Sensing accuracy gain, unified performance analysis and optimization in 6G cooperative ISAC systems✩,✩✩

Guangyi Liu , Lincong Han , Rongyan Xi , Jing Dong , Jing Jin , Qixing Wang

›› 2025, Vol. 11 ›› Issue (5) : 1657 -1667.

PDF
›› 2025, Vol. 11 ›› Issue (5) :1657 -1667. DOI: 10.1016/j.dcan.2025.04.007
Special issue on integrated sensing and communications (ISAC) for 6G networks
research-article

Sensing accuracy gain, unified performance analysis and optimization in 6G cooperative ISAC systems✩,✩✩

Author information +
History +
PDF

Abstract

Sixth Generation (6G) mobile communication networks will involve sensing as a new function, with the overwhelming trend of Integrated Sensing And Communications (ISAC). Although expanding the serving range of the networks, there exists performance trade-off between communication and sensing, in that they have competitions on the physical resources. Different resource allocation schemes will result in different sensing and communication performance, thus influencing the system’s overall performance. Therefore, how to model the system’s overall performance, and how to optimize it are key issues for ISAC. Relying on the large-scale deployment of the networks, cooperative ISAC has the advantages of wider coverage, more robust performance and good compatibility of multiple monostatic and multistatic sensing, compared to the non-cooperative ISAC. How to capture the performance gain of cooperation is a key issue for cooperative ISAC. To address the aforementioned vital problems, in this paper, we analyze the sensing accuracy gain, propose a unified ISAC performance evaluation framework and design several optimization methods in cooperative ISAC systems. The cooperative sensing accuracy gain is theoretically analyzed via Cramér Rao lower bound. The unified ISAC performance evaluation model is established by converting the communication mutual information to the effective minimum mean squared error. To optimize the unified ISAC performance, we design the optimization algorithms considering three factors: base stations’ working modes, power allocation schemes and waveform design. Through simulations, we show the performance gain of the cooperative ISAC system and the effectiveness of the proposed optimization methods.

Keywords

6G / Integrated sensing and communications / Cooperative sensing / Cramér Rao lower bound / Orthogonal frequency division multiplexing

Cite this article

Download citation ▾
Guangyi Liu, Lincong Han, Rongyan Xi, Jing Dong, Jing Jin, Qixing Wang. Sensing accuracy gain, unified performance analysis and optimization in 6G cooperative ISAC systems✩,✩✩. , 2025, 11(5): 1657-1667 DOI:10.1016/j.dcan.2025.04.007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. Cui, F. Liu, X. Jing, J. Mu, Integrating sensing and communications for ubiquitous IoT: applications, trends, and challenges, IEEE Netw. 35 (5) (2021) 158-167.

[2]

G. Liu, R. Xi, Z. Han, L. Han, X. Zhang, L. Ma, Y. Wang, M. Lou, J. Jin, Q. Wang, J. Wang, Cooperative sensing for 6G mobile cellular networks: feasibility, performance, and field trial, IEEE J. Sel. Areas Commun. 42 (10) (2024) 2863-2876.

[3]

Z. Lyu, G. Zhu, J. Xu, Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication, IEEE Trans. Wirel. Commun. 22 (4) (2023) 2424-2440.

[4]

W. Yuan, F. Liu, C. Masouros, J. Yuan, D.W.K. Ng, N. González-Prelcic, Bayesian predictive beamforming for vehicular networks: a low-overhead joint radar- communication approach, IEEE Trans. Wirel. Commun. 20 (3) (2021) 1442-1456.

[5]

K. Meng, Q. Wu, W. Chen, D. Li, Sensing-assisted communication in vehicular net-works with intelligent surface, IEEE Trans. Veh. Technol. 73 (1) (2024) 876-893.

[6]

L. Han, R. Liu, Z. Wang, Q. Liu, Q. Zhu, J.S. Thompson, Performance trade-off for integrated communication and data-assisted positioning in MIMO-OFDM system, China Commun. 19 (11) (2022) 129-147.

