A blockchain-based efficient traceability authentication scheme in VANET

Junhui Zhao , Yingxuan Guo , Longxia Liao , Dongming Wang

›› 2025, Vol. 11 ›› Issue (5) : 1410 -1420.

PDF
›› 2025, Vol. 11 ›› Issue (5) :1410 -1420. DOI: 10.1016/j.dcan.2025.04.013
Regular Papers
research-article

A blockchain-based efficient traceability authentication scheme in VANET

Author information +
History +
PDF

Abstract

Vehicular Ad-hoc Network (VANET) is a platform that facilitates Vehicle-to-Everything (V2X) interconnection. However, its open communication channels and high-speed mobility introduce security and privacy vulnerabil- ities. Anonymous authentication is crucial in ensuring secure communication and privacy protection in VANET. However, existing anonymous authentication schemes are prone to single points of failure and often overlook the efficient tracking of the true identities of malicious vehicles after pseudonym changes. To address these chal- lenges, we propose an efficient anonymous authentication scheme for blockchain-based VANET. By leveraging blockchain technology, our approach addresses the challenges of single points of failure and high latency, thereby enhancing the service stability and scalability of VANET. The scheme integrates homomorphic encryption and elliptic curve cryptography, allowing vehicles to independently generate new pseudonyms when entering a new domain without third-party assistance. Security analyses and simulation results demonstrate that our scheme achieves effective anonymous authentication in VANET. Moreover, the roadside unit can process 500 messages per 19 ms. As the number of vehicles in the communication domain grows, our scheme exhibits superior message- processing capabilities.

Keywords

VANET / Anonymous authentication / Security / Privacy protection / Blockchain

Cite this article

Download citation ▾
Junhui Zhao, Yingxuan Guo, Longxia Liao, Dongming Wang. A blockchain-based efficient traceability authentication scheme in VANET. , 2025, 11(5): 1410-1420 DOI:10.1016/j.dcan.2025.04.013

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Xia, Z. Yao, G. Wu, Y. Li, Distributed offloading for cooperative intelligent trans- portation under heterogeneous networks, IEEE Trans. Intell. Transp. Syst. 23 (9) (2022) 16701-16714.

[2]

J. Zhang, J. Cui, H. Zhong, Z. Chen, L. Liu, PA-CRT: Chinese remainder theorem based conditional privacy-preserving authentication scheme in vehicular ad-hoc net- works, IEEE Trans. Dependable Secure Comput. 18 (2) (2021) 722-735.

[3]

Y. Li, H. Ma, L. Wang, S. Mao, G. Wang, Optimized content caching and user associ- ation for edge computing in densely deployed heterogeneous networks, IEEE Trans. Mob. Comput. 21 (6) (2022) 2130-2142.

[4]

Z. Ju, H. Zhang, X. Li, X. Chen, J. Han, M. Yang, A survey on attack detection and resilience for connected and automated vehicles: from vehicle dynamics and control perspective, IEEE Trans. Intell. Veh. 7 (4) (2022) 815-837.

[5]

S. Xia, Z. Yao, Y. Li, S. Mao, Online distributed offloading and computing re- source management with energy harvesting for heterogeneous MEC-enabled IoT, IEEE Trans. Wirel. Commun. 20 (10) (2021) 6743-6757.

[6]

J. Zhao, L. He, D. Zhang, X. Gao, A TP-DDPG algorithm based on cache assistance for task offloading in urban rail transit, IEEE Trans. Veh. Technol. 72 (8) (2023) 10671-10681.

[7]

Z. Lu, G. Qu, Z. Liu, A survey on recent advances in vehicular network security, trust, and privacy, IEEE Trans. Intell. Transp. Syst. 20 (2) (2019) 760-776.

[8]

J. Kang, R. Yu, X. Huang, Y. Zhang, Privacy-preserved pseudonym scheme for fog computing supported Internet of Vehicles, IEEE Trans. Intell. Transp. Syst. 19 (8) (2018) 2627-2637.

[9]

J. Zhao, Q. Li, Y. Gong, K. Zhang, Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks, IEEE Trans. Veh. Technol. 68 (8) (2019) 7944-7956.

[10]

M. Raya, J.-P. Hubaux, Securing vehicular ad hoc networks, J. Comput. Secur. 15 (1) (2007) 39-68.

[11]

D. He, S. Chan, M. Guizani, Handover authentication for mobile networks: security and efficiency aspects, IEEE Netw. 29 (3) (2015) 96-103.

[12]

J. Zhao, X. Sun, X. Ma, H. Zhang, F.R. Yu, Y. Hu, Online distributed optimization for energy-efficient computation offloading in air-ground integrated networks, IEEE Trans. Veh. Technol. 72 (4) (2023) 5110-5124.

[13]

H. Artail, N. Abbani, A pseudonym management system to achieve anonymity in vehicular ad hoc networks, IEEE Trans. Dependable Secure Comput. 13 (1) (2016) 106-119.

