Autonomous network management for 6G communication: A comprehensive survey

Inam Ullah , Ali Arishi , Sushil Kumar Singh , Faisal Alharbi , Anwar Hassan Ibrahim , Muhammad Islam , Yousef Ibrahim Daradkeh , Chang Choi

›› 2025, Vol. 11 ›› Issue (6) : 1917 -1940.

PDF
›› 2025, Vol. 11 ›› Issue (6) :1917 -1940. DOI: 10.1016/j.dcan.2025.07.001
Special issue on AI-native 6G networks
research-article

Autonomous network management for 6G communication: A comprehensive survey

Author information +
History +
PDF

Abstract

The rapid advancement of 6G communication networks presents both considerable problems and opportunities in network management, necessitating sophisticated solutions that extend beyond conventional methods. This study seeks to investigate and evaluate autonomous network management solutions designed for 6G communication networks, highlighting their technical advantages and potential implications. We examine the role of Artificial Intelligence (AI), Machine Learning (ML), and network automation in facilitating self-organization, optimization, and decision-making within critical network domains, including spectrum management, traffic load balancing, fault detection, and security and privacy. We examine the integration of edge computing and Distributed Ledger Technologies (DLT), specifically blockchain, to improve trust, transparency, and security in autonomous networks. This study provides a comprehensive understanding of the technological developments driving fully autonomous, efficient, and resilient 6G network infrastructures by methodically analyzing existing methodologies, identifying significant research gaps, and exploring potential prospects. The results offer significant insights for researchers, engineers, and industry experts involved in the development and deployment of advanced autonomous network management systems.

Keywords

Autonomous network management / AI / 6G communication / NFV / SDN / Networks / Machine learning

Cite this article

Download citation ▾
Inam Ullah, Ali Arishi, Sushil Kumar Singh, Faisal Alharbi, Anwar Hassan Ibrahim, Muhammad Islam, Yousef Ibrahim Daradkeh, Chang Choi. Autonomous network management for 6G communication: A comprehensive survey. , 2025, 11(6): 1917-1940 DOI:10.1016/j.dcan.2025.07.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Yuan, M. Peng, Y. Sun, X. Liu, Software defined intelligent satellite-terrestrial integrated networks: insights and challenges, Digit. Commun. Netw. 9 (6) (2023) 1331-1339.

[2]

M.Z. Chowdhury, M. Shahjalal, S. Ahmed, Y.M. Jang, 6g wireless communication systems: applications, requirements, technologies, challenges, and research direc-tions, IEEE Open J. Commun. Soc. 1 (2020) 957-975.

[3]

X. Wang, Y. Guo, Y. Gao,Unmanned autonomous intelligent system in 6g non-terrestrial network, Information 15 (1) (2024) 38.

[4]

K. Mehmood, K. Kralevska, D. Palma, Intent-driven autonomous network and ser-vice management in future cellular networks: a structured literature review, Com-put. Netw. 220 (2023) 109477.

[5]

E. Coronado, R. Behravesh, T. Subramanya, A. Fernàndez-Fernàndez, M.S. Siddiqui, X. Costa-Pérez, R. Riggio, Zero touch management: a survey of network automa-tion solutions for 5g and 6g networks, IEEE Commun. Surv. Tutor. 24 (4) (2022) 2535-2578.

[6]

M. Soori, B. Arezoo, R. Dastres, Artificial intelligence, machine learning and deep learning in advanced robotics, a review, Cogn. Robot. 3 (2023) 54-70.

[7]

A. Moubayed, A. Shami, A. Al-Dulaimi, On end-to-end intelligent automation of 6g networks, Future Internet 14 (6) (2022) 165.

[8]

B. Khemani, S. Patil, K. Kotecha, S. Tanwar, A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions, J. Big Data 11 (1) (2024) 18.

[9]

K. Aykurt, W. Kellerer, Autonomous network management in multi-domain 6g net-works based on graph neural networks, in: 2023 IEEE 9th International Conference on Network Softwarization (NetSoft), IEEE, 2023, pp. 338-341.

[10]

T. Maksymyuk, J. Gazda, M. Volosin, G. Bugar, D. Horvath, M. Klymash, M. Dohler, Blockchain-empowered framework for decentralized network management in 6g, IEEE Commun. Mag. 58 (9) (2020) 86-92.

[11]

M.U. Nasir, S. Khan, S. Mehmood, M.A. Khan, M. Zubair, S.O. Hwang, Network meddling detection using machine learning empowered with blockchain technol-ogy, Sensors 22 (18) (2022) 6755.

[12]

S. Mahboob, L. Liu, Revolutionizing future connectivity: a contemporary survey on ai-empowered satellite-based non-terrestrial networks in 6g, IEEE Commun. Surv. Tutor. 26 (2) (2024) 1279-1321.

[13]

F. Makhmudov, A. Privalov, S. Egorenkov, A. Pryadkin, A. Kutlimuratov, G. Bek-baev, Y.I. Cho, Analytical approach to uav cargo delivery processes under malicious interference conditions, Mathematics 13 (12) (2025) 2008.

[14]

K. Ryu, W. Kim, Energy efficient deployment of aerial base stations for mobile users in multi-hop uav networks, Ad Hoc Netw. 157 (2024) 103463.

[15]

M. Dai, N. Huang, Y. Wu, J. Gao, Z. Su, Unmanned-aerial-vehicle-assisted wireless networks: advancements, challenges, and solutions, IEEE Internet Things J. 10 (5)(2022) 4117-4147.

[16]

R. Shrestha, R. Bajracharya, S. Kim,6g enabled unmanned aerial vehicle traffic management: a perspective, IEEE Access 9 (2021) 91119-91136.

[17]

Q. Duan, Intelligent and autonomous management in cloud-native future networks-a survey on related standards from an architectural perspective, Future Internet 13 (2) (2021) 42.

[18]

Y. Prajapati, K. Gosai, O. Suthar, S.K. Singh, M.T. Usman, H. Khan, Privacy and security concerns with 6g smart city infrastructure, in: Building Tomorrow’s Smart Cities with 6G Infrastructure Technology, IGI, Global Scientific Publishing, 2025, pp. 113-136.

[19]

A. Clemm, M.F. Zhani, R. Boutaba, Network management 2030: operations and control of network 2030 services, J. Netw. Syst. Manag. 28 (4) (2020) 721-750.

[20]

J. Wang, J. Liu, N. Kato, Networking and communications in autonomous driving: a survey, IEEE Commun. Surv. Tutor. 21 (2) (2018) 1243-1274.

