EdgeAIGC: Model caching and resource allocation for edge artificial intelligence generated content

Wu Wen , Yibin Huang , Xinxin Zhao , Peiying Zhang , Kai Liu , Guowei Shi

›› 2025, Vol. 11 ›› Issue (6) : 1941 -1950.

PDF
›› 2025, Vol. 11 ›› Issue (6) :1941 -1950. DOI: 10.1016/j.dcan.2025.07.003
Special issue on AI-native 6G networks
research-article

EdgeAIGC: Model caching and resource allocation for edge artificial intelligence generated content

Author information +
History +
PDF

Abstract

With the rapid development of generative artificial intelligence technology, the traditional cloud-based centralized model training and inference face significant limitations due to high transmission latency and costs, which restrict user-side in-situ Artificial Intelligence Generated Content (AIGC) service requests. To this end, we propose the Edge Artificial Intelligence Generated Content (EdgeAIGC) framework, which can effectively address the challenges of cloud computing by implementing in-situ processing of services close to the data source through edge computing. However, AIGC models usually have a large parameter scale and complex computing requirements, which poses a huge challenge to the storage and computing resources of edge devices. This paper focuses on the edge intelligence model caching and resource allocation problems in the EdgeAIGC framework, aiming to improve the cache hit rate and resource utilization of edge devices for models by optimizing the model caching strategy and resource allocation scheme, and realize in-situ AIGC service processing. With the optimization objectives of minimizing service request response time and execution cost in resource-constrained environments, we employ the Twin Delayed Deep Deterministic Policy Gradient algorithm for optimization. Experimental results show that, compared with other methods, our model caching and resource allocation strategies can effectively improve the cache hit rate by at least 41.06% and reduce the response cost as well.

Keywords

Generative AI / Edge model caching / Resource allocation / Edge intelligence

Cite this article

Download citation ▾
Wu Wen, Yibin Huang, Xinxin Zhao, Peiying Zhang, Kai Liu, Guowei Shi. EdgeAIGC: Model caching and resource allocation for edge artificial intelligence generated content. , 2025, 11(6): 1941-1950 DOI:10.1016/j.dcan.2025.07.003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. Cetinic, J. She, Understanding and creating art with ai: review and outlook, ACM Trans. Multimed. Comput. Commun. Appl. 18 (2) (2022) 1-22.

[2]

G. Liu, H. Du, D. Niyato, J. Kang, Z. Xiong, D.I. Kim, X. Shen, Semantic communi-cations for artificial intelligence generated content (aigc) toward effective content creation, IEEE Netw. 38 (5) (2024) 295-303.

[3]

H. Kim, S. Kim, S. Yoon, Guided-tts: a diffusion model for text-to-speech via classi-fier guidance, in: International Conference on Machine Learning,in: PMLR, 2022, pp. 11119-11133.

[4]

C. Zhang, C. Zhang, S. Zheng, M. Zhang, M. Qamar, S.-H. Bae,I.S. Kweon, A survey on audio diffusion models: text to speech synthesis and enhancement in generative ai, arXiv preprint, arXiv:2303.13336.

[5]

B. An, Ai-generated text detection: challenges and future directions, Int. J. Asian Lang. Process. 33 (02) (2023) 2330002.

[6]

O. AI,Gpt-4 technical report, arXiv preprint, arXiv:2303.08774.

[7]

Y.X. Tan, C.P. Lee, M. Neo, K.M. Lim, J.Y. Lim, A. Alqahtani, Recent advances in text-to-image synthesis: approaches, datasets and future research prospects, IEEE Access 11 (2023) 88099-88115.

[8]

S. Xu, D. Hou, L. Pang, J. Deng, J. Xu, H. Shen, X. Cheng, Invisible relevance bias: text-image retrieval models prefer ai-generated images,in: Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2024, pp. 208-217.

[9]

A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, I. Sutskever, Zero-shot text-to-image generation, in: International Conference on Machine Learn-ing,in: PMLR, 2021, pp. 8821-8831.

