoT system with SWIPT and MEC, IEEE Trans. Ind. Inform. 17 (3)(2021) 2072-2080.

[14]

Y. Wang, J. Zhang, X. Zhang, P. Wang, L. Liu, A computation offloading strategy in satellite terrestrial networks with double edge computing, in: Proceedings of the IEEE International Conference on Communication Systems, IEEE, 2018, pp. 450-455.

[15]

Y. Wang, J. Yang, X. Guo, Z. Qu, A game-theoretic approach to computation offload-ing in satellite edge computing, IEEE Access 8 (2020) 12510-12520.

[16]

Z. Zhang, W. Zhang, F. Tseng, Satellite mobile edge computing: improving qos of high-speed satellite-terrestrial networks using edge computing techniques, IEEE Netw. 33 (1) (2018) 70-76.

[17]

L. Boero, R. Bruschi, F. Davoli, M. Marchese, F. Patrone, Satellite networking inte-gration in the 5g ecosystem: research trends and open challenges, IEEE Netw. 32 (5)(2018) 9-15.

[18]

D. Bhattacherjee, S. Kassing, M. Licciardello, A. Singla, In-orbit computing: an out-landish thought experiment?, in: Proceedings of the 19th ACM Workshop on Hot Topics in Networks, ACM, 2020, pp. 197-204.

[19]

B. Denby, B. Lucia, Orbital edge computing: nanosatellite constellations as a new class of computer system, in: Proceedings of the Architectural Support for Program-ming Languages and Operating Systems, ACM, 2020, pp. 939-954.

[20]

J. Du, C. Jiang, H. Zhang, Y. Ren, M. Guizani, Auction design and analysis for sdn-based traffic offloading in hybrid satellite-terrestrial networks, IEEE J. Sel. Areas Commun. 36 (10) (2018) 2202-2217.

[21]

X. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, X. Shen, Space/aerial-assisted computing offloading for iot applications: a learning-based approach, IEEE J. Sel. Areas Commun. 37 (5) (2019) 1117-1129.

[22]

S.S. Gill, S. Tuli, M. Xu, I. Singh, K.V. Singh, D. Lindsay, S. Tuli, D. Smirnova, M. Singh, U. Jain, H. Pervaiz, B. Sehgal, S.S. Kaila, S. Misra, M.S. Aslanpour, H. Mehta, V. Stankovski, P. Garraghan, Transformative effects of iot, blockchain and artificial intelligence on cloud computing: evolution, vision, trends and open challenges, In-ternet of Things 8 (2019) 100118.

[23]

C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, X. Shen, Delay-aware iot task scheduling in space-air-ground integrated network, in: Proceedings of the IEEE Global Communications Conference, IEEE, 2019, pp. 1-6.

[24]

Z. Song, Y. Hao, Y. Liu, X. Sun, Energy-efficient multiaccess edge computing for terrestrial-satellite Internet of things, IEEE Internet Things J. 8 (18) (2021) 14202-14218.

[25]

C. Ding, J. Wang, H. Zhang, M. Lin, G.Y. Li, Joint optimization of transmission and computation resources for satellite and high altitude platform assisted edge comput-ing, IEEE Trans. Wirel. Commun. 21 (2) (2022) 1362-1377.

[26]

D. Zhu, H. Liu, T. Li, J. Sun, J. Liang, H. Zhang, L. Geng, Y. Liu, Deep reinforce-ment learning-based task offloading in satellite-terrestrial edge computing networks, in: Proceedings of the IEEE Wireless Communications and Networking Conference, IEEE, 2021, pp. 1-7.

[27]

N. Zhang, S. Zhang, P. Yang, O. Alhussein, W. Zhuang, X.S. Shen, Software defined space-air-ground integrated vehicular networks: challenges and solutions, IEEE Com-mun. Mag. 55 (7) (2017) 101-109.

[28]

Y. Shi, Y. Cao, J. Liu, N. Kato, A cross-domain SDN architecture for multi-layered space-terrestrial integrated networks, IEEE Netw. 33 (1) (2018) 29-35.

[29]

F. Xu, F. Yang, C. Zhao, S. Wu, Deep reinforcement learning based joint edge resource management in maritime network, China Commun. 17 (5) (2020) 211-222.

[30]

Q. Tang, Z. Fei, B. Li, Z. Han, Computation offloading in LEO satellite networks with hybrid cloud and edge computing, IEEE Internet Things J. 8 (11) (2021) 9164-9176.

[31]

F. dos Santos Prol, R.M. Ferre, Z. Saleem, P. Välisuo, C. Pinell, E.S. Lohan, M. Elsan-houry, M.S. Elmusrati, S. Islam, K. Çelikbilek, K. Selvan, J. Yliaho, K. Rutledge, A. Ojala, L. Ferranti, J. Praks, M.Z.H. Bhuiyan, S. Kaasalainen, H. Kuusniemi, Position, navigation, and timing (PNT) through low earth orbit (LEO) satellites: a survey on current status, challenges, and opportunities, IEEE Access 10 (2022) 83971-84002.

[32]

W. Lan, K. Chen, Y. Li, J. Cao, Y. Sahni, Deep reinforcement learning for privacy-preserving task offloading in integrated satellite-terrestrial networks, IEEE Trans. Mob. Comput. 23 (10) (2024) 9678-9691.

[33]

W. Jiang, H. Han, M. He, W. Gu, When game theory meets satellite communication networks: a survey, Comput. Commun. 217 (2024) 208-229.

[34]

W. Lan, K. Chen, J. Cao, Y. Li, N. Li, Q. Chen, Y. Sahni, Security-sensitive task of-floading in integrated satellite-terrestrial networks, IEEE Trans. Mob. Comput. 24 (3)(2025) 2220-2233.

[35]

X. Zhang, Y. Han, W. Wang, Analysis and research on the physical layer security of satellite Internet, Cybersecurity 2 (4) (2024) 66-75.

[36]

W. Jiang, Y. Zhan, X. Fang, Fuzzy neural network based access selection in satellite-terrestrial integrated networks, J. Netw. Comput. Appl. 236 (2025) 104108.

[37]

W. Jiang, H. Han, Y. Zhang, J. Mu, Federated split learning for sequential data in satellite-terrestrial integrated networks, Inf. Fusion 103 ( 2024) 102141.

[38]

H. Yang, X. Zhang, Z. Xie, Sunets architecture, applications, and security challenges for future agriculture, Cybersecurity 2 (4) (2024) 85-94.

[39]

C. Liu, M. Bennis, M. Debbah, H.V. Poor, Dynamic task offloading and resource al-location for ultra-reliable low-latency edge computing, IEEE Trans. Commun. 67 (6)(2019) 4132-4150.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/