[21]

M. Matracia, N. Saeed, M.A. Kishk, M.-S. Alouini, Post-disaster communications: enabling technologies, architectures, and open challenges, IEEE Open J. Commun. Soc. 3 (2022) 1177-1205.

[22]

F. Ding, C. Bao, D. Zhou, M. Sheng, Y. Shi, J. Li, Toward autonomous resource man-agement architecture for 6g satellite-terrestrial integrated networks, IEEE Netw. 38 (2) (2024) 113-121.

[23]

J. He, K. Yang, H.-H. Chen, 6g cellular networks and connected autonomous vehi-cles, IEEE Netw. 35 (4) (2020) 255-261.

[24]

M. Alsabah, M.A. Naser, B.M. Mahmmod, S.H. Abdulhussain, M.R. Eissa, A. Al-Baidhani, N.K. Noordin, S.M. Sait, K.A. Al-Utaibi, F. Hashim,6g wireless communi-cations networks: a comprehensive survey, IEEE Access 9 (2021) 148191-148243.

[25]

D.C. Nguyen, M. Ding, P.N. Pathirana, A. Seneviratne, J. Li, D. Niyato, O. Dobre, H. V. Poor, 6g Internet of things: a comprehensive survey, IEEE Internet Things J. 9 (1) (2021) 359-383.

[26]

V.-L. Nguyen, R.-H. Hwang, P.-C. Lin, A. Vyas, V.-T. Nguyen, Toward the age of intelligent vehicular networks for connected and autonomous vehicles in 6g, IEEE Netw. 37 (3) (2022) 44-51.

[27]

A. Bellin, M. Centenaro, N. di Pietro, A. Ishaq, D. Munaretto, D. Ronzani, A. Spinato, S. Tomasin, F. Granelli, Autonomous private mobile networks: state of the art and future challenges, IEEE Commun. Stand. Mag. 7 (2) (2023) 24-31.

[28]

N.I. Sarkar, S. Gul, Artificial intelligence-based autonomous uav networks: a survey, Drones 7 (5) (2023) 322.

[29]

J. Lee, F. Solat, T.Y. Kim, H.V. Poor, Federated learning-empowered mobile net-work management for 5g and beyond networks: from access to core, IEEE Commun. Surv. Tutor. 26 (3) (2024) 2176-2212.

[30]

G.M. Karam, M. Gruber, I. Adam, F. Boutigny, Y. Miche, S. Mukherjee, The evolu-tion of networks and management in a 6g world: an inventor’s view, IEEE Trans. Netw. Serv. Manag. 19 (4) (2022) 5395-5407.

[31]

V.-G. Nguyen, A. Brunstrom, K.-J. Grinnemo, J. Taheri, Sdn/nfv-based mobile packet core network architectures: a survey, IEEE Commun. Surv. Tutor. 19 (3)(2017) 1567-1602.

[32]

P. Wang, Collaborative innovation of wireless communication in logistics: evolution of network structure and knowledge domain, Wirel. Netw. (2023) 1-11.

[33]

L. Aarikka-Stenroos, P. Ritala, Network management in the era of ecosystems: sys-tematic review and management framework, Ind. Mark. Manage. 67 (2017) 23-36.

[34]

F. Tang, C. Ma, K. Cheng, Privacy-preserving authentication scheme based on zero trust architecture, Digit. Commun. Netw. 10 (5) (2024) 1211-1220.

[35]

S. Zou, J. Wu, H. Yu, W. Wang, L. Huang, W. Ni, Y. Liu, Efficiency-optimized 6g: a virtual network resource orchestration strategy by enhanced particle swarm op-timization, Digit. Commun. Netw. 10 (5) (2024) 1221-1233.

[36]

W. Yeoh, M. Liu, M. Shore, F. Jiang, Zero trust cybersecurity: critical success factors and a maturity assessment framework, Comput. Secur. 133 (2023) 103412.

[37]

S. Dhar, A. Khare, A.D. Dwivedi, R. Singh, Securing iot devices: a novel approach using blockchain and quantum cryptography, Internet of Things 25 (2024) 101019.

[38]

R. Boutaba, M.A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar, F. Estrada-Solano, O. M. Caicedo, A comprehensive survey on machine learning for networking: evo-lution, applications and research opportunities, J. Internet Serv. Appl. 9 (1) (2018) 1-99.

[39]

Z.M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, K. Mizutani, State-of-the-art deep learning: evolving machine intelligence toward tomorrow’s intel-ligent network traffic control systems, IEEE Commun. Surv. Tutor. 19 (4) (2017) 2432-2455.

[40]

J.A. Hurtado Sánchez, K. Casilimas, O.M. Caicedo Rendon, Deep reinforcement learning for resource management on network slicing: a survey, Sensors 22 (8)(2022) 3031.

[41]

N.C. Luong, D.T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, D.I. Kim, Ap-plications of deep reinforcement learning in communications and networking: a survey, IEEE Commun. Surv. Tutor. 21 (4) (2019) 3133-3174.

[42]

R. Alami, A. Biswas, V. Shinde, A. Almogren, A.U. Rehman, T. Shaikh, Blockchain enabled federated learning for detection of malicious Internet of things nodes, IEEE Access 12 (2024) 188174-188185.

[43]

L.-N. Degambur, A. Mungur, S. Armoogum, S. Pudaruth, Resource allocation in 4g and 5g networks: a review, Int. J. Commun. Netw. Inf. Secur. 13 (3) (2021) 401-408.

[44]

A.A. Barakabitze, R. Walshe, Sdn and nfv for qoe-driven multimedia services deliv-ery: the road towards 6g and beyond networks, Comput. Netw. 214 (2022) 109133.

[45]

A. Ali, Y. Zhu, M. Zakarya, Exploiting dynamic spatio-temporal correlations for citywide traffic flow prediction using attention based neural networks, Inf. Sci. 577 (2021) 852-870.

[46]

M. Pohlmann, The evolution of innovation: cultural backgrounds and the use of innovation models, Technol. Anal. Strateg. Manag. 17 (1) (2005) 9-19.

[47]

M.U.A. Siddiqui, F. Qamar, F. Ahmed, Q.N. Nguyen, R. Hassan,Interference man-agement in 5g and beyond network: requirements, challenges and future directions, IEEE Access 9 (2021) 68932-68965.

