Enabling intent-driven CoX mechanism in space-terrestrial network for multiple mission impossible

Ying Ouyang , Chungang Yang , Rongqian Fan , Tangyi Li

›› 2025, Vol. 11 ›› Issue (6) : 1762 -1773.

PDF
›› 2025, Vol. 11 ›› Issue (6) :1762 -1773. DOI: 10.1016/j.dcan.2025.06.009
Regular Papers
research-article

Enabling intent-driven CoX mechanism in space-terrestrial network for multiple mission impossible

Author information +
History +
PDF

Abstract

The Space-Terrestrial Network (STN) aims to deliver comprehensive on-demand network services, addressing the broad and varied needs of Internet of Things (IoT) applications. However, the STN faces new challenges such as service multiplicity, topology dynamicity, and conventional management complexity. This necessitates a flexible and autonomous approach to network resource management to effectively align network services with available resources. Thus, we incorporate the Intent-Driven Network (IDN) into the STN, enabling the execution of multiple missions through automated resource allocation and dynamic network policy optimization. This approach enhances programmability and flexibility, facilitating intelligent network management for real-time control and adaptable service deployment in both traditional and IoT-focused scenarios. Building on previous mechanisms, we develop the intent-driven CoX resource management model, which includes components for coordination intent decomposition, collaboration intent management, and cooperation resource management. We propose an advanced intent verification mechanism and create an intent-driven CoX resource management algorithm leveraging a two-stage deep reinforcement learning method to minimize resource usage and delay costs in cross-domain communications within the STN. Ultimately, we establish an intent-driven CoX prototype to validate the efficacy of this proposed mechanism, which demonstrates improved performance in intent refinement and resource management efficiency.

Keywords

Intent-driven CoX mechanism / Intent decomposition / Multi-domain resource management

Cite this article

Download citation ▾
Ying Ouyang, Chungang Yang, Rongqian Fan, Tangyi Li. Enabling intent-driven CoX mechanism in space-terrestrial network for multiple mission impossible. , 2025, 11(6): 1762-1773 DOI:10.1016/j.dcan.2025.06.009

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J.A. Fraire, O. Iova, F. Valois, Space-terrestrial integrated internet of things: chal-lenges and opportunities, IEEE Commun. Mag. 60 (12) (2022) 64-70.

[2]

J. He, N. Cheng, Z. Yin, C. Zhou, H. Zhou, W. Quan, X.-H. Lin, Service-oriented network resource orchestration in space-air-ground integrated network, IEEE Trans. Veh. Technol. 73 (1) (2024) 1162-1174.

[3]

P. Wang, X. Zhang, S. Zhang, H. Li, T. Zhang, Time-expanded graph-based resource allocation over satellite networks, IEEE Wirel. Commun. Lett. 8 (2) (2019) 360-363.

[4]

F. Ding, C. Bao, D. Zhou, M. Sheng, Y. Shi, J. Li, Toward autonomous resource management architecture for 6g satellite-terrestrial integrated networks, IEEE Netw. 38 (2) (2024) 113-121.

[5]

S. Li, Q. Wu, R. Wang, Dynamic discrete topology design and routing for satellite-terrestrial integrated networks, IEEE/ACM Trans. Netw. 32 (5) (2024) 3840-3853.

[6]

Z. Yang, H. Li, Q. Wu, J. Wu, Topology discovery sub-layer for integrated terrestrial-satellite network routing schemes, China Commun. 15 (6) (2018) 42-57.

[7]

P. Wang, S. Sourav, H. Li, B. Chen,One pass is sufficient: a solver for minimizing data delivery time over time-varying networks, s, in: IEEE INFOCOM 2023 - IEEE Conference on Computer Communications, 2023, pp. 1-10.

[8]

M. Luglio, S.P. Romano, C. Roseti, F. Zampognaro, Service delivery models for con-verged satellite-terrestrial 5g network deployment: a satellite-assisted CDN use-case, IEEE Netw. 33 (1) (2019) 142-150.

[9]

P. Wang, H. Li, B. Chen, S. Zhang, Enhancing earth observation throughput us-ing inter-satellite communication, IEEE Trans. Wirel. Commun. 21 (10) (2022) 7990-8006.

[10]

H. Peng, Z. Su, Z. Zhang, B. Hua, T.H. Luan, N. Cheng, Intelligent and collaborative computing offloading and resource management in satellite-cloud-MEC integrated IoVs, IEEE Trans. Cogn. Commun. Netw. (2025) 1, https://doi.org/10.1109/TCCN.2025.3548630.