[10]

Z. Xing, Q. Feng, H. Chen, Q. Dai, H. Hu, H. Xu, Z. Wu, Y.-G. Jiang, A survey on video diffusion models, ACM Comput. Surv. 57 (2) (2024) 1-42.

[11]

B. Qu, X. Liang, S. Sun, W. Gao, Exploring aigc video quality: a focus on vi-sual harmony video-text consistency and domain distribution gap,in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024, pp. 6652-6660.

[12]

Y. Liu, K. Zhang, Y. Li, Z. Yan, C. Gao, R. Chen, Z. Yuan, Y. Huang, H. Sun, J. Gao, et al., Sora: a review on background, technology, limitations, and opportunities of large vision models, arXiv preprint, arXiv:2402.17177.

[13]

S.K. Ahmed, The impact of chatgpt on the nursing profession: revolutionizing patient care and education, Ann. Biomed. Eng. 51 (11) (2023) 2351-2352.

[14]

L. Shao, B. Chen, Z. Zhang, Z. Zhang, X. Chen, Artificial intelligence generated content (aigc) in medicine: a narrative review, Math. Biosci. Eng. 21 (1) (2024) 1672-1711.

[15]

H. Li, H. Liu, D. Hu, J. Wang, I. Oguz, Promise: Prompt-driven 3d medical image segmentation using pretrained image foundation models, in: 2024 IEEE International Symposium on Biomedical Imaging, IEEE, 2024, pp. 1-5.

[16]

H. Chen, B. Zhao, G. Yue, W. Liu, C. Lv, R. Wang, F. Zhou, Clip-medfake: synthetic data augmentation with ai-generated content for improved medical image classifi-cation, in: 2024 IEEE International Conference on Image Processing, IEEE, 2024, pp. 3854-3860.

[17]

X. Chen, Z. Hu, C. Wang, Empowering education development through aigc: a sys-tematic literature review, Educ. Inf. Technol. 29 (13) (2024) 17485-17537.

[18]

R. Zhang, D. Zou, G. Cheng, A review of chatbot-assisted learning: pedagogical approaches, implementations, factors leading to effectiveness, theories, and future directions, Interact. Learn. Environ. 32 (8) (2024) 4529-4557.

[19]

X. Deng, Z. Yu, A meta-analysis and systematic review of the effect of chatbot tech-nology use in sustainable education, Sustainability 15 (4) (2023) 2940.

[20]

Y.-C. Wang, J. Xue, C. Wei, C.-C.J. Kuo, An overview on generative ai at scale with edge-cloud computing, IEEE Open J. Commun. Soc. 4 (2023) 2952-2971.

[21]

H. Hua, Y. Li, T. Wang, N. Dong, W. Li, J. Cao, Edge computing with artificial intel-ligence: a machine learning perspective, ACM Comput. Surv. 55 (9) (2023) 1-35.

[22]

M. Xu, H. Du, D. Niyato, J. Kang, Z. Xiong, S. Mao, Z. Han, A. Jamalipour, D.I. Kim, X. Shen, et al., Unleashing the power of edge-cloud generative ai in mobile networks: a survey of aigc services, IEEE Commun. Surv. Tutor. 26 (2) (2024) 1127-1170.

[23]

Y. Zhang, J. Zhang, S. Yue, W. Lu, J. Ren, X. Shen, Mobile generative ai: opportunities and challenges, IEEE Wirel. Commun. 31 (4) (2024) 58-64.

[24]

M. Reiss-Mirzaei, M. Ghobaei-Arani, L. Esmaeili, A review on the edge caching mech-anisms in the mobile edge computing: a social-aware perspective, Internet of Things 22 (2023) 100690.

[25]

I. Zyrianoff, A. Trotta, L. Sciullo, F. Montori, M. Di Felice, IoT edge caching: taxon-omy, use cases and perspectives, IEEE Internet Things Mag. 5 (3) (2022) 12-18.

[26]

H. Xu, Y. Sun, J. Gao, J. Guo, Intelligent edge content caching: a deep recurrent reinforcement learning method, Peer-to-Peer Netw. Appl. 15 (6) (2022) 2619-2632.