[48]

M. Pons, E. Valenzuela, B. Rodríguez, J.A. Nolazco-Flores, C. Del-Valle-Soto,Uti-lization of 5g technologies in iot applications: current limitations by interference and network optimization difficulties-a review, Sensors 23 (8) (2023) 3876.

[49]

H. Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, V.C. Leung, Network slicing based 5g and future mobile networks: mobility, resource management, and challenges, IEEE Commun. Mag. 55 (8) (2017) 138-145.

[50]

W. Jiang, B. Han, M.A. Habibi, H.D. Schotten, The road towards 6g: a comprehen-sive survey, IEEE Open J. Commun. Soc. 2 (2021) 334-366.

[51]

Y. Zhou, L. Liu, L. Wang, N. Hui, X. Cui, J. Wu, Y. Peng, Y. Qi, C. Xing, Service-aware 6g: an intelligent and open network based on the convergence of communication, computing and caching, Digit. Commun. Netw. 6 (3) (2020) 253-260.

[52]

M. Hosseinzadeh, S. Ali, L. Ionescu-Feleaga, B.-S. Ionescu, M.S. Yousefpoor, E. Yousefpoor, O.H. Ahmed, A.M. Rahmani, A. Mehmood, A novel q-learning-based routing scheme using an intelligent filtering algorithm for flying ad hoc networks (fanets), J. King Saud Univ, Comput. Inf. Sci. 35 (10) (2023) 101817.

[53]

C. De Lima, D. Belot, R. Berkvens, A. Bourdoux, D. Dardari, M. Guillaud, M. Iso-mursu, E.-S. Lohan, Y. Miao, A.N. Barreto, et al., Convergent communication, sens-ing and localization in 6g systems: an overview of technologies, opportunities and challenges, IEEE Access 9 (2021) 26902-26925.

[54]

N. Awan, A. Ali, F. Khan, M. Zakarya, R. Alturki, M. Kundi, M.D. Alshehri, M. Haleem, Modeling dynamic spatio-temporal correlations for urban traffic flows pre-diction, IEEE Access 9 (2021) 26502-26511.

[55]

I.F. Akyildiz, A. Kak, S. Nie,6g and beyond: the future of wireless communications systems, IEEE Access 8 (2020) 133995-134030.

[56]

H. Viswanathan, P.E. Mogensen, Communications in the 6g era, IEEE Access 8 (2020) 57063-57074.

[57]

N. Ansari, Industrial perspectives of 6g, IEEE Wirel. Commun. 32 (1) (2025) 4-6.

[58]

W. Saad, M. Bennis, M. Chen, A vision of 6g wireless systems: applications, trends, technologies, and open research problems, IEEE Netw. 34 (3) (2019) 134-142.

[59]

S. Dang, O. Amin, B. Shihada, M.-S. Alouini, What should 6g be?, Nat. Electron. 3 (1) (2020) 20-29.

[60]

D. Serghiou, M. Khalily, T.W. Brown, R. Tafazolli, Terahertz channel propagation phenomena, measurement techniques and modeling for 6g wireless communica-tion applications: a survey, open challenges and future research directions, IEEE Commun. Surv. Tutor. 24 (4) (2022) 1957-1996.

[61]

I. Ullah, D. Adhikari, X. Su, F. Palmieri, C. Wu, C. Choi, Integration of data sci-ence with the intelligent iot (iiot): current challenges and future perspectives, Digit. Commun. Netw. 11 (2) (2025) 280-298.

[62]

M. Saleem, S. Abbas, T.M. Ghazal, M.A. Khan, N. Sahawneh, M. Ahmad, Smart cities: fusion-based intelligent traffic congestion control system for vehicular net-works using machine learning techniques, Egypt. Inform. J. 23 (3) (2022) 417-426.

[63]

I. Ullah, F. Ali, H. Khan, F. Khan, X. Bai, Ubiquitous computation in Internet of vehicles for human-centric transport systems, Comput. Hum. Behav. 161 (2024) 108394.

[64]

H. Koo, C. Ryoo, W. Kim, Simultaneous utilization of multiple radio access networks in ubiquitous 6g connectivity for autonomous ships: opportunities and challenges, J. Mar. Sci. Eng. 11 (11) (2023) 2106.

[65]

H. Khan, Z. Jan, I. Ullah, A. Alwabli, F. Alharbi, S. Habib, M. Islam, B.-J. Shin, M.Y. Lee, J. Koo, A deep dive into ai integration and advanced nanobiosensor technolo-gies for enhanced bacterial infection monitoring, Nanotechnol. Rev. 13 (1) (2024) 20240056.

[66]

M.J. Ahmed, U. Afridi, H.A. Shah, H. Khan, M.W. Bhatt, A. Alwabli, I. Ullah, Car-dioguard: Ai-driven ecg authentication hybrid neural network for predictive health monitoring in telehealth systems, SLAS Technol. 29 (5) (2024) 100193.

[67]

X. Shen, J. Gao, M. Li, C. Zhou, S. Hu, M. He, W. Zhuang, Toward immersive com-munications in 6g, Front. Comput. Sci. 4 (2023) 1068478.

[68]

M. Zawish, F.A. Dharejo, S.A. Khowaja, S. Raza, S. Davy, K. Dev, P. Bellavista, Ai and 6g into the metaverse: fundamentals, challenges and future research trends, IEEE Open J. Commun. Soc. 5 (2024) 730-778.

[69]

M. Awais, F. Ullah Khan, M. Zafar, M. Mudassar, M. Zaigham Zaheer, K. Mehmood Cheema, M. Kamran, W.-S. Jung,Towards enabling haptic communications over 6g: issues and challenges, Electronics 12 (13) (2023) 2955.

[70]

B. Yang, X. Cao, K. Xiong, C. Yuen, Y.L. Guan, S. Leng, L. Qian, Z. Han, Edge in-telligence for autonomous driving in 6g wireless system: design challenges and solutions, IEEE Wirel. Commun. 28 (2) (2021) 40-47.

[71]

K. Haseeb, A. Rehman, T. Saba, S.A. Bahaj, H. Wang, H. Song, Efficient and trusted autonomous vehicle routing protocol for 6g networks with computational intelli-gence, ISA Trans. 132 (2023) 61-68.

[72]

N. Shamshad, L. Wang, K. Saleem, D. Sarwr, S. Bharany, A. Almogren, J. Choi, A.U. Rehman, A. Altameem, Advanced knn-based cost-efficient algorithm for precision localization and energy optimization in dynamic underwater sensor networks, Sci. Rep. 15 (1) (2025) 2182.