[11]

R. Ferrus, O. Sallent, T. Ahmed, R. Fedrizzi,Towards sdn/nfv-enabled satellite ground segment systems: end-to-end traffic engineering use case, in: 2017 IEEE International Conference on Communications Workshops (ICC Workshops), 2017, pp. 888-893.

[12]

G. Giambene, S. Kota, P. Pillai, Satellite-5g integration: a network perspective, IEEE Netw. 32 (5) (2018) 25-31.

[13]

I. Maity, G. Giambene, T.X. Vu, C. Keshav, S. Chatzinotas, Traffic-aware resource management in sdn/nfv-based satellite networks for remote and urban areas, IEEE Trans. Veh. Technol. 73 (11) (2024) 17400-17415.

[14]

C. Yang, X. Mi, Y. Ouyang, R. Dong, J. Guo, M. Guizani, Smart intent-driven network management, IEEE Commun. Mag. 61 (1) (2023) 106-112.

[15]

D.M. Manias, A. Chouman, A. Shami, Towards intent-based network management: large language models for intent extraction in 5g core networks,in: 2024 20th In-ternational Conference on the Design of Reliable Communication Networks (DRCN), 2024, pp. 1-6.

[16]

B.E. Ujcich, A. Bates, W.H. Sanders, Provenance for intent-based networking, in: 2020 6th IEEE Conference on Network Softwarization (NetSoft), 2020, pp. 195-199.

[17]

H. Mahtout, M. Kiran, A. Mercian, B. Mohammed, Using machine learning for intent-based provisioning in high-speed science networks, in: Proceedings of the 3rd Inter-national Workshop on Systems and Network Telemetry and Analytics, SNTA ’20, Association for Computing Machinery, New York, NY, USA, 2020, pp. 27-30.

[18]

K. Abbas, A. Nauman, M. Bilal, J.-H. Yoo, J.W.-K. Hong, W.-C. Song, AI-driven data analytics and intent-based networking for orchestration and control of B5G consumer electronics services, IEEE Trans. Consum. Electron. 70 (1) (2024) 2155-2169.

[19]

K. Dzeparoska, A. Tizghadam, A. Leon-Garcia, Emergence: an intent fulfillment sys-tem, IEEE Commun. Mag. 62 (6) (2024) 36-41.

[20]

Y. Ouyang, J. Lin, T. Feng, C. Yang, L. Zhang, T. Li, Z. Han, Intent-driven CoX resource management for space-terrestrial networks, IEEE Wirel. Commun. 31 (3)(2024) 339-347.

[21]

S. Minhas, R. Jaswal, A. Sharma, S. Singla, Revolutionizing networking: a compre-hensive overview of intent-based networking,in: 2024 International Conference on Emerging Innovations and Advanced Computing (INNOCOMP), 2024, pp. 463-468.

[22]

Y. Shi, Y. Han, Y. Yang, Q. Wang, M. Cao, QoE optimization with user intent in software-defined heterogeneous wireless network, IEEE Wirel. Commun. Lett. 13 (1)(2024) 9-13.

[23]

Y. Wang, K. Guo, N. Wang, Z. Qin, X. Zhong, X. Han, Intent-driven Leo satellite networks resource management, in: 2022 IEEE 22nd International Conference on Communication Technology (ICCT), 2022, pp. 396-401.

[24]

T. Li, Y. Ouyang, L. Zhang, Y. Bai, C. Yang, Autonomous intent detection for intent-driven satellite network, in: 2023 International Wireless Communications and Mo-bile Computing (IWCMC), 2023, pp. 1649-1653.

[25]

G. Zhang, K. Liu, X. Chen, X. Liu, Z. Pan, T. Jiang, An intent-based routing scheme in satellite IoT, in: International Conference on Game Theory for Networks, Springer, 2022, pp. 157-171.

[26]

L. Zhang, C. Yang, Y. Ouyang, T. Li, A. Anpalagan, ISFC: intent-driven service func-tion chaining for satellite networks,in: 2022 27th Asia Pacific Conference on Com-munications (APCC), 2022, pp. 544-549.

[27]

N. Kato, Z.M. Fadlullah, F. Tang, B. Mao, S. Tani, A. Okamura, J. Liu, Optimizing space-air-ground integrated networks by artificial intelligence, IEEE Wirel. Commun. 26 (4) (2019) 140-147.

[28]

S. Ammar, C.P. Lau, B. Shihada, An in-depth survey on virtualization technologies in 6g integrated terrestrial and non-terrestrial networks, IEEE Open J. Commun. Soc. 5 (2024) 3690-3734.

