Rate-splitting multiple access-assisted ISAC design in NAFD cell-free mMIMO systems✩,✩✩

Jilong Wu , Fuping Si , Dongming Wang , Pengcheng Zhu

›› 2025, Vol. 11 ›› Issue (5) : 1668 -1678.

PDF
›› 2025, Vol. 11 ›› Issue (5) :1668 -1678. DOI: 10.1016/j.dcan.2025.05.014
Special issue on integrated sensing and communications (ISAC) for 6G networks
research-article

Rate-splitting multiple access-assisted ISAC design in NAFD cell-free mMIMO systems✩,✩✩

Author information +
History +
PDF

Abstract

Integrated Sensing And Communication (ISAC) is regarded as a promising technology for facilitating the rapid advancement of Sixth-Generation (6G) due to its concurrent transmission of information and environmental sensing capabilities. Rate-Splitting Multiple Access (RSMA), through the utilization of Successive Interference Cancellation (SIC) and Rate-Splitting (RS) at the transceiver, can fulfill the sensing requirement and supersede individual radar sequence to mitigate the interference between communication and sensing. This paper investigates the transceiver design of the RSMA-assisted ISAC in a Network-Assisted Full-Duplex (NAFD) cell-free Massive Multiple-Input Multiple-Output (mMIMO) system. We first derive the expressions of the communication achievable data rate and radar sensing Signal to Interference plus Noise Ratio (SINR). Subsequently, an optimization problem is formulated to maximize the communication achievable data rate, subject to both radar sensing constraints and fronthaul constraints, an effective algorithm based on sparse beamforming scheme and Semi-Definite Relaxation (SDR) is then proposed to acquire the near-optimal transceiver. Numerical results demonstrate that the application of RSMA technology in ISAC systems can significantly enhance system performance, and reveal that Dual-Functionalities Radar-Communication (DFRC) scheme can achieve higher data rate than the traditional scheme.

Keywords

Rate-splitting multiple access / Integrated sensing and communication / Cell-free / Network-assisted full-duplex / Transceiver design

Cite this article

Download citation ▾
Jilong Wu, Fuping Si, Dongming Wang, Pengcheng Zhu. Rate-splitting multiple access-assisted ISAC design in NAFD cell-free mMIMO systems✩,✩✩. , 2025, 11(5): 1668-1678 DOI:10.1016/j.dcan.2025.05.014

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. Liu, Y. Cui, C. Masouros, J. Xu, T.X. Han, Y.C. Eldar, S. Buzzi, Integrated sensing and communications: toward dual-functional wireless networks for 6G and beyond, IEEE J. Sel. Areas Commun. 40 (6) (2022) 1728-1767.

[2]

Y. Cui, F. Liu, X. Jing, J. Mu, Integrating sensing and communications for ubiquitous iot: applications, trends, and challenges, IEEE Netw. 35 (5) (2021) 158-167.

[3]

G. Zhu, Z. Lyu, X. Jiao, P. Liu, M. Chen, J. Xu, S. Cui, P. Zhang, Pushing AI to wireless network edge: an overview on integrated sensing, communication, and computation towards 6G, Sci. China Inf. Sci. 66 (3) (2023) 130301.

[4]

E. Björnson, L. Sanguinetti, Scalable cell-free massive MIMO systems, IEEE Trans. Commun. 68 (7) (2020) 4247-4261.

[5]

B. Liu, P. Zhu, J. Li, D. Wang, X. You, Energy-efficient optimization in distributed massive MIMO systems for slicing eMBB and URLLC services, IEEE Trans. Veh. Tech- nol. 72 (8) (2023) 10473-10487.

[6]

A. Nasir, Joint users’ secrecy rate and target’s sensing SNR maximization for a secure cell-free ISAC system, IEEE Commun. Lett. 28 (7) (2024) 1549-1553.

[7]

W. Mao, Y. Lu, C.-Y. Chi, B. Ai, Z. Zhong, Z. Ding, Communication-sensing region for cell-free massive MIMO ISAC systems, IEEE Trans. Wirel. Commun. 23 (9) (2024) 12396-12411.