[73]

S. Liu, Y. Yu, L. Guo, P.L. Yeoh, B. Vucetic, Y. Li, Adaptive delay-energy balanced partial offloading strategy in mobile edge computing networks, Digit. Commun. Netw. 9 (6) (2023) 1310-1318.

[74]

Y. Wu, Ethically responsible and trustworthy autonomous systems for 6g, IEEE Netw. 36 (4) (2022) 126-133.

[75]

Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G.K. Karagiannidis, P. Fan, 6g wireless networks: vision, requirements, architecture, and key technologies, IEEE Veh. Technol. Mag. 14 (3) (2019) 28-41.

[76]

T. Hewa, G. Gür, A. Kalla, M. Ylianttila, A. Bracken, M. Liyanage, The role of blockchain in 6g: challenges, opportunities and research directions, in: 2020 2nd 6G Wireless Summit (6G SUMMIT), 2020, pp. 1-5.

[77]

A.H. Khan, N.U. Hassan, C. Yuen, J. Zhao, D. Niyato, Y. Zhang, H.V. Poor, Blockchain and 6g: the future of secure and ubiquitous communication, IEEE Wirel. Commun. 29 (1) (2021) 194-201.

[78]

K.M.B. Hasan, M. Sajid, M.A. Lapina, M. Shahid, K. Kotecha, Blockchain technology meets 6 g wireless networks: a systematic survey, Alex. Eng. J. 92 ( 2024) 199-220.

[79]

T. Muhammad, Revolutionizing network control: exploring the landscape of software-defined networking (sdn), Int. J. Comput. Sci. Technol. 3 (1) (2019) 36-68.

[80]

F. Jameel, Z. Chang, J. Huang, T. Ristaniemi, Internet of autonomous vehicles: architecture, features, and socio-technological challenges, IEEE Wirel. Commun. 26 (4) (2019) 21-29.

[81]

I. Ullah, S. Qian, Z. Deng, J.-H. Lee, Extended Kalman filter-based localization algo-rithm by edge computing in wireless sensor networks, Digit. Commun. Netw. 7 (2)(2021) 187-195.

[82]

C. Johnson, Readiness of the Road Network for Connected and Autonomous Vehi-cles, RAC Foundation, London, UK, 2017, pp. 16-17.

[83]

S. Zhang, D. Zhu, Towards artificial intelligence enabled 6g: state of the art, chal-lenges, and opportunities, Comput. Netw. 183 (2020) 107556.

[84]

H. Khan, M.T. Usman, I. Rida, J. Koo, Attention enhanced machine instinctive vision with human-inspired saliency detection, Image Vis. Comput. 152 (2024) 105308.

[85]

A.A. Puspitasari, T.T. An, M.H. Alsharif, B.M. Lee,Emerging technologies for 6g communication networks: machine learning approaches, Sensors 23 (18) (2023) 7709.

[86]

P.M. Tshakwanda, S.T. Arzo, M. Devetsikiotis, Advancing 6g network performance: Ai/ml framework for proactive management and dynamic optimal routing, IEEE Open J. Comput. Soc. (2024) 303-314.

[87]

S. Alsubai, M. Umer, N. Innab, S. Shiaeles, M. Nappi, Multi-scale convolutional auto encoder for anomaly detection in 6g environment, Comput. Ind. Eng. 194 (2024) 110396.

[88]

K. Sheth, K. Patel, H. Shah, S. Tanwar, R. Gupta, N. Kumar, A taxonomy of ai tech-niques for 6g communication networks, Comput. Commun. 161 (2020) 279-303.

[89]

J. Wen, Z. Zhang, Y. Lan, Z. Cui, J. Cai, W. Zhang, A survey on federated learning: challenges and applications, Int. J. Mach. Learn. Cybern. 14 (2) (2023) 513-535.

[90]

A. Rahman, K. Hasan, D. Kundu, M.J. Islam, T. Debnath, S.S. Band, N. Kumar, On the icn-iot with federated learning integration of communication: concepts, security-privacy issues, applications, and future perspectives, Future Gener. Com-put. Syst. 138 (2023) 61-88.

[91]

H.M.F. Noman, E. Hanafi, K.A. Noordin, K. Dimyati, M.N. Hindia, A. Abdrabou, F. Qamar,Machine learning empowered emerging wireless networks in 6g: recent advancements, challenges and future trends, IEEE Access 11 (2023) 83017-83051.

[92]

X. Chen, R. Proietti, S.B. Yoo, Building autonomic elastic optical networks with deep reinforcement learning, IEEE Commun. Mag. 57 (10) (2019) 20-26.

[93]

S. Gupta, M. Sehgal, R. Makkar, A.P.C. Reddy, H. Khan, Using 6g to boost smart cities: new ways to connect and save energy in cities,in: Building Tomorrow’s Smart Cities with 6G Infrastructure Technology, IGI, Global Scientific Publishing, 2025, pp. 79-112.

[94]

I.H. Sarker, Machine learning for intelligent data analysis and automation in cyber-security: current and future prospects, Ann. Data Sci. 10 (6) (2023) 1473-1498.

[95]

F. Safarov, M. Basak, R. Nasimov, A. Abdusalomov, Y.I. Cho, Explainable lightweight block attention module framework for network-based iot attack de-tection, Future Internet 15 (9) (2023) 297.

[96]

Z. Zhang, H. Al Hamadi, E. Damiani, C.Y. Yeun, F. Taher, Explainable artificial intelligence applications in cyber security: state-of-the-art in research, IEEE Access 10 (2022) 93104-93139.

[97]

B. Mahbooba, M. Timilsina, R. Sahal, M. Serrano, Explainable artificial intelligence (xai) to enhance trust management in intrusion detection systems using decision tree model, Complexity 2021 (1) (2021) 6634811, https://doi.org/10.1155/2021/6634811.

[98]

J. Chen, L. Ramanathan, M. Alazab, Holistic big data integrated artificial intelligent modeling to improve privacy and security in data management of smart cities, Mi-croprocess. Microsyst. 81 (2021) 103722, https://doi.org/10.1016/j.micpro.2020.103722.

[99]

S.R. Kandula, Emerging security challenges and ai-driven solutions in multi-cloud and hybrid environments, J. Recent Trends Comput. Sci. Eng. 13 (1) (2025) 89-98.

