Shard-DAG: A scalable and secure block-DAG sharding scheme for AI-driven 6G networks

Yongkai Fan , Wenyuan Zhang , Guodong Wu , Le Zhang , Chengnian Long , Gang Tan , Neal N. Xiong

›› 2025, Vol. 11 ›› Issue (6) : 1738 -1750.

PDF
›› 2025, Vol. 11 ›› Issue (6) :1738 -1750. DOI: 10.1016/j.dcan.2025.04.005
Regular Papers
research-article

Shard-DAG: A scalable and secure block-DAG sharding scheme for AI-driven 6G networks

Author information +
History +
PDF

Abstract

The ultra-high speed, ultra-low latency, and massive connectivity of the 6th Generation Mobile Network (6G) present unprecedented challenges to network security. In addition, the deep integration of Artificial Intelligence (AI) into 6G networks introduces AI-native features that further complicate the design and implementation of secure network architectures. To meet the security demands posed by the massive number of devices and edge nodes in 6G networks, a decentralized security architecture is essential, as it effectively mitigates the performance bottlenecks typically associated with centralized systems. Blockchain technology offers a promising trust mechanism among devices in 6G networks. However, conventional blockchain systems suffer from limited scalability under high-load conditions, making them inadequate for supporting a large volume of nodes and frequent data exchanges. To overcome these limitations, We propose Shard-DAG, a scalable architecture that structurally integrates Directed Acyclic Graphs (DAG) and sharding. Each shard adopts a Block-DAG structure for parallel block processing, effectively overcoming the performance bottlenecks of traditional chain-based blockchains. Furthermore, we introduce a DAG-based transaction ordering mechanism within each shard to defend against double-spending attacks. To ensure inter-shard security, Block-DAG adopts a black-box interaction approach to prevent cross-shard double-spending. Theoretical analysis and experimental evaluations demonstrate that Shard-DAG achieves near-linear scalability. In a network of 1200 nodes with 8 shards, Shard-DAG achieves peak throughput improvements of 14.64 times over traditional blockchains, 8.61 times over standalone Block-DAG, and 2.05 times over conventional sharded blockchains. The results validate Shard-DAG's ability to scale efficiently while maintaining robust security properties.

Keywords

Blockchain / Directed acyclic graph / Distributed system / Scalability / Sharding

Cite this article

Download citation ▾
Yongkai Fan, Wenyuan Zhang, Guodong Wu, Le Zhang, Chengnian Long, Gang Tan, Neal N. Xiong. Shard-DAG: A scalable and secure block-DAG sharding scheme for AI-driven 6G networks. , 2025, 11(6): 1738-1750 DOI:10.1016/j.dcan.2025.04.005

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Mahboob, L. Liu, Revolutionizing future connectivity: a contemporary survey on ai-empowered satellite-based non-terrestrial networks in 6g, IEEE Commun. Surv. Tutor. 26 (2) (2024) 1279-1321.

[2]

T. Li, W. Liu, Z. Zeng, N.N. Xiong, Drlr: a deep-reinforcement-learning-based recruit-ment scheme for massive data collections in 6g-based iot networks, IEEE Internet Things J. 9 (16) (2021) 14595-14609.

[3]

A.A. Ahmed, M.K. Hasan, I. Memon, A.H.M. Aman, S. Islam, T.R. Gadekallu, S.A. Memon, Secure ai for 6g mobile devices: deep learning optimization against side-channel attacks, IEEE Trans. Consum. Electron. 70 (1) (2024) 3951-3959.

[4]

J. Guo, A. Liu, K. Ota, M. Dong, X. Deng, N.N. Xiong, Itcn: an intelligent trust col-laboration network system in iot, IEEE Trans. Netw. Sci. Eng. 9 (1) (2021) 203-218.

[5]

W. Zhang, S. Zhu, J. Tang, N. Xiong, A novel trust management scheme based on Dempster-Shafer evidence theory for malicious nodes detection in wireless sensor networks, J. Supercomput. 74 (2018) 1779-1801.

[6]

X. Wang, A. Shankar, K. Li, B.D. Parameshachari, J. Lv, Blockchain-enabled de-centralized edge intelligence for trustworthy 6g consumer electronics, IEEE Trans. Consum. Electron. 70 (1) (2024) 1214-1225.