[7]

C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y. Huang, Y. Chen, H. Haas, J.S. Thompson, E.G. Larsson, M.D. Renzo, W. Tong, P. Zhu, X. Shen, H.V. Poor, L. Hanzo, On the road to 6G: visions, requirements, key technologies, and testbeds, IEEE Commun. Surv. Tutor. 25 (2) (2023) 905-974.

[8]

J.A. Zhang, F. Liu, C. Masouros, R.W. Heath, Z. Feng, L. Zheng, A. Petropulu, An overview of signal processing techniques for joint communication and radar sensing, IEEE J. Sel. Top. Signal Process. 15 (6) (2021) 1295-1315.

[9]

X. Li, S. Guo, T. Li, X. Zou, D. Li, On the performance trade-off of distributed in-tegrated sensing and communication networks, IEEE Wirel. Commun. Lett. 12 (12) (2023) 2033-2037.

[10]

Y. Cao, Q.-Y. Yu, Joint resource allocation for user-centric cell-free integrated sensing and communication systems, IEEE Commun. Lett. 27 (9) (2023) 2338-2342.

[11]

Z. Xiao, Y. Zeng, Waveform design and performance analysis for full-duplex in- tegrated sensing and communication, IEEE J. Sel. Areas Commun. 40 (6) (2022) 1823-1837.

[12]

C. Dou, N. Huang, Y. Wu, L. Qian, Z. Shi, T.Q.S. Quek, Integrated sensing and com-munication enabled multidevice multitarget cooperative sensing: a fairness-aware design, IEEE Internet Things J. 11 (17) (2024) 29190-29201.

[13]

Z. Wei, W. Jiang, Z. Feng, H. Wu, N. Zhang, K. Han, R. Xu, P. Zhang, Integrated sens-ing and communication enabled multiple base stations cooperative sensing towards 6G, IEEE Netw. 38 (4) (2024) 207-215.

[14]

H. Godrich, A.M. Haimovich, R.S. Blum, Target localization accuracy gain in MIMO radar-based systems, IEEE Trans. Inf. Theory 56 (6) (2010) 2783-2803.

[15]

M. Sadeghi, F. Behnia, R. Amiri, A. Farina, Target localization geometry gain in distributed MIMO radar, IEEE Trans. Signal Process. 69 (2021) 1642-1652.

[16]

A. Ahmed, Y.D. Zhang, Optimized resource allocation for distributed joint radar-communication system, IEEE Trans. Veh. Technol. 73 (3) (2024) 3872-3885.

[17]

G. Fatima, P. Stoica, A. Aubry, A. De Maio, P. Babu, Optimal placement of the re- ceivers for multistatic target localization, IEEE Trans. Radar Syst. 2 (2024) 391-403.

[18]

K.-H. Park, M.-S. Alouini, Y. Chen, Throughput-maximized network deployment in a multi-NIB-aided ISAC network, in: 2023 IEEE Proc. of Global Commun. Conf. (GLOBECOM), IEEE, 2023, pp. 1410-1415.

[19]

G. Cheng, J. Xu, Coordinated transmit beamforming for multi-antenna network in- tegrated sensing and communication, in: 2023 IEEE Proc. of International Commun. Conf. (ICC), 2023, pp. 3528-3533.

[20]

A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T.X. Han, C. Liu, R. Du, D.K.P. Tan, J. Lu, Y. Shen, F. Colone, K. Chetty, A survey on fundamental limits of integrated sensing and communication, IEEE Commun. Surv. Tutor. 24 (2) (2022) 994-1034.

[21]

Z. Wei, J. Piao, X. Yuan, H. Wu, J.A. Zhang, Z. Feng, L. Wang, P. Zhang, Waveform design for MIMO-OFDM integrated sensing and communication system: an informa- tion theoretical approach, IEEE Trans. Commun. 72 (1) (2024) 496-509.

[22]

C. Ouyang, Y. Liu, H. Yang, MIMO-ISAC: performance analysis and rate region char- acterization, IEEE Wirel. Commun. Lett. 12 (4) (2023) 669-673.

[23]

L. Shen, J. Tang, Pulse radar ISAC: interference control and a generalized weighted- MMSE algorithm, in: 2024 IEEE Proc. of International Commun. Conf. (ICC), 2024, pp. 1176-1181.