[100]

M.T. Usman, H. Khan, S.K. Singh, M.Y. Lee, J. Koo, Efficient deepfake detection via layer-frozen assisted dual attention network for consumer imaging devices, IEEE Trans. Consum. Electron. 71 (1) (2024) 1-11.

[101]

H. Xu, P.V. Klaine, O. Onireti, B. Cao, M. Imran, L. Zhang, Blockchain-enabled resource management and sharing for 6g communications, Digit. Commun. Netw. 6 (3) (2020) 261-269.

[102]

S.D.A. Shah, M.A. Gregory, S. Li, Cloud-native network slicing using software de-fined networking based multi-access edge computing: a survey, IEEE Access 9 (2021) 10903-10924, https://doi.org/10.1109/ACCESS.2021.3050155.

[103]

M.A. Habibi, B. Han, A. Fellan, W. Jiang, A.G. Sanchez, I.L. Pavon, A. Boubendir, H. D. Schotten, Toward an open, intelligent, and end-to-end architectural frame-work for network slicing in 6g communication systems, IEEE Open J. Commun. Soc. 4 (2023) 1615-1658.

[104]

M.A. Rahman, M.S. Hossain, A deep learning assisted software defined security architecture for 6g wireless networks: Iiot perspective, IEEE Wirel. Commun. 29 (2)(2022) 52-59.

[105]

L. Huo, D. Jiang, Z. Lv, A software-defined networks-based measurement method of network traffic for 6g technologies, Trans. Emerg. Telecommun. Technol. 33 (4)(2022) e4172.

[106]

Q. Long, Y. Chen, H. Zhang, X. Lei, Software defined 5g and 6g networks: a survey, Mob. Netw. Appl. 27 (5) (2022) 1792-1812.

[107]

M.A.B.S. Abir, M.Z. Chowdhury, Y.M. Jang, Software-defined uav networks for 6g systems: requirements, opportunities, emerging techniques, challenges, and re-search directions, IEEE Open J. Commun. Soc. 4 (2023) 2487-2547.

[108]

O.M.S. Hassan, F. Keti, A review on the challenges and opportunities of software defined networks toward 5g and 6g, Eur. J. Appl. Sci., Eng. Technol. 3 (2) (2025) 55-66.

[109]

M. Arif, W. Kim, Efficiency of uav-assisted cellular networks under jamming sce-narios, Veh. Commun. 49 (2024) 100833.

[110]

A.A. Ibrahim, F. Hashim, A. Sali, N.K. Noordin, K. Navaie, S.M. Fadul, Reliability-aware swarm based multi-objective optimization for controller placement in dis-tributed sdn architecture, Digit. Commun. Netw. 10 (5) (2024) 1245-1257.

[111]

I. Alam, K. Sharif, F. Li, Z. Latif, M.M. Karim, S. Biswas, B. Nour, Y. Wang, A survey of network virtualization techniques for Internet of things using sdn and nfv, ACM Comput. Surv. 53 (2) (2020) 1-40.

[112]

S. Abdelwahab, B. Hamdaoui, M. Guizani, T. Znati, Network function virtualization in 5g, IEEE Commun. Mag. 54 (4) (2016) 84-91.

[113]

Q. Duan, N. Ansari, M. Toy, Software-defined network virtualization: an archi-tectural framework for integrating sdn and nfv for service provisioning in future networks, IEEE Netw. 30 (5) (2016) 10-16.

[114]

P. Neves, R. Calé, M.R. Costa, C. Parada, B. Parreira, J. Alcaraz-Calero, Q. Wang, J. Nightingale, E. Chirivella-Perez, W. Jiang, et al., The selfnet approach for auto-nomic management in an nfv/sdn networking paradigm, Int. J. Distrib. Sens. Netw. 12 (2) (2016) 2897479.

[115]

R. Mijumbi, J. Serrat, J.-L. Gorricho, S. Latré, M. Charalambides, D. Lopez, Man-agement and orchestration challenges in network functions virtualization, IEEE Commun. Mag. 54 (1) (2016) 98-105.

[116]

M. Asante, G. Epiphaniou, C. Maple, H. Al-Khateeb, M. Bottarelli, K.Z. Ghafoor, Distributed ledger technologies in supply chain security management: a compre-hensive survey, IEEE Trans. Eng. Manag. 70 (2) (2021) 713-739.

[117]

T. Hardjono, A. Lipton, A. Pentland, Toward an interoperability architecture for blockchain autonomous systems, IEEE Trans. Eng. Manag. 67 (4) (2019) 1298-1309.

[118]

D. Reebadiya, T. Rathod, R. Gupta, S. Tanwar, N. Kumar, Blockchain-based secure and intelligent sensing scheme for autonomous vehicles activity tracking beyond 5g networks, Peer-to-Peer Netw. Appl. 14 (5) (2021) 2757-2774.

[119]

M. Zichichi, S. Ferretti, G. D’angelo, A framework based on distributed ledger tech-nologies for data management and services in intelligent transportation systems, IEEE Access 8 (2020) 100384-100402.

[120]

S. Jain, N.J. Ahuja, P. Srikanth, K.V. Bhadane, B. Nagaiah, A. Kumar, C. Konstanti-nou, Blockchain and autonomous vehicles: recent advances and future directions, IEEE Access 9 (2021) 130264-130328.

[121]

V. Ortega, F. Bouchmal, J.F. Monserrat, Trusted 5g vehicular networks: blockchains and content-centric networking, IEEE Veh. Technol. Mag. 13 (2) (2018) 121-127.

[122]

A. Rahman, M.K. Nasir, Z. Rahman, A. Mosavi, S. Shahab, B. Minaei-Bidgoli, Dis-tblockbuilding: a distributed blockchain-based sdn-iot network for smart building management, IEEE Access 8 (2020) 140008-140018.

[123]

M. Zachariadis, G. Hileman, S.V. Scott, Governance and control in distributed ledgers: understanding the challenges facing blockchain technology in financial services, Inf. Organ. 29 (2) (2019) 105-117.

[124]

T. Xu, N. Wang, Q. Pang, X. Zhao, Security and privacy of 6g wireless communica-tion using fog computing and multi-access edge computing, Scalable Comp. Pract. Exp. 25 (2) (2024) 770-781.

[125]

A. Ali, N. Azim, M.T.B. Othman, A.U. Rehman, M. Alajmi, M.H. Al-Adhaileh, F.U. Khan, M. Orken, H. Hamam, Joint optimization of computation offloading and task scheduling using multi-objective arithmetic optimization algorithm in cloud-fog computing, IEEE Access 12 (2024) 184158-184178.