[27]

M. Yasir, S.K. uz Zaman, T. Maqsood, F. Rehman, S. Mustafa, Copup: content popu-larity and user preferences aware content caching framework in mobile edge com-puting, Clust. Comput. 26 (1) (2023) 267-281.

[28]

C. Li, M. Song, C. Yu, Y. Luo, Mobility and marginal gain based content caching and placement for cooperative edge-cloud computing, Inf. Sci. 548 (2021) 153-176.

[29]

B. Tang, L. Kang, Eicache: a learning-based intelligent caching strategy in mobile edge computing, Peer-to-Peer Netw. Appl. 15 (2) (2022) 934-949.

[30]

D. Qiao, S. Guo, D. Liu, S. Long, P. Zhou, Z. Li, Adaptive federated deep reinforce-ment learning for proactive content caching in edge computing, IEEE Trans. Parallel Distrib. Syst. 33 (12) (2022) 4767-4782.

[31]

X. Zhou, M. Bilal, R. Dou, J.J. Rodrigues, Q. Zhao, J. Dai, X. Xu, Edge computation offloading with content caching in 6 g-enabled iov, IEEE Trans. Intell. Transp. Syst. 25 (3) (2023) 2733-2747.

[32]

X. Xu, Z. Fang, J. Zhang, Q. He, D. Yu, L. Qi, W. Dou, Edge content caching with deep spatiotemporal residual network for IoV in smart city, ACM Trans. Sens. Netw. 17 (3) (2021) 1-33.

[33]

Y. Zhao, C. Liu, X. Hu, J. He, M. Peng, D. Wing Kwan Ng, T.Q.S. Quek, Joint content caching, service placement, and task offloading in uav-enabled mobile edge comput-ing networks, IEEE J. Sel. Areas Commun. 43 (1) (2025) 51-63.

[34]

M. Xu, D. Niyato, H. Zhang, J. Kang, Z. Xiong, S. Mao, Z. Han, Sparks of generative pretrained transformers in edge intelligence for the metaverse: caching and inference for mobile artificial intelligence-generated content services, IEEE Veh. Technol. Mag. 18 (4) (2023) 35-44.

[35]

Z. Chen, S. Zhang, Z. Ma, S. Zhang, Z. Qian, M. Xiao, J. Wu, S. Lu, An online approach for dnn model caching and processor allocation in edge computing, in: 2022 IEEE/ACM 30th International Symposium on Quality of Service, IEEE, 2022, pp. 1-10.

[36]

H. Djigal, J. Xu, L. Liu, Y. Zhang, Machine and deep learning for resource allocation in multi-access edge computing: a survey, IEEE Commun. Surv. Tutor. 24 (4) (2022) 2449-2494.

[37]

H. Jiang, X. Dai, Z. Xiao, A. Iyengar, Joint task offloading and resource allocation for energy-constrained mobile edge computing, IEEE Trans. Mob. Comput. 22 (7)(2022) 4000-4015.

[38]

O.A. Mahmood, A.R. Abdellah, A. Muthanna, A. Koucheryavy, Distributed edge com-puting for resource allocation in smart cities based on the IoT, Information 13 (7)(2022) 328.

[39]

T. Liu, L. Tang, W. Wang, X. He, Q. Chen, X. Zeng, H. Jiang, Resource allocation in dt-assisted Internet of vehicles via edge intelligent cooperation, IEEE Internet Things J. 9 (18) (2022) 17608-17626.

[40]

Y. Cang, M. Chen, Z. Yang, Y. Hu, Y. Wang, C. Huang, Z. Zhang, Online resource allo-cation for semantic-aware edge computing systems, IEEE Internet Things J. 11 (17)(2023) 28094-28110.

[41]

Q. Liu, R. Mo, X. Xu, X. Ma, Multi-objective resource allocation in mobile edge com-puting using paes for Internet of things, Wirel. Netw. 30 (5) (2024) 3533-3545.

[42]

Z. Liu, H. Du, L. Huang, Z. Gao, D. Niyato, Joint model caching and resource al-location in generative ai-enabled wireless edge networks, in: 2025 IEEE Wireless Communications and Networking Conference, IEEE, 2025, pp. 1-6.

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/