Reconfigurable intelligent surface-aided dual-function radar and communication systems with MU-MIMO communication

Yasheng Jin , Hong Ren , Cunhua Pan , Zhiyuan Yu , Ruisong Weng , Boshi Wang , Gui Zhou , Yongchao He , Maged Elkashlan

›› 2025, Vol. 11 ›› Issue (6) : 1831 -1842.

PDF
›› 2025, Vol. 11 ›› Issue (6) :1831 -1842. DOI: 10.1016/j.dcan.2025.06.013
Regular Papers
research-article

Reconfigurable intelligent surface-aided dual-function radar and communication systems with MU-MIMO communication

Author information +
History +
PDF

Abstract

In this paper, we investigate an reconfigurable intelligent surface-aided Integrated Sensing And Communication (ISAC) system. Our objective is to maximize the achievable sum rate of the multi-antenna communication users through the joint active and passive beamforming. Specifically, the weighted minimum mean-square error method is first used to reformulate the original problem into an equivalent one. Then, we utilize an alternating optimization algorithm to decouple the optimization variables and decompose this challenging problem into two subproblems. Given reflecting coefficients, a penalty-based algorithm is utilized to deal with the non-convex radar Signal-to-Noise Ratio (SNR) constraints. For the given beamforming matrix of the base station, we apply majorization-minimization to transform the problem into a Quadratic Constraint Quadratic Programming (QCQP) problem, which is ultimately solved using a Semi-Definite Relaxation (SDR) based algorithm. Simulation results illustrate the advantage of deploying reconfigurable intelligent surface in the considered multi-user Multiple-Input Multiple-Output (MIMO) ISAC systems.

Keywords

Integrated sensing and communication / Reconfigurable intelligent surface / Dual-function radar-communication

Cite this article

Download citation ▾
Yasheng Jin, Hong Ren, Cunhua Pan, Zhiyuan Yu, Ruisong Weng, Boshi Wang, Gui Zhou, Yongchao He, Maged Elkashlan. Reconfigurable intelligent surface-aided dual-function radar and communication systems with MU-MIMO communication. , 2025, 11(6): 1831-1842 DOI:10.1016/j.dcan.2025.06.013

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Moghaddasi, K. Wu, Multifunctional transceiver for future radar sensing and radio communicating data-fusion platform, IEEE Access 4 (2016) 818-838.

[2]

D. Ma, N. Shlezinger, T. Huang, Y. Liu, Y.C. Eldar, Joint radar-communication strate-gies for autonomous vehicles: combining two key automotive technologies, IEEE Signal Process. Mag. 37 (4) (2020) 85-97.

[3]

L. Zheng, M. Lops, Y.C. Eldar, X. Wang, Radar and communication coexistence: an overview: a review of recent methods, IEEE Signal Process. Mag. 36 (5) (2019) 85-99.

[4]

B. Li, A.P. Petropulu, W. Trappe, Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system, IEEE Trans. Signal Process. 64 (17) (2016) 4562-4575.

[5]

F. Liu, C. Masouros, A.P. Petropulu, H. Griffiths, L. Hanzo, Joint radar and com-munication design: applications, state-of-the-art, and the road ahead, IEEE Trans. Commun. 68 (6) (2020) 3834-3862.

[6]

F. Liu, C. Masouros, A. Li, T. Ratnarajah, J. Zhou, MIMO radar and cellular coexis-tence: a power-efficient approach enabled by interference exploitation, IEEE Trans. Signal Process. 66 (14) (2018) 3681-3695.

[7]

A. Hassanien, M.G. Amin, Y.D. Zhang, F. Ahmad, Dual-function radar-communica-tions: information embedding using sidelobe control and waveform diversity, IEEE Trans. Signal Process. 64 (8) (2015) 2168-2181.

[8]

W. Zhou, R. Zhang, G. Chen, W. Wu, Integrated sensing and communication wave-form design: a survey, IEEE Open J. Commun. Soc. 3 (2022) 1930-1949.

[9]

C. Sturm, W. Wiesbeck, Waveform design and signal processing aspects for fusion of wireless communications and radar sensing, Proc. IEEE 99 (7) (2011) 1236-1259.