[126]

M. Kamruzzaman, 6g wireless communication assisted security management using cloud edge computing, Expert Syst. 40 (4) (2023) e13061.

[127]

P. Lv, W. Xu, J. Nie, Y. Yuan, C. Cai, Z. Chen, J. Xu, Edge computing task offloading for environmental perception of autonomous vehicles in 6g networks, IEEE Trans. Netw. Sci. Eng. 10 (3) (2022) 1228-1245.

[128]

Y. Hui, N. Cheng, Z. Su, Y. Huang, P. Zhao, T.H. Luan, C. Li, Secure and personalized edge computing services in 6g heterogeneous vehicular networks, IEEE Internet Things J. 9 (8) (2021) 5920-5931.

[129]

M. Ergen, B. Saoud, I. Shayea, A.A. El-Saleh, O. Ergen, F. Inan, M.F. Tuysuz,Edge computing in future wireless networks: a comprehensive evaluation and vision for 6g and beyond, ICT Express 10 (5) (2024) 1151-1173.

[130]

M.K. Hasan, N. Jahan, M.Z.A. Nazri, S. Islam, M.A. Khan, A.I. Alzahrani, N. Alalwan, Y. Nam, Federated learning for computational offloading and resource management of vehicular edge computing in 6g-v2x network, IEEE Trans. Consum. Electron. 70 (1) (2024) 3827-3847.

[131]

Q. Duan, J. Huang, S. Hu, R. Deng, Z. Lu, S. Yu, Combining federated learning and edge computing toward ubiquitous intelligence in 6g network: challenges, re-cent advances, and future directions, IEEE Commun. Surv. Tutor. 25 (4) (2023) 2892-2950.

[132]

Y. Xiao, G. Shi, Y. Li, W. Saad, H.V. Poor, Toward self-learning edge intelligence in 6g, IEEE Commun. Mag. 58 (12) (2020) 34-40.

[133]

H. Niu, L. Wang, K. Du, Z. Lu, X. Wen, Y. Liu, A pipelining task offloading strat-egy via delay-aware multi-agent reinforcement learning in cybertwin-enabled 6g network, Digit. Commun. Netw. 11 (1) (2023) 92-105.

[134]

B. Mao, J. Liu, Y. Wu, N. Kato, Security and privacy on 6g network edge: a survey, IEEE Commun. Surv. Tutor. 25 (2) (2023) 1095-1127.

[135]

G. Gow, R. Smith, Mobile and Wireless Communications: An Introduction: An In-troduction, McGraw-Hill Education (UK), 2006.

[136]

V.K. Quy, A. Chehri, N.M. Quy, N.D. Han, N.T. Ban,Innovative trends in the 6g era: a comprehensive survey of architecture, applications, technologies, and challenges, IEEE Access 11 (2023) 39824-39844.

[137]

A.S. Shah, A survey from 1g to 5g including the advent of 6g:architectures, mul-tiple access techniques, and emerging technologies, in: 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), IEEE, 2022, pp. 1117-1123.

[138]

R. Chataut, R. Akl,Massive mimo systems for 5g and beyond networks-overview, recent trends, challenges, and future research direction, Sensors 20 (10) (2020) 2753.

[139]

C. Serôdio, J. Cunha, G. Candela, S. Rodriguez, X.R. Sousa, F. Branco,The 6g ecosys-tem as support for ioe and private networks: vision, requirements, and challenges, Future Internet 15 (11) (2023) 348.

[140]

V.K. Garg, S. Halpern, K.F. Smolik, Third generation (3g) mobile communications systems, in: 1999 IEEE International Conference on Personal Wireless Communica-tions (Cat. No. 99TH8366), IEEE, 1999, pp. 39-43.

[141]

B. Vasavi, M. Marepalli, L. Gudur, Evolution of 4g-research directions towards fourth generation wireless communication, Int. J. Comput. Sci. Inf. Technol. 2 (3)(2011) 1087-1095.

[142]

U. Shrivastava, J.K. Verma, et al., A study on 5g technology and its applications in telecommunications, in: 2021 International Conference on Computational Perfor-mance Evaluation (ComPE), IEEE, 2021, pp. 365-371.

[143]

A. Rehman, K. Haseeb, T. Saba, J. Lloret, Z. Ahmed, Mobility support 5g archi-tecture with real-time routing for sustainable smart cities, Sustainability 13 (16)(2021) 9092.

[144]

A. Ahmed, M. Zakarya, X. Liu, R. Khan, A. Ali, A.A. Khan, Quality enhancement in a mm-wave multi-hop, multi-tier heterogeneous 5g network architecture, Telecom-mun. Syst. 80 (2) (2022) 169-187.

[145]

M. Arif, W. Kim, A. Iqbal, S.W. Kim, Analysis of mcp-distributed jammers and 3d beam-width variations for uav-assisted c-v2x millimeter-wave communications, Mathematics 13 (10) (2025) 1665.

[146]

C. Zhang, W.U. Khan, A.K. Bashir, A.K. Dutta, A.U. Rehman, M.M. Al Dabel, Sum rate maximization for 6g beyond diagonal ris-assisted multi-cell transportation sys-tems, IEEE Trans. Intell. Transp. Syst. (2025) 1-11.

[147]

J. Garach, S.K. Singh, R. Ravikumar, A.P.C. Reddy, H. Khan, A comprehensive review on artificial intelligence in digital forensics with taxonomies, issues, and so-lutions: AI in digital forensics, in: Strategies for e-Commerce Data Security: Cloud, Blockchain, AI, and Machine Learning, 2024, pp. 1-28.

[148]

H. Khan, I. Ullah, M. Shabaz, M.F. Omer, M.T. Usman, M.S. Guellil, J. Koo, Vi-sionary vigilance: optimized yolov8 for fallen person detection with large-scale benchmark dataset, Image Vis. Comput. 149 (2024) 105195.

[149]

A. Moglia, K. Georgiou, E. Georgiou, R.M. Satava, A. Cuschieri, A systematic review on artificial intelligence in robot-assisted surgery, Int. J. Surg. 95 (2021) 106151.

[150]

H. Bilal, M.S. Obaidat, M.S. Aslam, J. Zhang, B. Yin, K. Mahmood, Online fault diagnosis of industrial robot using iort and hybrid deep learning techniques: an experimental approach, IEEE Internet Things J. (2024) 31422-31437.