[14]

Z. Liu, L. Zhang, W. Ni, I.B. Collings, Uncoordinated pseudonym changes for pri- vacy preserving in distributed networks, IEEE Trans. Mob. Comput. 19 (6) (2020) 1465-1477.

[15]

A. Boualouache, S.-M. Senouci, S. Moussaoui, PRIVANET: an efficient pseudonym changing and management framework for vehicular ad-hoc networks, IEEE Trans. Intell. Transp. Syst. 21 (8) (2020) 3209-3218.

[16]

J. Liu, X. Li, Q. Jiang, M.S. Obaidat, P. Vijayakumar, BUA: a blockchain-based unlinkable authentication in VANETs, in: 2020 IEEE International Conference on Communications, IEEE, 2020, pp. 1-6.

[17]

X. Li, J. Liu, M.S. Obaidat, P. Vijayakumar, Q. Jiang, R. Amin, An unlinkable au- thenticated key agreement with collusion resistant for VANETs, IEEE Trans. Veh. Technol. 70 (8) (2021) 7992-8006.

[18]

J. Zhao, F. Huang, L. Liao, Q. Zhang, Blockchain-based trust management model for vehicular ad hoc networks, IEEE Internet Things J. 11 (5) (2024) 8118-8132.

[19]

Q. Feng, D. He, S. Zeadally, K. Liang, BPAS: blockchain-assisted privacy-preserving authentication system for vehicular ad hoc networks, IEEE Trans. Ind. Inform. 16 (6) (2019) 4146-4155.

[20]

Y. Yao, X. Chang, J. Mišić, V.B. Mišić, L. Li, BLA: blockchain-assisted lightweight anonymous authentication for distributed vehicular fog services, IEEE Internet Things J. 6 (2) (2019) 3775-3784.

[21]

S. Son, J. Lee, Y. Park, Y. Park, A.K. Das, Design of blockchain-based lightweight V2I handover authentication protocol for VANET, IEEE Trans. Netw. Sci. Eng. 9 (3) (2022) 1346-1358.

[22]

M. Azees, P. Vijayakumar, L.J. Deboarh, EAAP: efficient anonymous authentication with conditional privacy-preserving scheme for vehicular ad hoc networks, IEEE Trans. Intell. Transp. Syst. 18 (9) (2017) 2467-2476.

[23]

X. Li, H. Zhang, Y. Ren, S. Ma, B. Luo, J. Weng, J. Ma, X. Huang, PAPU: pseudonym swap with provable unlinkability based on differential privacy in VANETs, IEEE In- ternet Things J. 7 (12) (2020) 11789-11802.

[24]

P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in: Proceeding of International Conference on the Theory and Applications of Cryp- tographic Techniques, Springer, 1999, pp. 223-238.

[25]

C. Lin, X. Huang, D. He, EBCPA: efficient blockchain-based conditional privacy- preserving authentication for VANETs, IEEE Trans. Dependable Secure Comput. 20 (3) (2023) 1818-1832.

[26]

C. Wang, J. Shen, J.-F. Lai, J. Liu, B-TSCA: blockchain assisted trustworthiness scalable computation for V2I authentication in VANETs, IEEE Trans. Emerg. Top. Comput. 9 (3) (2020) 1386-1396.

[27]

M. Shen, H. Liu, L. Zhu, K. Xu, H. Yu, X. Du, M. Guizani, Blockchain-assisted secure device authentication for cross-domain Industrial IoT, IEEE J. Sel. Areas Commun. 38 (5) (2020) 942-954.

[28]

M. Castro, B. Liskov, Practical Byzantine fault tolerance, in: Proceedings of the Third Symposium on Operating Systems Design and Implementation, USENIX Association, New Orleans, LA, USA, 1999, pp. 173-186.

[29]

D. Dolev, A. Yao, On the security of public key protocols, IEEE Trans. Inf. Theory 29 (2) (1983) 198-208.

[30]

B. Blanchet, Modeling and verifying security protocols with the applied pi calculus and proverif, Found. Trends Priv. Secur. 1 (1-2) (2016) 1-135.

[31]

C. Lin, D. He, X. Huang, K.-K.R. Choo, A.V. Vasilakos, BSeIn: a blockchain-based secure mutual authentication with fine-grained access control system for industry 4.0, J. Netw. Comput. Appl. 116 (2018) 42-52.

[32]

J. Zhao, H. Hu, F. Huang, Y. Guo, L. Liao, Authentication technology in Internet of things and privacy security issues in typical application scenarios, Electronics 12 (8) (2023) 1812.

[33]

Q. Wu, H. Liu, R. Wang, P. Fan, Q. Fan, Z. Li, Delay-sensitive task offloading in the 802.11p-based vehicular fog computing systems, IEEE Internet Things J. 7 (1) (2020) 773-785.

[34]

L. Liao, J. Zhao, H. Hu, X. Sun, Secure and efficient message authentication scheme for 6G-enabled VANETs, Electronics 11 (15) (2022) 2385.

AI Summary AI Mindmap
PDF

497

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/