An efficient downlink resource allocation scheme in power-limited GEO satellite systems

Xin Tong , Nanxi Li , Jiaxiang Liu , Shuo Peng

›› 2025, Vol. 11 ›› Issue (6) : 1751 -1761.

PDF
›› 2025, Vol. 11 ›› Issue (6) :1751 -1761. DOI: 10.1016/j.dcan.2025.05.007
Regular Papers
research-article

An efficient downlink resource allocation scheme in power-limited GEO satellite systems

Author information +
History +
PDF

Abstract

The integration of Geostationary Earth Orbit (GEO) satellite constellations into Sixth Generation (6G) framework for cellular networks is essential to achieve global connectivity. Despite the major importance of this integration, current research often underestimates the limitations imposed by available satellite payload power, erroneously assuming a uniform maximum power density distribution across all communication beams. In this paper, we propose an Efficient Downlink Resource Allocation scheme (EDRA) that accounts for transmitting power resource limitations, variable service quality demands, and a heterogeneous number of users. Our approach relies on the thorough analysis of real-world demographic data, allowing us to optimize the allocation of downlink power and time-frequency resources in a practical and effective manner. Furthermore, we introduce an optimization model to maximize the total system revenue, using an iterative algorithm specifically designed to solve complex optimization problems. Numerical simulations demonstrated that the EDRA scheme improved the average network revenue by more than 66% relatively to standard methods, with performance gains increasingly large for an increasing diversity of service types, establishing the robustness and adaptability of the proposed EDRA scheme in the rapidly-evolving context of satellite-based communication systems.

Keywords

Power-limited GEO satellite / Downlink resource allocation / QoS / Resource efficiency

Cite this article

Download citation ▾
Xin Tong, Nanxi Li, Jiaxiang Liu, Shuo Peng. An efficient downlink resource allocation scheme in power-limited GEO satellite systems. , 2025, 11(6): 1751-1761 DOI:10.1016/j.dcan.2025.05.007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Wigard, E. Juan, J. Stanczak, M. Lauridsen, A. Marcone, S. Hoppe, A. Ahmadzadeh, A. Masri, D.-H. Tran, Ubiquitous 6G service through non-terrestrial networks, IEEE Wirel. Commun. 30 (6) (2023) 12-18.

[2]

M. Al-Hawawreh, M.S. Hossain, Federated learning-assisted distributed intrusion de-tection using mesh satellite nets for autonomous vehicle protection, IEEE Trans. Consum. Electron. 70 (1) (2024) 854-862.

[3]

W. Wei, L. Fu, H. Gu, X. Lu, L. Liu, S. Mumtaz, Iris: toward intelligent reliable rout-ing for software-defined satellite networks, IEEE Trans. Commun. 73 (1) (2025) 454-468.

[4]

X. Zhu, C. Jiang, Integrated satellite-terrestrial networks toward 6G: architectures, applications, and challenges, IEEE Internet Things J. 9 (1) (2022) 437-461.

[5]

J. Liu, Y. Shi, Z.M. Fadlullah, N. Kato, Space-air-ground integrated network: a survey, IEEE Commun. Surv. Tutor. 20 (4) (2018) 2714-2741.

[6]

Bureau of Meteorology, Satellite communications and space weather, https://www.sws.bom.gov.au/Educational/1/3/2, 2024. (Accessed 1 March 2024).

[7]

X. Lin, B. Hofström, Y.-P. Eric Wang, G. Masini, H.-L. Maattanen, H. Rydén, J. Sedin, M. Stattin, O. Liberg, S. Euler, S. Muruganathan, S.-E. Löwenmark, T. Khan, 5G new radio evolution meets satellite communications: opportunities, challenges, and solu-tions,in: X. Lin, N. Lee (5G and Beyond:Eds.), Fundamentals and Standards, Springer International Publishing, Santa Clara, 2021, pp. 517-531.

[8]

J. Sun, C. Wu, S. Mumtaz, J. Tao, M. Cao, M. Wang, An efficient privacy-aware split learning framework for satellite communications, IEEE J. Sel. Areas Commun. 42 (12) (2024) 3355-3365.