[151]

H. Khan, M. Ullah, F. Al-Machot, F.A. Cheikh, M. Sajjad, Deep learning based speech emotion recognition for Parkinson patient, Electron. Imaging 35 (2023) 298.

[152]

V. Patel, S. Saikali, M.C. Moschovas, E. Patel, R. Satava, P. Dasgupta, M. Dohler, J.W. Collins, D. Albala, J. Marescaux, Technical and ethical considerations in telesurgery, Journal Robot. Surg. 18 (1) (2024) 40.

[153]

W. Fang, W. Zhang, W. Yang, Z. Li, W. Gao, Y. Yang, Trust management-based and energy efficient hierarchical routing protocol in wireless sensor networks, Digit. Commun. Netw. 7 (4) (2021) 470-478.

[154]

W.U. Rehman, T. Salam, A. Almogren, K. Haseeb, I.U. Din, S.H. Bouk, Improved resource allocation in 5g mtc networks, IEEE Access 8 (2020) 49187-49197.

[155]

W. Song, S. Rajak, S. Dang, R. Liu, J. Li, S. Chinnadurai, Deep learning enabled irs for 6g intelligent transportation systems: a comprehensive study, IEEE Trans. Intell. Transp. Syst. 24 (11) (2022) 12973-12990.

[156]

M. Adhikari, A. Hazra, V.G. Menon, B.K. Chaurasia, S. Mumtaz, A roadmap of next-generation wireless technology for 6g-enabled vehicular networks, IEEE Internet Things Mag. 4 (4) (2022) 79-85.

[157]

S. Sharma, R. Popli, S. Singh, G. Chhabra, G.S. Saini, M. Singh, A. Sandhu, A. Sharma, R. Kumar,The role of 6g technologies in advancing smart city applica-tions: opportunities and challenges, Sustainability 16 (16) (2024) 7039.

[158]

S. Saafi, O. Vikhrova, G. Fodor, J. Hosek, S. Andreev, Ai-aided integrated terrestrial and non-terrestrial 6g solutions for sustainable maritime networking, IEEE Netw. 36 (3) (2022) 183-190.

[159]

M.S. Farooq, S. Khan, A. Rehman, S. Abbas, M.A. Khan, S.O. Hwang, Blockchain-based smart home networks security empowered with fused machine learning, Sensors 22 (12) (2022) 4522.

[160]

W. Li, Y. Wang, Z. Jin, K. Yu, J. Li, Y. Xiang, Challenge-based collaborative intrusion detection in software-defined networking: an evaluation, Digit. Commun. Netw. 7 (2) (2021) 257-263.

[161]

M.N. Khan, I. Khalil, I. Ullah, S.K. Singh, S. Dhahbi, H. Khan, A. Alwabli, M.A. Al-Khasawneh, Self-adaptive and content-based scheduling for reducing idle listening and overhearing in securing quantum iot sensors, Internet of Things 27 (2024) 101312.

[162]

D. Kilichev, D. Turimov, W. Kim, Next-generation intrusion detection for iot evcs: integrating cnn, lstm, and gru models, Mathematics 12 (4) (2024) 571.

[163]

O. Johnphill, A.S. Sadiq, F. Al-Obeidat, H. Al-Khateeb, M.A. Taheir, O. Kaiwartya, M. Ali, Self-healing in cyber-physical systems using machine learning: a critical analysis of theories and tools, Future Internet 15 (7) (2023) 244.

[164]

Z. Rasheed, Y.-K. Ma, I. Ullah, Y. Tao, I. Khan, H. Khan, M. Shafiq, Edge computing in the digital era: the nexus of 5g, iot and a seamless digital future,in: Future Communication Systems Using Artificial Intelligence, Internet of Things and Data Science, CRC Press, 2024, pp. 213-234.

[165]

S. Sahoo, K.S. Sahoo, B. Sahoo, A.H. Gandomi, A learning automata based edge resource allocation approach for iot-enabled smart cities, Digit. Commun. Netw. 10 (5) (2024) 1258-1266.

[166]

X. Feng, J. Zhang, C. Ren, T. Guan, An unequal clustering algorithm concerned with time-delay for Internet of things, IEEE Access 6 (2018) 33895-33909.

[167]

K. Kandali, L. Bennis, H. Bennis, A new hybrid routing protocol using a modified k-means clustering algorithm and continuous Hopfield network for vanet, IEEE Ac-cess 9 (2021) 47169-47183.

[168]

M. Wang, J. Zeng, Hierarchical clustering nodes collaborative scheduling in wire-less sensor network, IEEE Sens. J. 22 (2) (2021) 1786-1798.

[169]

Z. Wei, F. Liu, X. Ding, L. Feng, Z. Lyu, L. Shi, J. Ji, K-chra: a clustering hierarchical routing algorithm for wireless rechargeable sensor networks, IEEE Access 7 (2018) 81859-81874.

[170]

L. Yang, Y. Lu, S.X. Yang, Y. Zhong, T. Guo, Z. Liang, An evolutionary game-based secure clustering protocol with fuzzy trust evaluation and outlier detection for wire-less sensor networks, IEEE Sens. J. 21 (12) (2021) 13935-13947.

[171]

K.G. Omeke, M.S. Mollel, M. Ozturk, S. Ansari, L. Zhang, Q.H. Abbasi, M.A. Imran, Dekcs: a dynamic clustering protocol to prolong underwater sensor networks, IEEE Sens. J. 21 (7) (2021) 9457-9464.

[172]

S. Bhandari, X. Wang, R. Lee, Mobility and location-aware stable clustering scheme for uav networks, IEEE Access 8 (2020) 106364-106372.

[173]

R. Chai, C. Liu, Q. Chen, Energy efficiency optimization-based joint resource allo-cation and clustering algorithm for m2m communication systems, IEEE Access 7 (2019) 168507-168519.

[174]

L. Zhang, W. Liu, Q. Liu, M. Jin, S.-J. Yoo, Unsupervised clustering for nonlin-ear equalization in indoor millimeter-wave communications, IEEE Access 7 (2018) 714-727.

[175]

D. Stiawan, M.E. Suryani, M.Y. Idris, M.N. Aldalaien, N. Alsharif, R. Budiarto, et al., Ping flood attack pattern recognition using a k-means algorithm in an Internet of things (iot) network, IEEE Access 9 (2021) 116475-116484.

[176]

B. Zhu, E. Bedeer, H.H. Nguyen, R. Barton, J. Henry, Improved soft-k-means clus-tering algorithm for balancing energy consumption in wireless sensor networks, IEEE Internet Things J. 8 (6) (2020) 4868-4881.