[10]

S.D. Liyanaarachchi, T. Riihonen, C.B. Barneto, M. Valkama, Optimized waveforms for 5G-6G communication with sensing: theory, simulations and experiments, IEEE Trans. Wirel. Commun. 20 (12) (2021) 8301-8315.

[11]

Y. Zeng, Y. Ma, S. Sun, Joint radar-communication with cyclic prefixed single carrier waveforms, IEEE Trans. Veh. Technol. 69 (4) (2020) 4069-4079.

[12]

K. Wu, J.A. Zhang, X. Huang, Y.J. Guo, OTFS-based joint communication and sensing for future industrial iot, IEEE Internet Things J. 10 (3) (2023) 1973-1989.

[13]

R. Xie, K. Luo, T. Jiang, Waveform design for LFM-MPSK-based integrated radar and communication toward IoT applications, IEEE Internet Things J. 9 (7) (2021) 5128-5141.

[14]

M. Nowak, M. Wicks, Z. Zhang, Z. Wu, Co-designed radar-communication using linear frequency modulation waveform, IEEE Aerosp. Electron. Syst. Mag. 31 (10)(2016) 28-35.

[15]

Q. Wang, S. Xu,Vehicle width detection based on millimeter-wave LFMCW radar for autonomous driving, in: 2022 IEEE 95th Vehicular Technology Confer-ence:(VTC2022-Spring), IEEE, 2022, pp. 1-6.

[16]

X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, Y.C. Eldar, Joint transmit beam-forming for multiuser MIMO communications and MIMO radar, IEEE Trans. Signal Process. 68 (2020) 3929-3944.

[17]

J. Yang, G. Cui, X. Yu, L. Kong, Dual-use signal design for radar and communication via ambiguity function sidelobe control, IEEE Trans. Veh. Technol. 69 (9) (2020) 9781-9794.

[18]

F. Dong, W. Wang, X. Li, F. Liu, S. Chen, L. Hanzo, Joint beamforming design for dual-functional MIMO radar and communication systems guaranteeing physical layer security, IEEE Trans. Green Commun. Netw. 7 (1) (2023) 537-549.

[19]

Q. Wu, R. Zhang, Towards smart and reconfigurable environment: intelligent reflect-ing surface aided wireless network, IEEE Commun. Mag. 58 (1) (2019) 106-112.

[20]

T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital meta-materials and programmable metamaterials, Light: Sci. Appl. 3 (10) (2014) e218.

[21]

N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334 (6054) (2011) 333-337.

[22]

C. Pan, G. Zhou, K. Zhi, S. Hong, T. Wu, Y. Pan, H. Ren, M.D. Renzo, A. Lee Swindlehurst, R. Zhang, A.Y. Zhang, An overview of signal processing techniques for RIS/IRS-aided wireless systems, IEEE J. Sel. Top. Signal Process. 16 (5) (2022) 883-917.

[23]

C. Pan, H. Ren, K. Wang, W. Xu, M. Elkashlan, A. Nallanathan, L. Hanzo, Multicell MIMO communications relying on intelligent reflecting surfaces, IEEE Trans. Wirel. Commun. 19 (8) (2020) 5218-5233.

[24]

Z. Zhu, Z. Li, Z. Chu, G. Sun, W. Hao, P. Xiao, I. Lee, Resource allocation for IRS assisted mmwave integrated sensing and communication systems, in: ICC 2022 -IEEE International Conference on Communications, 2022, pp. 2333-2338.

[25]

X. Wang, Z. Fei, Z. Zheng, J. Guo, Joint waveform design and passive beamform-ing for RIS-assisted dual-functional radar-communication system, IEEE Trans. Veh. Technol. 70 (5) (2021) 5131-5136.

[26]

Z.-M. Jiang, M. Rihan, P. Zhang, L. Huang, Q. Deng, J. Zhang, E.M. Mohamed, Intel-ligent reflecting surface aided dual-function radar and communication system, IEEE Syst. J. 16 (1) (2021) 475-486.