[8]

C. Zhong, M. Lou, C. Gu, L. Tang, Y. Bai, Performance optimization and parameters estimation for MIMO-OFDM dual-functional communication-radar systems, Digit. Commun. Netw. 11 (2) (2025) 387-400.

[9]

S. Jeong, S. Khalili, O. Simeone, A. Haimovich, J. Kang, Multistatic cloud radar sys- tems: joint sensing and communication design, Trans. Emerg. Telecommun. Technol. 27 (5) (2016) 716-730.

[10]

Z. Behdad, Ö.T. Demir, K.W. Sung, E. Björnson, C. Cavdar, Multi-static target de- tection and power allocation for integrated sensing and communication in cell-free massive MIMO, IEEE Trans. Wirel. Commun. 23 (9) (2024) 11580-11596.

[11]

P. Kumari, N.J. Myers,R.W. Heath Jr., Adaptive and fast combined waveform- beamforming design for mmWave automotive joint communication-radar, IEEE J. Sel. Top. Signal Process. 15 (4) (2021) 996-1012.

[12]

P. Gao, L. Lian, J. Yu, Cooperative ISAC with direct localization and rate-splitting multiple access communication: a Pareto optimization framework, IEEE J. Sel. Areas Commun. 41 (5) (2023) 1496-1515.

[13]

X. Zhou, L. Tang, Y. Bai, Y.-C. Liang, Performance analysis and waveform opti- mization of integrated FD-MIMO radar-communication systems, IEEE Trans. Wirel. Commun. 20 (11) (2021) 7490-7502.

[14]

Z. He, W. Xu, H. Shen, D.W.K. Ng, Y.C. Eldar, X. You, Full-duplex communication for ISAC: joint beamforming and power optimization, IEEE J. Sel. Areas Commun. 41 (9) (2023) 2920-2936.

[15]

H. Hua, J. Xu, T.X. Han, Optimal transmit beamforming for integrated sensing and communication, IEEE Trans. Veh. Technol. 72 (8) (2023) 10588-10603.

[16]

D. Deng, W. Zhou, X. Li, D.B. Da Costa, D.W.K. Ng, A. Nallanathan, Joint beamform- ing and UAV trajectory optimization for covert communications in ISAC networks, IEEE Trans. Wirel. Commun. 24 (2) (2024) 1016-1030.

[17]

S. Zhang, W. Hao, G. Sun, C. Huang, Z. Zhu, X. Li, Joint beamforming optimiza- tion for active STAR-RIS-assisted ISAC systems, IEEE Trans. Wirel. Commun. 23 (11) (2024) 15888-15902.

[18]

C. Xu, B. Clerckx, S. Chen, Y. Mao, J. Zhang, Rate-splitting multiple access for multi- antenna joint radar and communications, IEEE J. Sel. Top. Signal Process. 15 (6) (2021) 1332-1347.

[19]

L. Yin, Y. Mao, O. Dizdar, B. Clerckx, Rate-splitting multiple access for 6G-part II: interplay with integrated sensing and communications, IEEE Commun. Lett. 26 (10) (2022) 2237-2241.

[20]

H. Jiang, L. You, A. Elzanaty, J. Wang, W. Wang, X. Gao, Rate-splitting multiple access for uplink massive MIMO with electromagnetic exposure constraints, IEEE J. Sel. Areas Commun. 41 (5) (2023) 1383-1397.

[21]

Y. Wang, Y. Mao, S. Ji, RS-BNN: a deep learning framework for the optimal beam- forming design of rate-splitting multiple access, IEEE Trans. Veh. Technol. 73 (11) (2024) 17830-17835.

[22]

X. Li, X. Wang, H. Zhang, Y. Xu, L. Yang, M. Huang, W. Hao, G. Huang, QoS-aware performance analysis of full-duplex RSMA vehicle road cooperation systems, IEEE Internet Things J. 11 (22) (2024) 36053-36065.

[23]

Md. L. Rahman, J. A. Zhang, X. Huang, Y. J. Guo, R. W. Heath Jr., Framework for a perceptive mobile network using joint communication and radar sensing, IEEE Trans. Aerosp. Electron. Syst. 56 (3) (2020) 1926-1941.