[9]

J. Guan, Q. Zhang, I. Murturi, P.K. Donta, S. Dustdar, S. Wang, Collaborative in-ference in DNN-based satellite systems with dynamic task streams, in: Proceed-ing of the 2024 IEEE International Conference on Communications, IEEE, 2024, pp. 3803-3808.

[10]

3GPP TSG RAN WG1 Meeting #92bis,R1-1805114: NR-NTN channel modeling - flat fading criteria, https://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_92b/Docs/R1-1805114.zip, 2018. (Accessed 20 April 2018).

[11]

X. Ding, X. Yang, B. Feng, C.-Y.-D. Sim, S. Wu, K.L. Chung, A dual-polarized wide-band parabolic reflector antenna with high aperture efficiency and low sidelobe level for L/S-band satellite communications, IEEE Access 12 (2024) 174859-174870.

[12]

Z. Sun, X. Lv, X. Zhu, Z. Liang, Y. Yang, A dual-band circularly polarized antenna with shared aperture for satellite-assisted internet of things communications, IEEE Internet Things J. 12 (7) (2025) 8461-8469.

[13]

B. Hadfield, Satellite-systems cost estimation, IEEE Trans. Commun. 22 (10) (1974) 1540-1547.

[14]

M. Harounabadi, T. Heyn, Toward integration of 6G-NTN to terrestrial mobile net-works: research and standardization aspects, IEEE Wirel. Commun. 30 (6) (2023) 20-26.

[15]

X. Zhang, Y. Wang, X. Qin, Z. Zhang, H. Zhou, X. Shen, Link-level performance analy-sis of DVB standards in ultra-dense LEO satellite-terrestrial networks, in: Proceeding of the 2024 IEEE 99th Vehicular Technology Conference, IEEE, 2024, pp. 1-5.

[16]

Y. Liu, R. Zhang, Y. Zhou, Challenges and status of 3GPP non-terrestrial networks for mobile terminal testing, in: Proceeding of the 2024 International Conference on Microwave and Millimeter Wave Technology, IEEE, 2024, pp. 1-3.

[17]

3GPP TR RAN meeting #103, RP-240060: summary for NR NTN (Non-Terrestrial Networks) enhancements, https://www3.gpp.org/ftp/TSG_RAN/TSG_RAN/TSGR_103/Docs/RP-240060.zip, 2024. (Accessed 21 March 2024).

[18]

3GPP TSG RAN WG1 Meeting #109e,R1-2203159: discussion on coverage enhance-ment for NR NTN, https://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_109-e/Docs/R1-2203159.zip, 2022. (Accessed 20 May 2022).

[19]

3GPP TR RAN meeting #102, RP-234078: new WID: Non-Terrestrial Networks (NTN) for NR phase 3, https://www.3gpp.org/ftp/TSG_RAN/TSG_RAN/TSGR_102/Docs/RP-234078.zip, 2023. (Accessed 15 December 2023).

[20]

3GPP TSG RAN WG1 Meeting #116,R1-2400132: discussion on downlink cov-erage enhancements for NR NTN, https://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_116/Docs/R1-2400132.zip, 2024. (Accessed 1 March 2024).

[21]

S. Wang, Y. Li, Q. Wang, M. Su, W. Zhou, Dynamic downlink resource allocation based on imperfect estimation in LEO-HAP cognitive system, in: Proceeding of the 2019 11th International Conference on Wireless Communications and Signal Pro-cessing, IEEE, 2019, pp. 1-6.

[22]

W. Gao, L. Wang, L.Z. Qu, Research on joint resource allocation for multibeam satel-lite based on metaheuristic algorithms, Entropy 24 (11) (2022) 1536.

[23]

H. Meng, N. Xin, H. Qin, D. Zhao, A recursive DRL-based resource allocation method for multibeam satellite communication systems, Chin. J. Electron. 33 (5) (2024) 1286-1295.

[24]

S. Guo, K. Han, W. Gong, L. Li, T. Feng, X. Jiang, An efficient multi-dimensional resource allocation mechanism for beam-hopping in LEO satellite network, Sensors 22 (23) (2022) 9304.

[25]

M. Zhang, X. Yang, Z. Bu, Beam-hopping-based resource allocation in integrated satellite-terrestrial networks, Sensors 24 (14) (2024) 4699.