[27]

X. Song, D. Zhao, H. Hua, T.X. Han, X. Yang, J. Xu, Joint transmit and reflec-tive beamforming for IRS-assisted integrated sensing and communication, in: 2022 IEEE Wireless Communications and Networking Conference (WCNC), IEEE, 2022, pp. 189-194.

[28]

Y. Li, A. Petropulu, Dual-function radar-communication system aided by intelligent reflecting surfaces, in: 2022 IEEE 12th Sensor Array and Multichannel Signal Pro-cessing Workshop (SAM), IEEE, 2022, pp. 126-130.

[29]

H. Zhang, Joint waveform and phase shift design for RIS-assisted integrated sens-ing and communication based on mutual information, IEEE Commun. Lett. 26 (10)(2022) 2317-2321.

[30]

H. Luo, R. Liu, M. Li, Q. Liu, RIS-Aided integrated sensing and communication: joint beamforming and reflection design, IEEE Trans. Veh. Technol. 72 (7) (2023) 9626-9630.

[31]

L. Chen, Z. Wang, Y. Du, Y. Chen, F.R. Yu, Generalized transceiver beamforming for DFRC with MIMO radar and MU-MIMO communication, IEEE J. Sel. Areas Commun. 40 (6) (2022) 1795-1808.

[32]

G. Zhou, C. Pan, H. Ren, P. Popovski, A.L. Swindlehurst, Channel estimation for RIS-aided multiuser millimeter-wave systems, IEEE Trans. Signal Process. 70 (2022) 1478-1492.

[33]

J. Capon, High-resolution frequency-wavenumber spectrum analysis, Proc. IEEE 57 (8) (1969) 1408-1418.

[34]

Q. Shi, M. Razaviyayn, Z.-Q. Luo, C. He, An iteratively weighted mmse approach to distributed sum-utility maximization for a MIMO interfering broadcast channel, IEEE Trans. Signal Process. 59 (9) (2011) 4331-4340.

[35]

C. Pan, H. Ren, K. Wang, M. Elkashlan, A. Nallanathan, J. Wang, L. Hanzo, Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer, IEEE J. Sel. Areas Commun. 38 (8) (2020) 1719-1734.

[36]

Z. Peng, Z. Zhang, C. Pan, L. Li, A.L. Swindlehurst, Multiuser full-duplex two-way communications via intelligent reflecting surface, IEEE Trans. Signal Process. 69 (2021) 837-851.

[37]

M. Hua, Q. Wu, C. He, S. Ma, W. Chen, Joint active and passive beamforming de-sign for IRS-aided radar-communication, IEEE Trans. Wirel. Commun. 22 (4) (2022) 2278-2294.

[38]

S. Boyd, S.P. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

[39]

X.-D. Zhang, Matrix Analysis and Applications, Cambridge University Press, 2017.

[40]

Y. Sun, P. Babu, D.P. Palomar, Majorization-minimization algorithms in signal pro-cessing, communications, and machine learning, IEEE Trans. Signal Process. 65 (3)(2016) 794-816.

[41]

I.M. Bomze, V.F. Demyanov, R. Fletcher, T. Terlaky, I. Pólik, T. Terlaky, Interior point methods for nonlinear optimization, in: Nonlinear Optimization, Springer, Berlin, Germany, 2010, pp. 215-276.

[42]

A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Al-gorithms and Engineering Applications, SIAM, 2001.

[43]

G. Zhou, C. Pan, H. Ren, K. Wang, A. Nallanathan, A framework of robust transmis-sion design for IRS-aided MISO communications with imperfect cascaded channels, IEEE Trans. Signal Process. 68 (2020) 5092-5106.

[44]

Z. Yu, H. Ren, C. Pan, G. Zhou, B. Wang, M. Dong, J. Wang, Active RIS aided ISAC sys-tems: beamforming design and performance analysis, IEEE Trans. Commun. 72 (3)(2024) 1578-1595.

[45]

K. Zhi, C. Pan, H. Ren, K.K. Chai, M. Elkashlan, Active ris versus passive ris: which is superior with the same power budget?, IEEE Commun. Lett. 26 (5) (2022) 1150-1154.

AI Summary AI Mindmap
PDF

415

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/