[24]

J.A. Zhang, A. Cantoni, X. Huang, Y.J. Guo, R.W. Heath, Framework for an inno- vative perceptive mobile network using joint communication and sensing, in: Proc. IEEE 85th Veh. Technol. Conf., Sydney, NSW, Australia, 2017, pp. 1-5.

[25]

D. Wang, M. Wang, P. Zhu, J. Li, J. Wang, X. You, Performance of network- assisted full-duplex for cell-free massive MIMO, IEEE Trans. Commun. 68 (3) (2020) 1464-1478.

[26]

Y. Cao, Q.-y. Yu, J.-c. Guo, J. Cheng, Voronoi-cluster multi-resolution hierarchical codebook design for cell-free integrated sensing and communication systems, IEEE Trans. Commun. 72 (7) (2024) 4432-4445.

[27]

W. Mao, Y. Lu, J. Liu, B. Ai, Z. Zhong, Z. Ding, Beamforming design in cell-free massive MIMO integrated sensing and communication systems, in: Proc. IEEE Global Commun. Conf. (GLOBECOM), Kuala Lumpur, Malaysia, 2023, pp. 546-551.

[28]

L. Chen, Z. Wang, Y. Du, Y. Chen, F.R. Yu, Generalized transceiver beamforming for DFRC with MIMO radar and MU-MIMO communication, IEEE J. Sel. Areas Commun. 40 (6) (2022) 1795-1808.

[29]

C.G. Tsinos, A. Arora, S. Chatzinotas, B. Ottersten, Joint transmit waveform and receive filter design for dual-function radar-communication systems, IEEE J. Sel. Top. Signal Process. 15 (6) (2021) 1378-1392.

[30]

Z. Liu, S. Aditya, H. Li, B. Clerckx, Joint transmit and receive beamforming design in full-duplex integrated sensing and communications, IEEE J. Sel. Areas Commun. 41 (9) (2023) 2907-2919.

[31]

Y. Cao, Q.-Y. Yu, Joint resource allocation for user-centric cell-free integrated sensing and communication systems, IEEE Commun. Lett. 27 (9) (2023) 2338-2342.

[32]

O. Dizdar, Y. Mao, W. Han, B. Clerckx, Rate-splitting multiple access: a new frontier for the PHY layer of 6G, in: Proc. IEEE 92nd Veh. Technol. Conf. (VTC-Fall), Nov. 2020, pp. 1-7.

[33]

M. Katwe, K. Singh, B. Clerckx, C.-P. Li, Rate splitting multiple access for sum-rate maximization in IRS aided uplink communications, IEEE Trans. Commun. 22 (4) (2023) 2246-2261.

[34]

Z. Zhang, W. Chen, Q. Wu, Z. Li, X. Zhu, J. Yuan, Intelligent omni surfaces assisted integrated multi-target sensing and multi-user MIMO communications, IEEE Trans. Commun. 72 (8) (2024) 4591-4606.

[35]

G.H. Golub, C.F. Van Loan,Matrix Computations, 3rd ed., 1996, Baltimore, MD, USA.

[36]

X. Xia, P. Zhu, J. Li, D. Wang, Y. Xin, X. You, Joint sparse beamforming and power control for a large-scale DAS with network-assisted full duplex, IEEE Trans. Veh. Technol. 69 (7) (2020) 7569-7582.

[37]

L. Liu, W. Yu, Cross-layer design for downlink multihop cloud radio access networks with network coding, IEEE Trans. Signal Process. 65 (7) (2017) 1728-1740.

[38]

Z.-Q. Luo, W.-K. Ma, A.M.-C. So, Y. Ye, S. Zhang, Semidefinite relaxation of quadratic optimization problems, IEEE Signal Process. Mag. 27 (3) (2010) 20-34.

[39]

S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, Cambridge, UK, 2004.

[40]

C. Zhan, Y. Zeng, Aerial-ground cost tradeoff for multi-UAV-enabled data collection in wireless sensor networks, IEEE Trans. Commun. 68 (3) (2020) 1937-1950.

AI Summary AI Mindmap
PDF

302

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/