[26]

X. Li, L. Zhu, K. Chu, W. Shi, High-throughput satellite resource allocation strategy based on OFDM, in: Proceeding of the 2023 International Symposium on Networks, Computers and Communications, IEEE, 2023, pp. 1-6.

[27]

C. Lu, J. Shi, B. Li, X. Chen, Dynamic resource allocation for low earth orbit satellite networks, Phys. Commun. 67 (2024) 102498.

[28]

X. Zhong, H. Yin, Y. He, Y. Huang, Joint downlink power and time-slot allocation for distributed satellite cluster network based on Pareto optimization, IEEE Access 5 (2017) 25081-25096.

[29]

S. Abdu, S. Kisseleff, E. Lagunas, S. Chatzinotas, Flexible resource optimization for GEO multibeam satellite communication system, IEEE Trans. Wirel. Commun. 20 (12) (2021) 7888-7902.

[30]

T.S. Abdu, S. Kisseleff, E. Lagunas, S. Chatzinotas, Power and bandwidth minimiza-tion for demand-aware GEO satellite systems, in: Proceeding of the 2021 IEEE Global Communications Conference, IEEE, 2021, pp. 1-6.

[31]

X. Chang, C. Wang, M. Pang, J. Wang, W. Wang, Resource allocation using deep re-inforcement learning in GEO multibeam satellite system, in: Proceeding of the 2023 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, IEEE, 2023, pp. 1-6.

[32]

I. Leyva-Mayorga, V. Gala, F. Chiariotti, P. Popovski, Continent-wide efficient and fair downlink resource allocation in LEO satellite constellations, in: Proceed-ing of the 2023 IEEE International Conference on Communications, IEEE, 2023, pp. 6689-6694.

[33]

S.-F. Hika, L. Zhu, T. Ji, H. Du, M. Chen, J. Liu, Joint allocation of downlink power, bandwidth and timeslots based on maximizing energy efficiency for GEO satellite communication systems, in: Proceeding of the 2024 IEEE 99th Vehicular Technology Conference, IEEE, 2024, pp. 1-6.

[34]

X. Zhong, Y. He, H. Yin, J. Wang, Z. Du, Joint power and timeslot allocation based on delay priority for multi-beam satellite downlinks, in: Proceeding of the 2017 International Conference on Progress in Informatics and Computing, IEEE, 2017, pp. 389-393.

[35]

3GPP,TR 23.501: system architecture for the 5G system (5GS), https://www.3gpp.org/ftp/Specs/2025-03/Rel-18/23_series/23501-i90.zip, 2025. (Accessed 1 March 2025).

[36]

M.K. Arti, Channel estimation and detection in satellite communication systems, IEEE Trans. Veh. Technol. 65 (12) (2016) 10173-10179.

[37]

N. Letzepis, A.J. Grant, Capacity of the multiple spot beam satellite channel with Rician fading, IEEE Trans. Inf. Theory 54 (11) (2008) 5210-5222.

[38]

ITU,ITU-R P.618-13: propagation data and prediction methods required for the de-sign of earth-space telecommunication systems, https://www.itu.int/rec/R-REC-P.618-13-201712-S/en, 2017. (Accessed 4 December 2017).

[39]

D.-H. Jung, H. Nam, J. Choi, D.J. Love, Modeling and analysis of GEO satellite net-works, IEEE Trans. Wirel. Commun. 23 (11) (2024) 16757-16770.

[40]

P.-S. Malik, R.-P. Singh, Y. Singh, N. Mittal, Parametric survey on cross-layer design approach for wireless sensor networks, in: Proceeding of the AIP Conference, AIP, 2023, p. 020017.

[41]

D.-K. Sah, D.-P. Kumar, C. Shivalingagowda, P.V.Y. Jayasree,5G applications and architectures, in: D. N.-K. Jayakody, K. Srinivasan, V. Sharma (5G Enabled Se-cure Wireless Networks,Eds.), Springer International Publishing, Tomsk, 2019, pp. 45-68.

[42]

Z. Zhao, Y. Cai, W. Hong, J. Jiang, M. Peng, T.Q.S. Quek, On the design of backscatter communications with retransmissions, IEEE Wirel. Commun. Lett. 11 (12) (2022) 2555-25592.

AI Summary AI Mindmap
PDF

242

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/