Video distribution strategy based on software defined network at the wireless edge

Tao Zhao , Yunjian Jia , Jihua Zhou , Xiangyu Liu , Ziwen Guo

›› 2025, Vol. 11 ›› Issue (6) : 1874 -1882.

PDF
›› 2025, Vol. 11 ›› Issue (6) :1874 -1882. DOI: 10.1016/j.dcan.2025.06.004
Regular Papers
research-article

Video distribution strategy based on software defined network at the wireless edge

Author information +
History +
PDF

Abstract

Video distribution strategies in wireless edge networks can significantly reduce video transmission latency and system energy consumption, meeting emerging video services' high-rate, low-latency requirements. However, channel condition variability and dynamics caused by user-to-base-station distance and user mobility affect the Quality of Experience (QoE). To address this problem, this paper examines adaptive video streaming strategies under dynamic channel conditions to optimize user QoE. Specifically, to achieve centralized control of wireless edge networks and simplify the management and scheduling of communication resources, Software-Defined Networking (SDN) is adopted within the wireless edge network, and an SDN-based edge caching architecture is proposed. Based on the virtual queue of users receiving video and combining various video factors to quantify the user QoE metric, an optimization problem is established to maximize the time-averaged total user QoE. Subsequently, an adaptive video distribution algorithm is designed, and the optimal video quality selection strategy and power allocation strategy are obtained in conjunction with Lyapunov optimization theory. Therefore, simulation results indicate that our approach significantly reduces video playback interruptions and enhances user QoE.

Keywords

Wireless edge network / Adaptive video distribution / Software-defined networking / Quality of experience

Cite this article

Download citation ▾
Tao Zhao, Yunjian Jia, Jihua Zhou, Xiangyu Liu, Ziwen Guo. Video distribution strategy based on software defined network at the wireless edge. , 2025, 11(6): 1874-1882 DOI:10.1016/j.dcan.2025.06.004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Banafaa, I. Shayea, J. Din, M.H. Azmi, A. Alashbi, Y.I. Daradkeh, A. Alham-madi, 6G mobile communication technology: requirements, targets, applications, challenges, advantages, and opportunities, Alex. Eng. J. 64 (2023) 245-274.

[2]

Ericsson,Ericsson mobility report, http://www.ericsson.com/en/mobility-report/reports/june-2024, 2024. (Accessed 15 June 2024).

[3]

J. Zhang, D. Tao, Empowering things with intelligence: a survey of the progress, challenges, and opportunities in artificial intelligence of things, IEEE Internet Things J. 8 (10) (2020) 7789-7817.

[4]

J. Wang, K. Zhu, E. Hossain, Green Internet of Vehicles (IoV) in the 6G era: toward sustainable vehicular communications and networking, IEEE Trans. Green Commun. Netw. 6 (1) (2021) 391-423.

[5]

Y. Ma, K. Ota, M. Dong, QoE optimization for virtual reality services in multi-RIS-assisted terahertz wireless networks, IEEE J. Sel. Areas Commun. 42 (3) (2024) 538-551.

[6]

X. Zhang, X. Hu, L. Zhong, S. Shirmohammadi, L. Zhang, Cooperative tile-based 360 panoramic streaming in heterogeneous networks using scalable video coding, IEEE Trans. Circuits Syst. Video Technol. 30 (1) (2018) 217-231.

[7]

B. Jedari, G. Premsankar, G. Illahi, M. Di Francesco, A. Mehrabi, A. Ylä-Jääski, Video caching, analytics, and delivery at the wireless edge: a survey and future directions, IEEE Commun. Surv. Tutor. 23 (1) (2020) 431-471.

[8]

D. Wu, R. Bao, Z. Li, H. Wang, H. Zhang, R. Wang, Edge-cloud collaboration en-abled video service enhancement: a hybrid human-artificial intelligence scheme, IEEE Trans. Multimed. 23 (2021) 2208-2221.

[9]

C. Sun, X. Li, J. Wen, X. Wang, Z. Han, V.C. Leung, Federated deep reinforcement learning for recommendation-enabled edge caching in mobile edge-cloud computing networks, IEEE J. Sel. Areas Commun. 41 (3) (2023) 690-705.

[10]

R. Singh, R. Sukapuram, S. Chakraborty, A survey of mobility-aware multi-access edge computing: challenges, use cases and future directions, Ad Hoc Netw. 140 (2023) 103044.

[11]

W. Xu, Z. Yang, D.W.K. Ng, M. Levorato, Y.C. Eldar, M. Debbah, Edge learning for B5G networks with distributed signal processing: semantic communication, edge computing, and wireless sensing, IEEE J. Sel. Top. Signal Process. 17 (1) (2023) 9-39.