[7]

W. Zhang, M. Du, X. Guo, N.N. Xiong, Srfl: a swarm reputation-based autonomic fed-erated learning framework for aiot, IEEE Internet Things J. 12 (8) (2025) 9687-9700.

[8]

L. Tao, Y. Lu, Y. Fan, L. Shi, C.W. Tan, Z. Wei, Throughput-scalable shard reorganiza-tion tailored to node relations in sharding blockchain networks, IEEE Trans. Comput. Soc. Syst. (2024) 1-15.

[9]

G. Liao, H. Ding, C. Zhong, Y. Lei, Rt-dag: dag-based blockchain supporting real-time transactions, IEEE Internet Things J. 11 (20) (2024) 32759-32772.

[10]

S. Xiao, X. Huang, X. Deng, B. Cao, Q. Chen, Db-fl: dag blockchain-enabled general-ized federated dropout learning, Digit. Commun. Netw. 11 (3) (2025) 886-897.

[11]

Q. Wang, J. Yu, S. Chen, Y. Xiang, Sok: dag-based blockchain systems, ACM Comput. Surv. 55 (12) (2023) 1-38.

[12]

J. Kolb, M. AbdelBaky, R.H. Katz, D.E. Culler, Core concepts, challenges, and future directions in blockchain: a centralized tutorial, ACM Comput. Surv. 53 (1) (2020) 1-39.

[13]

Z. Zhang, X. Liu, K. Feng, M. Wan, M. Li, J. Dong, L. Zhu, Phantasm: Adaptive Scal-able Mining Toward Stable BlockDAG, IEEE Trans. Serv. Comput. 17 (3) (2024) 1084-1096.

[14]

Bin Cao, Zixin Wang, Long Zhang, Daquan Feng, Mugen Peng, Lei Zhang, Zhu Han, Blockchain systems, technologies, and applications: A methodology perspec-tive, IEEE Commun. Surv. Tutor. 25 (1) (2022) 353-385.

[15]

S.Y. Popov, The tangle, https://api.semanticscholar.org/CorpusID:4958428, 2015.

[16]

S.D. Lerner, Directed acyclic graphs: a comprehensive survey, ACM Comput. Surv. 50 (1) (2017) 1-30.

[17]

S. Yonatan, Z. Aviv, Phantom and ghostdag: a scalable generalization of Nakamoto consensus, IACR Cryptol. ePrint Arch. 2018 ( 2018) 104.

[18]

H. Drake, Ethereum 2.0: a complete guide, Incomplet. Mag. 32 (2020) 14-36.

[19]

Zilliqa Team, The Zilliqa technical whitepaper, available at https://docs.zilliqa.com/whitepaper.pdf, 2017.

[20]

Z. Hong, S. Guo, P. Li, W. Chen, Pyramid: a layered sharding blockchain system, in: IEEE INFOCOM 2021-IEEE Conference on Computer Communications, IEEE, 2021, pp. 1-10.

[21]

M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, G. Danezis, 2017, Chainspace: a sharded smart contracts platform.

[22]

M. Zamani, M. Movahedi, M. Raykova, Rapidchain: Scaling blockchain via full shard-ing, 2018.

[23]

J. Wang, H. Wang, Monoxide: Scale out blockchains with asynchronous consensus zones, 2019.

[24]

L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, P. Saxena,A secure sharding protocol for open blockchains, in:Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 2016, pp. 17-30.

[25]

J. Wen, B. Yao, J. Wan, L. Li, Performance optimization of blockchain sharding sys-tem combined with deep reinforcement learning, Comput. Eng. Appl. 58 (19) (2022) 116-123.

[26]

Jie Xu, Yulong Ming, Zihan Wu, Cong Wang, Xiaohua Jia, X-Shard: Optimistic Cross-Shard Transaction Processing for Sharding-Based Blockchains, IEEE Trans. Parallel Distrib. Syst. 35 (4) (2024) 548-559.

[27]

Y. Sompolinsky, A. Zohar, Secure high-rate transaction processing in bitcoin, in: Financial Cryptography and Data Security: 19th International Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, in: Revised Selected Papers, vol. 19, Springer, 2015, pp. 507-527.

[28]

Y. Sompolinsky, Y. Lewenberg, A. Zohar,Spectre: a fast and scalable cryptocurrency protocol, Cryptology ePrint Archive.

[29]

M. Revanesh, J.M. Acken, V. Sridhar, Dag block: trust aware load balanced routing and lightweight authentication encryption in wsn, Future Gener. Comput. Syst. 140 (2023) 402-421.