[24]

P. Kumari, S.A. Vorobyov, R.W. Heath, Adaptive virtual waveform design for millimeter-wave joint communication-radar, IEEE Trans. Signal Process. 68 (2020) 715-730.

[25]

W. Zhang, S. Vedantam, U. Mitra, Joint transmission and state estimation: a constrained channel coding approach, IEEE Trans. Inf. Theory 57 (10) (2011) 7084-7095.

[26]

S. Wang, L. Chen, J. Zhou, Y. Chen, K. Han, C. You, Unified ISAC Pareto bound- ary based on mutual information and minimum mean-square error estimation, IEEE Trans. Commun. 72 (11) (2024) 6783-6795.

[27]

Z. Liu, X. Liu, Y. Liu, V.C.M. Leung, T.S. Durrani, UAV assisted integrated sensing and communications for Internet of things: 3D trajectory optimization and resource allocation, IEEE Trans. Wirel. Commun. 23 (8) (2024) 8654-8667.

[28]

M. Elfiatoure, M. Mohammadi, H.Q. Ngo, M. Matthaiou,Cell-free massive MIMO for ISAC: access point operation mode selection and power control, in: Proc. 2023 IEEE Glob. Commun. Conf. Workshops (GC Wkshps), 2023, pp. 104-109.

[29]

P. Gao, L. Lian, J. Yu, Cooperative ISAC with direct localization and rate-splitting multiple access communication: a Pareto optimization framework, IEEE J. Sel. Areas Commun. 41 (5) (2023) 1496-1515.

[30]

Z. He, H. Shen, W. Xu, Y.C. Eldar, X. You, MSE-based training and transmission opti- mization for MIMO ISAC systems, IEEE Trans. Signal Process. 72 (2024) 3104-3121.

[31]

Y. He, Y. Cai, H. Mao, G. Yu, RIS-assisted communication radar coexistence: joint beamforming design and analysis, IEEE J. Sel. Areas Commun. 40 (7) (2022) 2131-2145.

[32]

M. Kazemi, C. Göken, T.M. Duman, Robust joint precoding/combining design for multiuser MIMO systems with calibration errors, IEEE Trans. Wirel. Commun. 22 (8) (2023) 5157-5169.

[33]

X. Chen, Z. Feng, Z. Wei, J.A. Zhang, X. Yuan, P. Zhang, Concurrent downlink and uplink joint communication and sensing for 6G networks, IEEE Trans. Veh. Technol. 72 (6) (2023) 8175-8180.

[34]

Q. Wu, Z. Sun, X. Zhou, Interference detection and recognition based on signal re- construction using recurrent neural network, in: 2019 IEEE Proc. of Global Commun. Conf. (GLOBECOM), 2019, pp. 1-6.

[35]

A. Shahmansoori, G.E. Garcia, G. Destino, G. Seco-Granados, H. Wymeersch, Posi- tion and orientation estimation through millimeter-wave MIMO in 5G systems, IEEE Trans. Wirel. Commun. 17 (3) (2018) 1822-1835.

[36]

S.M. Kay, Fundamentals of Statistical Signal Processing, Prentice Hall PTR, 1993.

[37]

X. Yang, Z. Wei, J. Xu, Y. Fang, H. Wu, Z. Feng, Coordinated transmit beamforming for networked ISAC with imperfect CSI and time synchronization, IEEE Trans. Wirel. Commun. 23 (12) (2024) 18019-18035.

[38]

E. Telatar, Capacity of multi-antenna Gaussian channels, Eur. Trans. Telecommun. 10 (6) (1999) 585-595.

[39]

D. Guo, S. Shamai, S. Verdú, Mutual information and minimum mean-square error in Gaussian channels, IEEE Trans. Inf. Theory 51 (4) (2005) 1261-1282.

[40]

S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

[41]

M.F. Keskin, F. Jiang, F. Munier, G. Seco-Granados, H. Wymeersch, Optimal spatial signal design for mmWave positioning under imperfect synchronization, IEEE Trans. Veh. Technol. 71 (5) (2022) 5558-5563.

AI Summary AI Mindmap
PDF

516

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/