[177]

C. Jiang, J. Wan, H. Abbas, An edge computing node deployment method based on improved k-means clustering algorithm for smart manufacturing, IEEE Syst. J. 15 (2) (2020) 2230-2240.

[178]

F. Ma, Z.-M. Liu, F. Guo, Direct position determination in asynchronous sensor networks, IEEE Trans. Veh. Technol. 68 (9) (2019) 8790-8803.

[179]

P. Qian, Y. Guo, N. Li, Multitarget localization with inaccurate sensor locations via variational em algorithm, IEEE Sens. Lett. 3 (2) (2018) 1-4.

[180]

X. Guo, L. Li, F. Xu, N. Ansari, Expectation maximization indoor localization uti-lizing supporting set for Internet of things, IEEE Internet Things J. 6 (2) (2018) 2573-2582.

[181]

J.D.V. Sánchez, L. Urquiza-Aguiar, M.C.P. Paredes, F.J. López-Martínez, Expectation-maximization learning for wireless channel modeling of reconfig-urable intelligent surfaces, IEEE Wirel. Commun. Lett. 10 (9) (2021) 2051-2055.

[182]

Y. Li, J. Zhang, Z. Ma, Y. Zhang, Clustering analysis in the wireless propagation channel with a variational Gaussian mixture model, IEEE Trans. Big Data 6 (2)(2018) 223-232.

[183]

W. Yuan, N. Wu, B. Etzlinger, Y. Li, C. Yan, L. Hanzo, Expectation-maximization-based passive localization relying on asynchronous receivers: centralized versus distributed implementations, IEEE Trans. Commun. 67 (1) (2018) 668-681.

[184]

W. Zhang, L. Chen, M. Qin, W. Wang, Statistical inference-based distributed blind estimation in wireless sensor networks, IEEE Access 7 (2019) 150355-150368.

[185]

T. Wu, X. Yin, L. Zhang, J. Ning, Measurement-based channel characterization for 5g downlink based on passive sounding in sub-6 GHz 5g commercial networks, IEEE Trans. Wirel. Commun. 20 (5) (2021) 3225-3239.

[186]

Q. Zhang, W. Saad, M. Bennis, X. Lu, M. Debbah, W. Zuo, Predictive deployment of uav base stations in wireless networks: machine learning meets contract theory, IEEE Trans. Wirel. Commun. 20 (1) (2020) 637-652.

[187]

G. Shen, D. Han, P. Liu, A sparse manifold learning approach to robust indoor positioning based on wi-fi rss fingerprinting, IEEE Access 7 (2019) 130791-130803.

[188]

Q. Zhang, H. Guo, Y.-C. Liang, X. Yuan, Constellation learning-based signal detec-tion for ambient backscatter communication systems, IEEE J. Sel. Areas Commun. 37 (2) (2018) 452-463.

[189]

D. Ron, J.-R. Lee, Expectation maximization based power-saving method in wi-fi direct, IEEE Access 8 (2020) 158600-158611.

[190]

H. Khan, B.Q. Huy, Z.U. Abidin, J. Yoo, M. Lee, K.W. Seo, D.Y. Hwang, M.Y. Lee, J.K. Suhr, A modified yolov4 network with medium-scale challenging benchmark for efficient animal detection, in: Proceedings of the Korean Institute of Next Gen-eration Computing, Changwon, Republic of Korea, 2023, pp. 183-186.

[191]

Z. Chen, Y. Pan, Improvement and application of information communication tech-nology in wireless routing protocol based on adaptive k-means clustering algorithm, Wirel. Netw. 30 (6) (2024) 5997-6009.

[192]

I. Ullah, D. Adhikari, H. Khan, S. Ahmad, C. Esposito, C. Choi, Optimizing mobile robot localization: drones-enhanced sensor fusion with innovative wireless commu-nication, in: IEEE INFOCOM 2024-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), IEEE, 2024, pp. 1-6.

[193]

T. Velmurugan, Performance based analysis between k-means and fuzzy C-means clustering algorithms for connection oriented telecommunication data, Appl. Soft Comput. 19 (2014) 134-146.

[194]

S.B. Prathiba, K. Raja, R. Saiabirami, G. Kannan, An energy-aware tailored resource management for cellular-based zero-touch deterministic industrial m2m networks, IEEE Access 12 (2024) 33613-33627.

[195]

L. Gupta, R. Jain, G. Vaszkun, Survey of important issues in uav communication networks, IEEE Commun. Surv. Tutor. 18 (2) (2015) 1123-1152.

[196]

M. Hosseinzadeh, J. Tanveer, L. Ionescu-Feleaga, B.-S. Ionescu, M.S. Yousefpoor, E. Yousefpoor, O.H. Ahmed, A.M. Rahmani, A. Mehmood, A greedy perimeter state-less routing method based on a position prediction mechanism for flying ad hoc networks, J. King Saud Univ, Comput. Inf. Sci. 35 (8) (2023) 101712.

[197]

I. Ullah, D. Adhikari, H. Khan, M.S. Anwar, S. Ahmad, X. Bai, Mobile robot lo-calization: current challenges and future prospective, Comput. Sci. Rev. 53 (2024) 100651.

[198]

A. Kumar, S. Wang, A.M. Shaikh, H. Bilal, B. Lu, S. Song, Building on prior lightweight cnn model combined with lstm-am framework to guide fault detection in fixed-wing uavs, Int. J. Mach. Learn. Cybern. (2024) 1-17.

[199]

W. Ahmad, A. Singh, S. Kumar, B.M. Krishna, A. Pandey, et al., Optimizing en-ergy efficiency in wireless sensor networks using enhanced k-means cluster head selection, Int. J. Commun. Netw. Inf. Secur. 16 (3) (2024) 565-573.

[200]

A. Pasdar, N. Koroniotis, M. Keshk, N. Moustafa, Z. Tari, Cybersecurity solutions and techniques for Internet of things integration in combat systems, IEEE Trans. Sustain. Comput. (2024) 1-20.

[201]

M. Munsif, H. Khan, Z.A. Khan, A. Hussain, F.U.M. Ullah, M.Y. Lee, S.W. Baik,Pv-anet: attention-based network for short-term photovoltaic power forecasting,in:The 8th International Conference on Next Generation Computing 2022 (2022.10), Jeju, Korea, pp. 133-135, https://www.earticle.net/Article/A419757.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/