[29]

M. Xu, M. Jia, Q. Guo, T.D. Cola, Delay-sensitive and resource-efficient VNF deploy-ment in satellite-terrestrial networks, IEEE Trans. Veh. Technol. (2024) 1-16.

[30]

V.P. Kafle, M. Sekiguchi, H. Asaeda, H. Harai, Integrated network control architec-ture for terrestrial and non-terrestrial network convergence, IEEE Commun. Stand. Mag. 8 (1) (2024) 12-19.

[31]

W.-C. Chien, C.-F. Lai, M.S. Hossain, G. Muhammad, Heterogeneous space and ter-restrial integrated networks for IoT: architecture and challenges, IEEE Netw. 33 (1)(2019) 15-21.

[32]

G. Wang, S. Zhou, S. Zhang, Z. Niu, X. Shen, SFC-based service provisioning for reconfigurable space-air-ground integrated networks, IEEE J. Sel. Areas Commun. 38 (7) (2020) 1478-1489.

[33]

G. Zheng, N. Wang, R.R. Tafazolli, SDN in space: a virtual data-plane addressing scheme for supporting Leo satellite and terrestrial networks integration, IEEE/ACM Trans. Netw. 32 (2) (2024) 1781-1796.

[34]

C. Pham, N.H. Tran, S. Ren, W. Saad, C.S. Hong, Traffic-aware and energy-efficient VNF placement for service chaining: joint sampling and matching approach, IEEE Trans. Serv. Comput. 13 (1) (2020) 172-185.

[35]

N. Nway Ei, K. Kim, Y.K. Tun, Z. Han, C.S. Hong, Data service maximization in space-air-ground integrated 6G networks, IEEE Commun. Lett. 28 (11) (2024) 2598-2602.

[36]

X. Feng, M. He, L. Zhuang, Y. Song, R. Peng, Service function chain deployment algo-rithm based on deep reinforcement learning in space-air-ground integrated network, Future Internet 16 (1) (2024) 1.

[37]

M.N. Dazhi, H. Al-Hraishawi, B. Shankar, S. Chatzinotas, J. Grotz, Joint NTN slicing and admission control for infrastructure-as-a-service: a deep learning aided multi-objective optimization, IEEE Trans. Cogn. Commun. Netw. 11 (2) (2024) 1297-1315.

[38]

S.B. Altaf Khattak, M.M. Nasralla, I.U. Rehman,The role of 6G networks in enabling future smart health services and applications, in: 2022 IEEE International Smart Cities Conference (ISC2), 2022, pp. 1-7.

[39]

Y. Ouyang, C. Yang, Y. Song, X. Mi, M. Guizani, A brief survey and implementation on refinement for intent-driven networking, IEEE Netw. 35 (6) (2021) 75-83.

[40]

X. Zhang, C. Li, H. Du,Named entity recognition for terahertz domain knowledge graph based on ALBERT-BiLSTM-CRF, in: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), vol. 1, 2020, pp. 2602-2606.

[41]

A. Kavcic, J. Moura, The Viterbi algorithm and Markov noise memory, IEEE Trans. Inf. Theory 46 (1) (2000) 291-301.

[42]

D. Bringhenti, G. Marchetto, R. Sisto, S. Spinoso, F. Valenza, J. Yusupov, Improving the formal verification of reachability policies in virtualized networks, IEEE Trans. Netw. Serv. Manag. 18 (1) (2021) 713-728.

[43]

G. Li, H. Zhou, B. Feng, G. Li, Q. Xu, Horizontal-based orchestration for multi-domain SFC in SDN/NFV-enabled satellite/terrestrial networks, China Commun. 15 (5) (2018) 77-91.

[44]

L. Qu, C. Assi, K. Shaban, M.J. Khabbaz, A reliability-aware network service chain provisioning with delay guarantees in NFV-enabled enterprise datacenter networks, IEEE Trans. Netw. Serv. Manag. 14 (3) (2017) 554-568.

[45]

X. Guo, B. Guo, K. Li, C. Fan, H. Yang, S. Huang, A SDN-enabled integrated space-ground information network simulation platform, in: 2019 18th International Con-ference on Optical Communications and Networks (ICOCN), 2019, pp. 1-3.

[46]

W. Qiao, H. Lu, Y. Lu, L. Meng, Y. Liu, A dynamic service reconfiguration method for satellite-terrestrial integrated networks, Future Internet 13 (10) (2021) 1.

AI Summary AI Mindmap
PDF

300

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/