[30]

X. Liu, S. Zhao, A. Liu, N. Xiong, A.V. Vasilakos, Knowledge-aware proactive nodes selection approach for energy management in Internet of things, Future Gener. Com-put. Syst. 92 (2019) 1142-1156.

[31]

Y. Sompolinsky, A. Zohar, Phantom, IACR Cryptology ePrint Archive, Report 2018/104.

[32]

S.D. Lerner, DagCoin: a cryptocurrency without blocks, IACR Transactions on Cryp-tographic Hardware and Embedded Systems, Available at https://www.iacr.org/archive.

[33]

H. Gupta,D. Janakiram, Cdag: a serialized blockdag for permissioned blockchain, arXiv preprint, arXiv:1910.08547.

[34]

C. Li, F. Long, G. Yang,Ghast: breaking confirmation delay barrier in Nakamoto consensus via adaptive weighted blocks, arXiv preprint, arXiv:2006.01072.

[35]

C. Li, P. Li, D. Zhou, Z. Yang, M. Wu, G. Yang, W. Xu, F. Long, A.C.-C. Yao, A decen-tralized blockchain with high throughput and fast confirmation, in: 2020 {USENIX} Annual Technical Conference ({USENIX}{ATC} 20), 2020, pp. 515-528.

[36]

X. Yu, Q. Wang, W. Zeng, Q. Lv, J. Li, Dag-based distributed ledger protocols: security and performance analysis, Future Gener. Comput. Syst. 105 (2020) 683-696.

[37]

L. Li, D. Huang, C. Zhang, An efficient dag blockchain architecture for iot, IEEE Internet Things J. 10 (2) (2022) 1286-1296.

[38]

X. Qu, S. Wang, K. Li, J. Huang, X. Cheng, Tidyblock: a novel consensus mechanism for dag-based blockchain in iot, IEEE Trans. Mob. Comput. 24 (2) (2025) 722-735.

[39]

Y. Yang, Y. Fan, W. Susilo, On the security and performance of dag-based blockchain protocols, IEEE Commun. Stand. Mag. 6 (1) (2022) 14-20.

[40]

Q. Zhou, H. Huang, Z. Zheng, J. Bian, Solutions to scalability of blockchain: a survey, IEEE Access 8 (2020) 16440-16455.

[41]

M. Zamani, M. Movahedi, Secure and scalable sharding protocols for blockchain, IEEE Trans. Comput. 68 (6) (2019) 930-944.

[42]

A.E. Gencer, S. Basu, I. Eyal, R. Van Renesse, E.G. Sirer, Decentralization in bitcoin and Ethereum networks, in: Financial Cryptography and Data Security: 22nd Inter-national Conference, FC 2018, Nieuwpoort, Curaçao, February 26-March 2, 2018, in: Revised Selected Papers, vol. 22, Springer, 2018, pp. 439-457.

[43]

Q. Lin, X. Chen, Towards practical and scalable blockchains using blockdag, in: Pro-ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security (CCS ’19), 2019, pp. 1201-1215.

[44]

B. Güder, S. Huh, S. Kim, J. Song, Efficient and secure block-dag for blockchain networks, IEEE Trans. Netw. Serv. Manag. 19 (2) (2022) 1195-1207.

[45]

Y. Wu, J. Li, M. Zhao, A novel blockdag consensus mechanism for high throughput and security, Future Gener. Comput. Syst. 115 (2021) 651-662.

[46]

M.J. Amiri, M. Samaniego, R. Deters, Blockchains scalability and security issues: per-formance analysis and solutions, IEEE Trans. Serv. Comput. 12 (2) (2019) 287-300.

[47]

G.A.F. Rebello, G.F. Camilo, L.A.C. de Souza, M. Potop-Butucaru, M.D. de Amorim, M. E.M. Campista, L.H.M.K. Costa, A survey on blockchain scalability: from hardware to layer-two protocols, IEEE Commun. Surv. Tutor. 26 (4) (2024) 2411-2458.

[48]

W. Fang, Y. Li, H. Zhang, N. Xiong, J. Lai, A.V. Vasilakos, On the throughput-energy tradeoff for data transmission between cloud and mobile devices, Inf. Sci. 283 (2014) 79-93.

AI Summary AI Mindmap
PDF

288

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/