[12]

L. Wang, W. Wu, F. Zhou, F. Tian, Q. Wu, W. Saad,A unified hierarchical semantic knowledge base for multi-task semantic communication, in: ICC 2024 - IEEE Inter-national Conference on Communications, 2024, pp. 2937-2943.

[13]

Y. Huang, Z. Lin, T. Yao, C. Mo, X. Shang, L. Cui, Y. Yang, Mobility-aware seamless virtual function migration in deviceless edge computing environments, IEEE Trans. Mob. Comput. 23 (7) (2024) 7999-8014.

[14]

Y. Zheng, J. Hu, Y. Zhao, K. Yang, Average age of sensing in wireless powered sensor networks, IEEE Trans. Wirel. Commun. 23 (8) (2024) 9265-9281.

[15]

H. Xia, Y. Mao, X. Zhou, B. Clerckx, S. Han, C. Li, Weighted sum-rate maximiza-tion of rate-splitting multiple access with confidential messages, IEEE Trans. Wirel. Commun. 23 (10) (2024) 13738-13751.

[16]

H. Zhang, R. Xu, Z. Li, D. Wu, R. Wang, Resource-aware video delivery in fog radio access networks: a joint QoE and QoS perspective, IEEE Trans. Veh. Technol. 72 (5)(2023) 6669-6682.

[17]

S. Li, P. Lin, J. Song, Q. Song, Computing-assisted task offloading and resource al-location for wireless VR systems, in: 2020 IEEE 6th International Conference on Computer and Communications (ICCC), IEEE, 2020, pp. 368-372.

[18]

M.-C. Lee, M. Ji, A.F. Molisch, Optimal throughput-outage analysis of cache-aided wireless multi-hop D2D networks, IEEE Trans. Commun. 69 (4) (2020) 2489-2504.

[19]

P. Lin, Q. Song, J. Song, L. Guo, A. Jamalipour, Edge intelligence-based joint caching and transmission for QoE-aware video streaming, in: 2020 IEEE/CIC International Conference on Communications in China (ICCC), IEEE, 2020, pp. 214-219.

[20]

M. Song, H. Shan, Y. Fu, H.H. Yang, F. Hou, W. Wang, T.Q. Quek, Joint user-side rec-ommendation and D2D-assisted offloading for cache-enabled cellular networks with mobility consideration, IEEE Trans. Wirel. Commun. 22 (11) (2023) 8080-8095.

[21]

K. Sripanidkulchai, B. Maggs, H. Zhang,An analysis of live streaming workloads on the Internet, in:Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement, 2004, pp. 41-54.

[22]

T.X. Tran, D. Pompili, Adaptive bitrate video caching and processing in mobile-edge computing networks, IEEE Trans. Mob. Comput. 18 (9) (2018) 1965-1978.

[23]

S. Yang, B. Hajek, VCG-kelly mechanisms for allocation of divisible goods: adapting VCG mechanisms to one-dimensional signals, IEEE J. Sel. Areas Commun. 25 (6)(2007) 1237-1243.

[24]

A. Mehrabi, M. Siekkinen, G. Illahi, A. Ylä-Jääski, D2D-enabled collaborative edge caching and processing with adaptive mobile video streaming, in: 2019 IEEE 20th In-ternational Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), IEEE, 2019, pp. 1-10.

[25]

R. Xie, Z. Li, J. Wu, Q. Jia, T. Huang, Energy-efficient joint caching and transcoding for HTTP adaptive streaming in 5G networks with mobile edge computing, China Commun. 16 (7) (2019) 229-244.

[26]

X. Xu, J. Liu, X. Tao, Mobile edge computing enhanced adaptive bitrate video delivery with joint cache and radio resource allocation, IEEE Access 5 (2017) 16406-16415.

[27]

W. Rafique, L. Qi, I. Yaqoob, M. Imran, R.U. Rasool, W. Dou, Complementing IoT services through software defined networking and edge computing: a comprehensive survey, IEEE Commun. Surv. Tutor. 22 (3) (2020) 1761-1804.

[28]

M. Alam, N. Ahmed, R. Matam, M. Mukherjee, F.A. Barbhuiya, SDN-based recon-figurable edge network architecture for industrial Internet of things, IEEE Internet Things J. 18 (10) (2023) 16494-16503.

[29]

Y. Bian, X. Sheng, L. Li, D. Liu, LSSVC: a learned spatially scalable video coding scheme, IEEE Trans. Image Process. 33 (2024) 3314-3327.

[30]

O. El Marai, T. Taleb, M. Menacer, M. Koudil, On improving video streaming effi-ciency, fairness, stability, and convergence time through client-server cooperation, IEEE Trans. Broadcast. 64 (1) (2017) 11-25.

AI Summary AI Mindmap
PDF

190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/