Standardised interworking and deployment of IoT and edge computing platforms

Jieun Lee , JooSung Kim , Seong Ki Yoo , Tarik Taleb , JaeSeung Song

›› 2025, Vol. 11 ›› Issue (5) : 1578 -1587.

PDF
›› 2025, Vol. 11 ›› Issue (5) :1578 -1587. DOI: 10.1016/j.dcan.2025.04.006
Regular Papers
research-article

Standardised interworking and deployment of IoT and edge computing platforms

Author information +
History +
PDF

Abstract

Edge computing is swiftly gaining traction and is being standardised by the European Telecommunications Standards Institute (ETSI) as Multi-access Edge Computing (MEC). Simultaneously, oneM2M has been actively developing standards for dynamic data management and IoT services at the edge, particularly for applications that require real-time support and security. Integrating MEC and oneM2M offers a unique opportunity to maximize their individual strengths. Therefore, this article proposes a framework that integrates MEC and oneM2M standard platforms for IoT applications, demonstrating how the synergy of these architectures can leverage the geographically distributed computing resources at base stations, enabling efficient deployment and added value for time-sensitive IoT applications. In addition, this study offers a concept of potential interworking models between oneM2M and the MEC architectures. The adoption of these standard architectures can enable various IoT edge services, such as smart city mobility and real-time analytics functions, by leveraging the oneM2M common service layer instantiated on the MEC host.

Keywords

Internet of things / Multi-access edge computing oneM2M / Interworking / Standards

Cite this article

Download citation ▾
Jieun Lee, JooSung Kim, Seong Ki Yoo, Tarik Taleb, JaeSeung Song. Standardised interworking and deployment of IoT and edge computing platforms. , 2025, 11(5): 1578-1587 DOI:10.1016/j.dcan.2025.04.006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

N. Hassan, K.A. Yau, C. Wu,Edge computing in 5g: a review, IEEE Access 7 (2019) 127276-127289.

[2]

F. Giust, X. Costa-Perez, A. Reznik, Multi-access edge computing: an overview of etsi mec isg, IEEE 5G Tech Focus 1 (4) (2017) 4.

[3]

E. Coronado, Z. Yousaf, R. Riggio, Lightedge: mapping the evolution of multi-access edge computing in cellular networks, IEEE Commun. Mag. 58 (4) (2020) 24-30.

[4]

J. Swetina, G. Lu, P. Jacobs, F. Ennesser, J. Song, Toward a standardized common m2m service layer platform: introduction to oneM2M, IEEE Wirel. Commun. 21 (3) (2014) 20-26.

[5]

oneM2M,Study on edge and fog computing in oneM2M system, https://member.onem2m.org/Application/documentapp/downloadLatestRevision/default.aspx?docID=32633, 2020. (Accessed 23 August 2024).

[6]

M. Mehrabi, D. You, V. Latzko, H. Salah, M. Reisslein, F.H. Fitzek, Device-enhanced mec: multi-access edge computing (mec) aided by end device computation and caching: a survey, IEEE Access 7 (2019) 166079-166108.

[7]

P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, T. Taleb, Survey on multi- access edge computing for Internet of things realization, IEEE Commun. Surv. Tutor. 20 (4) (2018) 2961-2991.

[8]

T. Taleb, P.A. Frangoudis, I. Benkacem, A. Ksentini, Cdn slicing over a multi-domain edge cloud, IEEE Trans. Mob. Comput. 19 (9) (2020) 2010-2027.

[9]

E.G.M.038, Multi-access edge computing (MEC); MEC in park enterprises deploy- ment, https://www.etsi.org/deliver/etsi_gr/MEC/001_099/038/03.01.01_60/gr_MEC038v030101p.pdf, 2022. (Accessed 23 August 2024).

[10]

X. Wang, R. Li, C. Wang, X. Li, T. Taleb, V.C.M. Leung, Attention-weighted federated deep reinforcement learning for device-to-device assisted heterogeneous collabora- tive edge caching, IEEE J. Sel. Areas Commun. 39 (1) (2021) 154-169.

[11]

T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, D. Sabella, On multi-access edge computing: a survey of the emerging 5g network edge cloud architecture and orchestration, IEEE Commun. Surv. Tutor. 19 (3) (2017) 1657-1681.

[12]

M. Liyanage, P. Porambage, A.Y. Ding, A. Kalla,Driving forces for multi-access edge computing (mec) iot integration in 5g, ICT Express 7 (2) (2021) 127-137.

[13]

H. Yu, M. Shokrnezhad, T. Taleb, R. Li, J. Song, Toward 6g-based metaverse: support- ing highly-dynamic deterministic multi-user extended reality services, IEEE Netw. 37 (4) (2023) 30-38.

[14]

L. Zanzi, F. Cirillo, V. Sciancalepore, F. Giust, X. Costa-Perez, S. Mangiante, G. Klas, Evolving multi-access edge computing to support enhanced iot deployments, IEEE Commun. Stand. Mag. 3 (2) (2019) 26-34.

[15]

C. Chen, Y. Zeng, H. Li, Y. Liu, S. Wan, A multihop task offloading decision model in mec-enabled Internet of vehicles, IEEE Internet Things J. 10 (4) (2022) 3215-3230.

[16]

S. Husain, A. Kunz, J. Song, T. Koshimizu, Interworking architecture between oneM2M service layer and underlying networks, in: 2014 IEEE Globecom Workshops (GC Wkshps), IEEE, 2014, pp. 636-642.

[17]

J. Yun, I.-Y. Ahn, J. Song, J. Kim, Implementation of sensing and actuation capabil- ities for iot devices using onem2m platforms, Sensors 19 (20) (2019) 4567.

[18]

G. Ihita, V.K. Acharya, L. Kanigolla, S. Chaudhari, T. Monteil, Security for onem2m- based smart city network: an om2m implementation, in: 2023 15th International Conference on COMmunication Systems & NETworkS (COMSNETS), IEEE, 2023, pp. 808-813.

AI Summary AI Mindmap
PDF

214

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/